
Published as a conference paper at ICLR 2018

A NEURAL REPRESENTATION OF SKETCH DRAWINGS

David Ha
Google Brain
hadavid@google.com

Douglas Eck
Google Brain
deck@google.com

ABSTRACT

We present sketch-rnn, a recurrent neural network (RNN) able to construct
stroke-based drawings of common objects. The model is trained on a dataset of
human-drawn images representing many different classes. We outline a framework
for conditional and unconditional sketch generation, and describe new robust
training methods for generating coherent sketch drawings in a vector format.

1 INTRODUCTION

Recently, there have been major advancements in generative modelling of images using neural
networks as a generative tool. Generative Adversarial Networks (GANs) (Goodfellow, 2016),
Variational Inference (VI) (Kingma & Welling, 2013), and Autoregressive (AR) (Reed et al., 2017)
models have become popular tools in this fast growing area. Most of the work thus far has been
targeted towards modelling low resolution, pixel images. Humans, however, do not understand the
world as a grid of pixels, but rather develop abstract concepts to represent what we see. From a young
age, we develop the ability to communicate what we see by drawing on paper with a pencil or crayon.
In this way we learn to express a sequential, vector representation of an image as a short sequence of
strokes. In this paper we investigate an alternative to traditional pixel image modelling approaches,
and propose a generative model for vector images.

Figure 1: Latent space interpolation of various vector images produced by our model (left).
Interpolation of two different Kanji characters (亀→書) as sequence of strokes (right).

Our goal is to train machines to draw and generalize abstract concepts in a manner similar to humans.
In this work, as a first step towards this goal, we train our model on a dataset of hand-drawn sketches,
each represented as a sequence of motor actions controlling a pen: which direction to move, when to
lift the pen up, and when to stop drawing. In doing so, we created a model that potentially has many
applications, from assisting the creative process of an artist, to helping teach students how to draw.

This paper makes the following contributions: We outline a framework for both unconditional and
conditional generation of vector images composed of a sequence of lines. Our recurrent neural
network-based generative model is capable of producing sketches of common objects in a vector
format. We develop a training procedure unique to vector images to make the training more robust. In
the conditional generation model, we explore the latent space developed by the model to represent a
vector image. We also discuss creative applications of our methodology. We make available a dataset
of 50 million hand drawn vector images to encourage further development of generative modelling
for vector images, and also release an implementation of our model as an open source project.1

1The code and dataset is available at https://magenta.tensorflow.org/sketch_rnn.

1

https://magenta.tensorflow.org/sketch_rnn

Published as a conference paper at ICLR 2018

2 RELATED WORK

There is a long history of work related to algorithms that mimic painters. One such work is Portrait
Drawing by Paul the Robot (Tresset & Fol Leymarie, 2013; Xie et al., 2012), where an underlying
algorithm controlling a mechanical robot arm sketches lines on a canvas with a programmable artistic
style to mimic a given digitized portrait of a person. Reinforcement Learning based-approaches (Xie
et al., 2012) have been developed to discover a set of paint brush strokes that can best represent a
given input photograph. These prior works generally attempt to mimic digitized photographs, rather
than develop generative models of vector images.

Neural Network-based approaches have been developed for generative models of images, although the
majority of neural network-related research on image generation deal with pixel images (Goodfellow,
2016; Isola et al., 2016; Kaae Sønderby et al., 2016; Kingma et al., 2016; Reed et al., 2017; White,
2016). There has been relatively little work done on vector image generation using neural networks.
An earlier work (Simhon & Dudek, 2004) makes use of Hidden Markov Models to synthesize lines
and curves of a human sketch. More recent work (Graves, 2013) on handwriting generation with
Recurrent Neural Networks laid the groundwork for utilizing Mixture Density Networks (Bishop,
1994) to generate continuous data points. Recent works of this approach attempted to generate
vectorized Kanji characters (Ha, 2015; Zhang et al., 2016) by modelling Chinese characters as a
sequence of pen stroke actions.

The approach outlined in this work allows one to explore the latent space representation of vector
images. For instance, we can use our model to interpolate between two Kanji characters in Figure 1
by first encoding the characters, represented as a sequence of strokes, into a latent space of embedding
vectors. Previous work (Bowman et al., 2015) outlined a methodology to combine Sequence-to-
Sequence models with a Variational Autoencoder to model natural English sentences in latent vector
space. A related work (Lake et al., 2015), utilizes probabilistic program induction, rather than neural
networks, to perform one-shot modelling of the Omniglot dataset containing images of symbols.

One of the factors limiting research development in the space of generative vector drawings is the
lack of publicly available datasets. Previously, the Sketch dataset (Eitz et al., 2012), consisting of 20K
vector sketches, was used to explore feature extraction techniques. A subsequent work, the Sketchy
dataset (Sangkloy et al., 2016), provided 70K vector sketches along with corresponding pixel images
for various classes. This allowed for a larger-scale exploration of human sketches. ShadowDraw (Lee
et al., 2011) is an interactive system that predicts what a finished drawing looks like based on a set of
incomplete brush strokes from the user while the sketch is being drawn. ShadowDraw used a dataset
of 30K raster images combined with extracted vectorized features. In this work, we use a much larger
dataset of 50 million vector sketches that is made publicly available.

3 METHODOLOGY

3.1 DATASET

We constructed QuickDraw, a dataset of 50 million vector drawings obtained from Quick,
Draw! (Jongejan et al., 2016), an online game where the players are asked to draw objects be-
longing to a particular object class in less than 20 seconds. QuickDraw consists of hundreds of
classes of common objects. Each class of QuickDraw is a dataset of 70K training samples, in
addition to 2.5K validation and 2.5K test samples.

We use a data format that represents a sketch as a set of pen stroke actions. This representation is an
extension of the format used in (Graves, 2013). Our format extends the binary pen stroke event into a
multi-state event. In this data format, the initial coordinate of the drawing is located at the origin.

A sketch is a list of points, and each point is a vector consisting of 5 elements: (∆x,∆y, p1, p2, p3).
The first two elements are the offset distance in the x and y directions of the pen from the previous
point. The last 3 elements represents a binary one-hot vector of 3 possible states. The first pen state,
p1, indicates that the pen is currently touching the paper, and that a line will be drawn connecting the
next point with the current point. The second pen state, p2, indicates that the pen will be lifted from
the paper after the current point, and that no line will be drawn next. The final pen state, p3, indicates
that the drawing has ended, and subsequent points, including the current point, will not be rendered.

2

Published as a conference paper at ICLR 2018

3.2 SKETCH-RNN

Figure 2: Schematic diagram of sketch-rnn.

Our model is a Sequence-to-Sequence Variational Autoencoder (VAE), similar to the architecture
described in (Bowman et al., 2015; Kingma & Welling, 2013). Our encoder is a bidirectional
RNN (Schuster et al., 1997) that takes in a sketch as an input, and outputs a latent vector of size Nz .
Specifically, we feed the sketch sequence, S, and also the same sketch sequence in reverse order,
Sreverse, into the two encoding RNNs of the bidirectional RNN, to obtain two final hidden states:

h→ = encode→(S), h← = encode←(Sreverse), h = [h→ ; h←]. (1)

We take this final concatenated hidden state, h, and project it into two vectors µ and σ̂, each of size
Nz , using a fully connected layer. We convert σ̂ into a non-negative standard deviation parameter
σ using an exponential operation. We use µ and σ, along with N (0, I), a vector of IID Gaussian
variables of size Nz , to construct a random vector, z ∈ RNz , as in the approach for a VAE:

µ = Wµh+ bµ, σ̂ = Wσh+ bσ, σ = exp
(σ̂

2

)
, z = µ+ σ �N (0, I). (2)

Under this encoding scheme, the latent vector z is not a deterministic output for a given input sketch,
but a random vector conditioned on the input sketch.

Our decoder is an autoregressive RNN that samples output sketches conditional on a given latent
vector z. The initial hidden states h0, and optional cell states c0 (if applicable) of the decoder RNN is
the output of a single layer network: [h0 ; c0] = tanh(Wzz + bz)

At each step i of the decoder RNN, we feed the previous point, Si−1 and the latent vector z in as
a concatenated input xi, where S0 is defined as (0, 0, 1, 0, 0). The output at each time step are the
parameters for a probability distribution of the next data point Si. In Equation 3, we model (∆x,∆y)
as a Gaussian mixture model (GMM) with M normal distributions as in (Bishop, 1994; Graves,
2013), and (q1, q2, q3) as a categorical distribution to model the ground truth data (p1, p2, p3), where
(q1 + q2 + q3 = 1) as done in (Ha, 2015) and (Zhang et al., 2016). Unlike (Graves, 2013), our
generated sequence is conditioned from a latent code z sampled from our encoder, which is trained
end-to-end alongside the decoder.

p(∆x,∆y) =

M∑
j=1

Πj N (∆x,∆y | µx,j , µy,j , σx,j , σy,j , ρxy,j), where
M∑
j=1

Πj = 1 (3)

N (x, y|µx, µy, σx, σy, ρxy) is the probability distribution function for a bivariate normal distribution.
Each of the M bivariate normal distributions consist of five parameters: (µx, µy, σx, σy, ρxy), where
µx and µy are the means, σx and σy are the standard deviations, and ρxy is the correlation parameter of
each bivariate normal distribution. An additional vector Π of length M , also a categorical distribution,
are the mixture weights of the Gaussian mixture model. Hence the size of the output vector y is
5M +M + 3, which includes the 3 logits needed to generate (q1, q2, q3).

The next hidden state of the RNN, generated with its forward operation, projects into the output
vector yi using a fully-connected layer:

xi = [Si−1 ; z], [hi ; ci] = forward(xi, [hi−1 ; ci−1]), yi = Wyhi + by, yi ∈ R6M+3.
(4)

3

Published as a conference paper at ICLR 2018

The vector yi is broken down into the parameters of the probability distribution of the next data point:

[(Π̂ µx µy σ̂x σ̂y ρ̂xy)1 (Π̂ µx µy σ̂x σ̂y ρ̂xy)2 ... (Π̂ µx µy σ̂x σ̂y ρ̂xy)M (q̂1 q̂2 q̂3)] = yi. (5)
As in (Graves, 2013), we apply exp and tanh operations to ensure the standard deviation values are
non-negative, and that the correlation value is between -1 and 1:

σx = exp(σ̂x), σy = exp(σ̂y), ρxy = tanh(ρ̂xy). (6)
The probabilities for the categorical distributions are calculated using the outputs as logit values:

qk =
exp(q̂k)∑3
j=1 exp(q̂j)

, k ∈ {1, 2, 3}, Πk =
exp(Π̂k)∑M
j=1 exp(Π̂j)

, k ∈ {1, ... , M}. (7)

A key challenge is to train our model to know when to stop drawing. Because the probabilities
of the three pen stroke events are highly unbalanced, the model becomes more difficult to train.
The probability of a p1 event is much higher than p2, and the p3 event will only happen once per
drawing. The approach developed in (Ha, 2015) and later followed by (Zhang et al., 2016) was to use
different weightings for each pen event when calculating the losses, such as a hand-tuned weighting
of (1, 10, 100). We find this inelegant approach to be inadequate for our dataset of diverse images.

We develop a simpler, more robust approach that works well for a broad class of sketch drawing data.
In our approach, all sequences are generated to a length of Nmax where Nmax is the length of the
longest sketch in our training dataset. In principle Nmax can be considered a hyper parameter. As the
length of S is usually shorter than Nmax, we set Si to be (0, 0, 0, 0, 1) for i > Ns. We discuss the
training in detail in the next section.

After training, we can sample sketches from our model. During the sampling process, we generate
the parameters for both GMM and categorical distributions at each time step, and sample an outcome
S′i for that time step. Unlike the training process, we feed the sampled outcome S′i as input for the
next time step. We continue to sample until p3 = 1, or when we have reached i = Nmax. Like the
encoder, the sampled output is not deterministic, but a random sequence, conditioned on the input
latent vector z. We can control the level of randomness we would like our samples to have during the
sampling process by introducing a temperature parameter τ :

q̂k →
q̂k
τ
, Π̂k →

Π̂k

τ
, σ2

x → σ2
xτ, σ

2
y → σ2

yτ. (8)

We can scale the softmax parameters of the categorial distribution and also the σ parameters of the
bivariate normal distribution by a temperature parameter τ , to control the level of randomness in
our samples. τ is typically set between 0 and 1. In the limiting case as τ → 0, our model becomes
deterministic and samples will consist of the most likely point in the probability density function.
Figure 3 illustrates of effect of sampling sketches with various temperature parameters.

3.3 UNCONDITIONAL GENERATION

Figure 3: Unconditional generation of firetrucks, yoga poses, gardens and owls with varying τ .

As a special case, we can also train our model to generate sketches unconditionally, where we only
train the decoder RNN module, without any input or latent vectors. By removing the encoder, the
decoder RNN as a standalone model is an autoregressive model without latent variables. In this use
case, the initial hidden states and cell states of the decoder RNN are initialized to zero. The inputs xi
of the decoder RNN at each time step is only Si−1 or S′i−1, as we do not need to concatenate a latent
vector z. In Figure 3, we sample various sketch images generated unconditionally by varying the
temperature parameter from τ = 0.2 at the top in blue, to τ = 0.9 at the bottom in red.

4

Published as a conference paper at ICLR 2018

3.4 TRAINING

Our training procedure follows the approach of the Variational Autoencoder (Kingma & Welling,
2013), where the loss function is the sum of two terms: the Reconstruction Loss, LR, and the
Kullback-Leibler Divergence Loss, LKL. We train our model to optimize this two-part loss function.
The Reconstruction loss term, described in Equation 9, maximizes the log-likehood of the generated
probability distribution to explain the training data S. We can calculate this reconstruction loss, LR,
using the generated parameters of the pdf and the training data S. LR is composed of the sum of the
log loss of the offset terms (∆x,∆y), Ls, and the log loss of the pen state terms (p1, p2, p3), Lp:

Ls = − 1

Nmax

Ns∑
i=1

log
(M∑
j=1

Πj,i N (∆xi,∆yi | µx,j,i, µy,j,i, σx,j,i, σy,j,i, ρxy,j,i)
)

Lp = − 1

Nmax

Nmax∑
i=1

3∑
k=1

pk,i log(qk,i), LR = Ls + Lp.

(9)

Note that we discard the pdf parameters modelling the (∆x,∆y) points beyond Ns when calculating
Ls, while Lp is calculated using all of the pdf parameters modelling the (p1, p2, p3) points until
Nmax. Both terms are normalized by the total sequence length Nmax. We found this methodology of
loss calculation to be more robust and allows the model to easily learn when it should stop drawing,
unlike the earlier mentioned method of assigning importance weightings to p1, p2, and p3.

The Kullback-Leibler (KL) divergence loss term measures the difference between the distribution of
our latent vector z, to that of an IID Gaussian vector with zero mean and unit variance. Optimizing
for this loss term allows us to minimize this difference. We use the result in (Kingma & Welling,
2013), and calculate the KL loss term, LKL, normalized by number of dimensions Nz of z:

LKL = − 1

2Nz

(
1 + σ̂ − µ2 − exp(σ̂)

)
. (10)

The loss function in Equation 11 is a weighted sum of both the LR and LKL loss terms:

Loss = LR + wKLLKL. (11)

There is a tradeoff between optimizing for one term over the other. As wKL → 0, our model
approaches a pure autoencoder, sacrificing the ability to enforce a prior over our latent space while
obtaining better reconstruction loss metrics. Note that for unconditional generation, where our model
is the standalone decoder, there will be no LKL term as we only optimize for LR.

Figure 4: Tradeoff between LR and LKL, for two models trained on single class datasets (left).
Validation Loss Graph for models trained on the Yoga dataset using various wKL (right).

Figure 4 illustrates the tradeoff between different settings of wKL and the resulting LR and LKL
metrics on the test set, along with the LR metric on a standalone decoder RNN for comparison.
As the unconditional model does not receive any prior information about the entire sketch it needs
to generate, the LR metric for the standalone decoder model serves as an upper bound for various
conditional models using a latent vector.

5

Published as a conference paper at ICLR 2018

4 EXPERIMENTS

We conduct several experiments with sketch-rnn for both conditional and unconditional vector
image generation. We train sketch-rnn on various QuickDraw classes using various settings
for wKL and record the breakdown of losses. To experiment with a diverse set of classes with varying
complexities, we select the cat, pig, face, firetruck, garden, owl, mosquito and yoga class. We also
experiment on multi-class datasets by concatenating different classes together to form (cat, pig) and
(crab, face, pig, rabbit). The results for test set evaluation on various datasets are displayed in Table 1.

The sketch-rnn model treats the RNN cell as an abstract component. In our experiments, we use
Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) as the encoder RNN. For the
decoder RNN, we use HyperLSTM, as this type of RNN cell excels at sequence generation tasks (Ha
et al., 2017). The ability for HyperLSTM to spontaneously augment its own weights enables it to
adapt to many different regimes in a large diverse dataset. Please see the Appendix for more details.

Dataset wKL = 1.00 wKL = 0.50 wKL = 0.25 Decoder Only

LR LKL LR LKL LR LKL LR

cat -0.98 0.29 -1.33 0.70 -1.46 1.01 -0.57
pig -1.14 0.22 -1.37 0.49 -1.52 0.80 -0.82
cat, pig -1.02 0.22 -1.24 0.49 -1.50 0.98 -0.75
crab, face, pig, rabbit -0.91 0.22 -1.04 0.40 -1.47 1.17 -0.67
face -1.13 0.27 -1.55 0.71 -1.90 1.44 -0.73
firetruck -1.24 0.22 -1.26 0.24 -1.78 1.10 -0.90
garden -0.79 0.20 -0.81 0.25 -0.99 0.54 -0.62
owl -0.93 0.20 -1.03 0.34 -1.29 0.77 -0.66
mosquito -0.67 0.30 -1.02 0.66 -1.41 1.54 -0.34
yoga -0.80 0.24 -1.07 0.55 -1.51 1.33 -0.48

Table 1: Loss figures (LR and LKL) for various wKL settings.
The relative loss numbers are consistent with our expectations. We see that the reconstruction loss
term LR decreases as we relax the wKL parameter controlling the weight for the KL loss term, and
meanwhile the KL loss term LR increases as a result. The LR for the conditional model is strictly
less than the unconditional, standalone decoder model. In Figure 4 (right), we plot validation-set loss
graphs for on the yoga class for models with various wKL settings. As LR decreases, the LKL term
tends to increase due to the tradeoff between LR and LKL.

4.1 CONDITIONAL RECONSTRUCTION

We qualitatively assess the reconstructed sketch S′ given an input sketch S. In Figure 5 (left), we
sample several reconstructions at various levels of temperature τ using a model trained on the single
cat class, starting at 0.01 on the left and linearly increasing to 1.0 on the right. The reconstructed cat
sketches have similar properties as the input image, and occasionally add or remove details such as a
whisker, a mouth, a nose, or the orientation of the tail.

Figure 5: Conditional generation of cats (left) and pigs (right).

When presented with a non-standard image of a cat, such as a cat’s face with three eyes, the
reconstructed cat only has two eyes. If we input a sketch from another image class, such a toothbrush,
the model seemingly generate sketches with similar orientation and properties as the toothbrush
input image, but with some cat-like features such as cat ears, whiskers or feet. We perform a similar
experiment with a model trained on the pig class, as shown in Figure 5 (right).

6

Published as a conference paper at ICLR 2018

4.2 LATENT SPACE INTERPOLATION

By interpolating between latent vectors, we can visualize how one image morphs into another image
by visualizing the reconstructions of the interpolations. As we enforce a Gaussian prior on the latent
space, we expect fewer gaps in the space between two encoded latent vectors. We expect a model
trained using a higher wKL setting to produce images that are closer to the data manifold given a
spherically interpolated (White, 2016) latent vector z, compared to another model trained with a
lower wKL.

Figure 6: Latent space interpolation between cat and pig using with various wKL settings (left).
Sketch Drawing Analogies (right).

To demonstrate this, we train several models using various wKL, on a dataset consisting of both cat
and pigs, and we encode two distinct images from the test set - a cat face and a full pig. Figure 6
(left) shows the reconstructed images from the interpolated latent vectors between the two original
images. As expected, models trained with higher wKL produce more coherent interpolated images.

4.3 SKETCH DRAWING ANALOGIES

The interpolation example in Figure 6 (left) suggests that the latent vector z encode conceptual
features of a sketch. Can we use these features to augment other sketches without such features – for
example, adding a body to a cat’s head? Indeed, we find that sketch drawing analogies are possible
for models trained with low LKL numbers. Given the smoothness of the latent space, where any
interpolated vector between two latent vectors results in a coherent sketch, we can perform vector
arithmetic on the latent vectors encoded from different sketches and explore how the model organizes
the latent space to represent different concepts in the manifold of generated sketches.

For example, as shown in Figure 6 (right), we can subtract the latent vector of an encoded pig head
from the latent vector of a full pig, to arrive at a vector that represents a body. Adding this difference
to the latent vector of a cat head results in a full cat (i.e. cat head + body = full cat). We repeat the
experiment to remove the body of a full pig. These drawing analogies allow us to explore how the
model organizes its latent space to represent different concepts in the manifold of generated sketches.

4.4 PREDICTING DIFFERENT ENDINGS OF INCOMPLETE SKETCHES

Figure 7: sketch-rnn predicting possible endings of various incomplete sketches (the red lines).

7

Published as a conference paper at ICLR 2018

We can use sketch-rnn to finish an incomplete sketch. By using the decoder RNN as a standalone
model, we can generate a sketch that is conditioned on the previous points. We use the decoder RNN
to first encode an incomplete sketch into a hidden state h. Afterwards, we generate the remaining
points of the sketch using h as the initial hidden state. We show results in Figure 7 using decoder-only
models trained on individual classes, and sample completions by setting τ = 0.8.

5 APPLICATIONS AND FUTURE WORK

We believe sketch-rnn will enable many creative applications. Even the decoder-only model
trained on various classes can assist the creative process of an artist by suggesting many possible ways
of finishing a sketch, helping artists expand their imagination. In the conditional model, exploring the
latent space between different objects can potentially enable artists to find interesting intersections
and relationships between different drawings. Even in the simplest use, pattern designers can apply
sketch-rnn to generate a large number of similar, but unique designs for textile or wallpaper
prints.

As we saw earlier in Section 4.1, a model trained to draw pigs can be made to draw pig-like trucks if
given an input sketch of a truck. We can extend this result to applications that might help creative
designers come up with abstract designs that can resonate more with their target audience. For
instance, in Figure 8 (right), we feed sketches of four different chairs into our cat-drawing model to
produce four “chair-like cats”. We can even interpolate between the four images to explore the latent
space of chair-like cats, and select from a large grid of generated designs.

Figure 8: Generating similar, but unique sketches based on a single human sketch in the box (left).
Latent space of generated cats conditioned on sketch drawings of chairs (right).

A model trained on higher quality sketches may find its way into educational applications that can
help teach students how to draw. Even with the simple sketches in QuickDraw, the authors of this
work have become much more proficient at drawing animals, insects, and various sea creatures after
conducting these experiments. A related application is to encode a crude, poorly sketched drawing
and generate more aesthetically looking reproductions by using a model trained with a high wKL
setting and sampling with a low temperature τ to produce a more coherent version of the drawing. In
the future, we can also investigate augmenting the latent vector in the direction that maximizes the
aesthetics of the drawing by incorporating user-rating data into the training process.

Combining hybrid variations of sequence-generation models with unsupervised, cross-domain pixel
image generation models, such as Image-to-Image models (Dong et al., 2017; Kim et al., 2017; Liu
et al., 2017), is another exciting direction that we can explore. We can already combine this model
with supervised, cross-domain models such as Pix2Pix (Isola et al., 2016), to occasionally generate
photo realistic cat images from generated sketches of cats. The opposite direction of converting a
photograph of a cat into an unrealistic, but similar looking sketch of a cat composed of a minimal
number of lines seems to be a more interesting problem.

8

Published as a conference paper at ICLR 2018

6 CONCLUSION

In this work, we develop a methodology to model sketch drawings using recurrent neural networks.
sketch-rnn is able to generate possible ways to finish an existing, but unfinished sketch drawing.
Our model can also encode existing sketches into a latent vector, and generate similar looking sketches
conditioned on the latent space. We demonstrate what it means to interpolate between two different
sketches by interpolating between its latent space, and also show that we can manipulate attributes
of a sketch by augmenting the latent space. We demonstrate the importance of enforcing a prior
distribution on the latent vector for coherent vector image generation during interpolation. By making
available a large dataset of sketch drawings, we hope to encourage further research and development
in the area of generative vector image modelling.

7 ACKNOWLEDGEMENTS

We thank Ian Johnson, Jonas Jongejan, Martin Wattenberg, Mike Schuster, Thomas Deselaers,
Ben Poole, Kyle Kastner, Junyoung Chung and Kyle McDonald for their help with this project. This
work was done as part of the Google Brain Residency program (g.co/brainresidency).

REFERENCES

Jimmy L. Ba, Jamie R. Kiros, and Geoffrey E. Hinton. Layer normalization. NIPS, 2016.

Christopher M. Bishop. Mixture density networks. Technical Report, 1994. URL http://
publications.aston.ac.uk/373/.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz, and Samy
Bengio. Generating Sentences from a Continuous Space. CoRR, abs/1511.06349, 2015. URL
http://arxiv.org/abs/1511.06349.

H. Dong, P. Neekhara, C. Wu, and Y. Guo. Unsupervised Image-to-Image Translation with Generative
Adversarial Networks. ArXiv e-prints, January 2017.

David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica: The Inter-
national Journal for Geographic Information and Geovisualization, 10(2):112–122, Octo-
ber 1973. doi: 10.3138/fm57-6770-u75u-7727. URL http://dx.doi.org/10.3138/
fm57-6770-u75u-7727.

Mathias Eitz, James Hays, and Marc Alexa. How Do Humans Sketch Objects? ACM Trans. Graph.
(Proc. SIGGRAPH), 31(4):44:1–44:10, 2012.

I. Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. ArXiv e-prints, December
2016.

Alex Graves. Generating sequences with recurrent neural networks. arXiv:1308.0850, 2013.

David Ha. Recurrent Net Dreams Up Fake Chinese Characters in Vector Format with TensorFlow,
2015.

David Ha, Andrew M. Dai, and Quoc V. Le. HyperNetworks. In ICLR, 2017.

Sepp Hochreiter and Juergen Schmidhuber. Long short-term memory. Neural Computation, 1997.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-Image Translation with Conditional Adversarial
Networks. ArXiv e-prints, November 2016.

Jonas Jongejan, Henry Rowley, Takashi Kawashima, Jongmin Kim, and Nick Fox-Gieg. The
Quick, Draw! - A.I. Experiment. https://quickdraw.withgoogle.com/, 2016. URL https:
//quickdraw.withgoogle.com/.

C. Kaae Sønderby, T. Raiko, L. Maaløe, S. Kaae Sønderby, and O. Winther. Ladder Variational
Autoencoders. ArXiv e-prints, February 2016.

9

g.co/brainresidency
http://publications.aston.ac.uk/373/
http://publications.aston.ac.uk/373/
http://arxiv.org/abs/1511.06349
http://dx.doi.org/10.3138/fm57-6770-u75u-7727
http://dx.doi.org/10.3138/fm57-6770-u75u-7727
https://quickdraw.withgoogle.com/
https://quickdraw.withgoogle.com/

Published as a conference paper at ICLR 2018

T. Kim, M. Cha, H. Kim, J. Lee, and J. Kim. Learning to Discover Cross-Domain Relations with
Generative Adversarial Networks. ArXiv e-prints, March 2017.

D. P Kingma and M. Welling. Auto-Encoding Variational Bayes. ArXiv e-prints, December 2013.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Diederik P. Kingma, Tim Salimans, and Max Welling. Improving variational inference with inverse
autoregressive flow. CoRR, abs/1606.04934, 2016. URL http://arxiv.org/abs/1606.
04934.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learn-
ing through probabilistic program induction. Science, 350(6266):1332–1338, December 2015.
ISSN 1095-9203. doi: 10.1126/science.aab3050. URL http://dx.doi.org/10.1126/
science.aab3050.

Yong Jae Lee, C. Lawrence Zitnick, and Michael F. Cohen. Shadowdraw: Real-time user guidance
for freehand drawing. In ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11, pp. 27:1–27:10, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0943-1. doi: 10.1145/1964921.1964922. URL
http://doi.acm.org/10.1145/1964921.1964922.

M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised Image-to-Image Translation Networks. ArXiv
e-prints, March 2017.

S. Reed, A. van den Oord, N. Kalchbrenner, S. Gómez Colmenarejo, Z. Wang, D. Belov, and N. de
Freitas. Parallel Multiscale Autoregressive Density Estimation. ArXiv e-prints, March 2017.

Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. The Sketchy Database: Learning to
Retrieve Badly Drawn Bunnies. ACM Trans. Graph., 35(4):119:1–119:12, July 2016. ISSN 0730-
0301. doi: 10.1145/2897824.2925954. URL http://doi.acm.org/10.1145/2897824.
2925954.

Mike Schuster, Kuldip K. Paliwal, and A. General. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 1997.

Saul Simhon and Gregory Dudek. Sketch interpretation and refinement using statistical models. In
Proceedings of the Fifteenth Eurographics Conference on Rendering Techniques, EGSR’04, pp. 23–
32, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Association. ISBN 3-905673-12-
6. doi: 10.2312/EGWR/EGSR04/023-032. URL http://dx.doi.org/10.2312/EGWR/
EGSR04/023-032.

Patrick Tresset and Frederic Fol Leymarie. Portrait drawing by paul the robot. Comput. Graph.,
37(5):348–363, August 2013. ISSN 0097-8493. doi: 10.1016/j.cag.2013.01.012. URL http:
//dx.doi.org/10.1016/j.cag.2013.01.012.

T. White. Sampling Generative Networks. ArXiv e-prints, September 2016.

Ning Xie, Hirotaka Hachiya, and Masashi Sugiyama. Artist agent: A reinforcement learning approach
to automatic stroke generation in oriental ink painting. In ICML. icml.cc / Omnipress, 2012. URL
http://dblp.uni-trier.de/db/conf/icml/icml2012.html#XieHS12.

Xu-Yao Zhang, Fei Yin, Yan-Ming Zhang, Cheng-Lin Liu, and Yoshua Bengio. Drawing and
Recognizing Chinese Characters with Recurrent Neural Network. CoRR, abs/1606.06539, 2016.
URL http://arxiv.org/abs/1606.06539.

10

http://arxiv.org/abs/1606.04934
http://arxiv.org/abs/1606.04934
http://dx.doi.org/10.1126/science.aab3050
http://dx.doi.org/10.1126/science.aab3050
http://doi.acm.org/10.1145/1964921.1964922
http://doi.acm.org/10.1145/2897824.2925954
http://doi.acm.org/10.1145/2897824.2925954
http://dx.doi.org/10.2312/EGWR/EGSR04/023-032
http://dx.doi.org/10.2312/EGWR/EGSR04/023-032
http://dx.doi.org/10.1016/j.cag.2013.01.012
http://dx.doi.org/10.1016/j.cag.2013.01.012
http://dblp.uni-trier.de/db/conf/icml/icml2012.html#XieHS12
http://arxiv.org/abs/1606.06539

Published as a conference paper at ICLR 2018

A APPENDIX

A.1 DATASET DETAILS

Figure 9: Example sketch drawings from QuickDraw dataset.

The data from QuickDraw (Jongejan et al., 2016) expands daily, and every so often new classes are
added to the game. As such, the QuickDraw dataset now consists of hundreds of classes, from 75
classes initially, in Table 2. In total, there are ∼ 50 million sketches in the released dataset, although
for the purpose of constructing an organized dataset for research purposes, we have limited the
number of sketches in each class.

alarm clock ambulance angel ant barn
basket bee bicycle book bridge

bulldozer bus butterfly cactus castle
cat chair couch crab cruise ship

dolphin duck elephant eye face
fan fire hydrant firetruck flamingo flower

garden hand hedgehog helicopter kangaroo
key lighthouse lion map mermaid

octopus owl paintbrush palm tree parrot
passport peas penguin pig pineapple
postcard power outlet rabbit radio rain

rhinoceros roller coaster sandwich scorpion sea turtle
sheep skull snail snowflake speedboat
spider strawberry swan swing set tennis racquet

the mona lisa toothbrush truck whale windmill
Table 2: Initial 75 QuickDraw classes used for this work.

Each class consists of 70K training samples and 2.5K validation and test samples. Stroke simplifica-
tion using the Ramer–Douglas–Peucker algorithm (Douglas & Peucker, 1973) with a parameter of
ε = 2.0 has been applied to simplify the lines. The data was originally recorded in pixel-dimensions,
so we normalized the offsets (∆x,∆y) using a single scaling factor. This scaling factor was calcu-
lated to adjust the offsets in the training set to have a standard deviation of 1. For simplicity, we do
not normalize the offsets (∆x,∆y) to have zero mean, since the means are already relatively small.
Figure 10 shows a training example before normalization of (∆x,∆y) data columns.

11

Published as a conference paper at ICLR 2018

Figure 10: A sample sketch, as a sequence of (∆x,∆y, p1, p2, p3) points and in rendered form.
In the rendered sketch, the line color corresponds to the sequential stroke ordering.

A.2 TRAINING DETAILS

As a recap from the main text, we defined the Reconstruction loss term LR as:

Ls = − 1

Nmax

Ns∑
i=1

log
(M∑
j=1

Πj,i N (∆xi,∆yi | µx,j,i, µy,j,i, σx,j,i, σy,j,i, ρxy,j,i)
)

Lp = − 1

Nmax

Nmax∑
i=1

3∑
k=1

pk,i log(qk,i)

LR = Ls + Lp.

(12)

We also defined the KL loss term LKL as:

LKL = − 1

2Nz

(
1 + σ̂ − µ2 − exp(σ̂)

)
. (13)

The loss function in Equation 14 is a weighted sum of both the LR and LKL loss terms:

Loss = LR + wKLLKL. (14)

While the loss function in Equation 14 can be used during training, we find that annealing the KL
term in the loss function (Equation 15) produced better results. This modification is only used for
model training, and the original loss function in Equation 14 is still used to evaluate validation and
test sets, and for early stopping.

ηstep = 1− (1− ηmin)Rstep

Losstrain = LR + wKLηstep max(LKL,KLmin)
(15)

We find that annealing the KL loss term generally results in better losses. Annealing the LKL
term in the loss function directs the optimizer to first focus more on the reconstruction term in
Equation 12, which is the more difficult loss term of the model to optimize for, before having to deal
with optimizing for the KL loss term in Equation 13, a far simpler expression in comparison. This
approach has been used in (Bowman et al., 2015; Kaae Sønderby et al., 2016; Kingma et al., 2016).
Our annealing term ηstep starts at ηmin (typically 0 or 0.01) at training step 0, and converges to 1 for
large training steps. R is a term close to, but less than 1.

If the distribution of z is close enough to N (0, I), we can sample sketches from the decoder using
randomly sampled z from N (0, I) as the input. In practice, we find that going from a larger LKL
value (LKL > 1.0) to a smaller LKL value of 0.3 generally results in a substantial increase in the
quality of sampled images using randomly sampled z ∼ N (0, I). However, going from LKL = 0.3
to LKL values closer to zero does not lead to any further noticeable improvements. Hence we find it
useful to put a floor on LKL in the loss function by enforcing max(LKL,KLmin) in Equation 15.

The KLmin term inside the max operator is typically set to a small value such as 0.10 to 0.50. This
term will encourage the optimizer to put less focus on optimizing for the KL loss term LKL once it
is low enough, so we can obtain better metrics for the reconstruction loss term LR. This approach
is similar to the approach described in (Kingma et al., 2016) as free bits, where they apply the max
operator separately inside each dimension of the latent vector z.

12

Published as a conference paper at ICLR 2018

A.3 MODEL CONFIGURATION

Our encoder and decoder RNNs consist of 512 and 2048 nodes respectively. In our model, we use
M = 20 mixture components for the decoder RNN. The latent vector z has Nz = 128 dimensions.
We apply Layer Normalization (Ba et al., 2016) to our model, and during training apply recurrent
dropout [9] with a keep probability of 90%. We train the model with batch sizes of 100 samples,
using Adam (Kingma & Ba, 2015) with a learning rate of 0.0001 and gradient clipping of 1.0.
All models are trained with KLmin = 0.20, R = 0.99999. During training, we perform simple
data augmentation by multiplying the offset columns (∆x,∆y) by two IID random factors chosen
uniformly between 0.90 and 1.10. Unless mentioned otherwise, all experiments are conducted with
wKL = 1.00.

A.4 MODEL LIMITATIONS

Although sketch-rnn can model a large variety of sketch drawings, there are several limitations in
the current approach we wish to highlight. For most single-class datasets, sketch-rnn is capable
of modelling sketches up to around 300 data points. The model becomes increasingly difficult to train
beyond this length. For our dataset, we applied the Ramer–Douglas–Peucker algorithm (Douglas
& Peucker, 1973) to simplify the strokes of the sketch data to less than 200 data points while still
keeping most of the important visual information of each sketch.

Figure 11: Unconditional generated sketches of frogs, cats, and crabs at τ = 0.8

For more complicated classes of images, such as mermaids or lobsters, the reconstruction loss metrics
are not as good compared to simpler classes such as ants, faces or firetrucks. The models trained on
these more challenging image classes tend to draw smoother, more circular line segments that do not
resemble individual sketches, but rather resemble an averaging of many sketches in the training set.
We can see some of this artifact in the frog class, in Figure 11. This smoothness may be analogous to
the blurriness effect produced by a Variational Autoencoder (Kingma & Welling, 2013) that is trained
on pixel images. Depending on the use case of the model, smooth circular lines can be viewed as
aesthetically pleasing and a desirable property.

Figure 12: Unconditional generations from model trained on 75 classes (left),
and from model trained on crab, face, pig and rabbit classes (right).

13

Published as a conference paper at ICLR 2018

While both conditional and unconditional models are capable of training on datasets consisting
of several classes, such as (cat, pig), and (crab, face, pig, rabbit), sketch-rnn is ineffective
at modelling a large number of classes simultaneously. In Figure 12, we sample sketches using
an unconditional model trained on 75 classes, and a model trained on 4 classes. The samples
generated from the 75-class model are incoherent, with individual sketches displaying features from
multiple classes. The four-class unconditional model usually generates samples of a single class, but
occasionally also combines features from multiple classes. In the future, we will explore incorporating
class information outside of the latent space to handle the modelling of a large number of classes
simultaneously.

A.5 MULTI-SKETCH DRAWING INTERPOLATION

Figure 13: Example of conditional generated sketches with single class models.
Latent space interpolation from left to right, and then top to bottom.

In addition to interpolating between two sketches, like in Figure13, we can also visualize the
interpolation between four sketches in latent space to gain further insight from the model. In this
section we show more examples conditionally generated with sketch-rnn. We take four generated
images, place them on four corners of a grid, and populate the rest of the grid using the interpolation
of the latent vectors at the corners. Figure 14 shows two examples of this four-way interpolation,
using models trained on both (cat, pig) classes, and face class. All samples generated with τ = 0.1.

Figure 14: Example input sketches and sketch-rnn generated reproductions (Top).
Latent space interpolation between the four reproduced sketches (Bottom).

14

Published as a conference paper at ICLR 2018

The left most figure of Figure 15 visualizes the interpolation between a full pig, a rabbit’s head, a
crab, and a face, using a model trained on these four classes. In certain parts of the space between a
crab and a face is a rabbit’s head, and we see that the ears of the rabbit becomes the crab’s claws.
Applying the model on the yoga class, it is interesting to see how one yoga position slowly transitions
to another via a set of interpolated yoga positions generated by the model. For visual effect, we also
interpolate between four distinct colors, and color each sketch using a unique interpolated color.

Figure 15: Interpolation of (pig, rabbit, crab and face), yoga poses, mosquitoes and mermaids.
We also interpolate between four distinct colors for visual effect.

We also construct latent space interpolation examples for the mosquito class and the mermaid class,
in the last two grids Figure 15. We see that the model can interpolate between concepts such as style
of wings, leg counts, and orientation. In Figure 16 below, we show more interpolation examples of
other classes from the dataset.

Figure 16: Latent space interpolation between four generated gardens, owls, cats, and firetrucks.

A.6 WHICH LOSS CONTROLS IMAGE COHERENCY?

We would like to question the relative importance of the reconstruction loss term LR, relative to the
KL loss term LKL, when our goal is to produce higher quality image reconstructions. While our
reconstruction loss term LR optimizes for the log-likelihood of the set of strokes that make up a
sketch, this metric alone does not give us any guarantee that a model with a lower LR number will
produce higher quality reconstructions compared to a model with a higher LR number.

For example, imagine a simple sketch of an face, ,, where most of the data points of S are be used to
represent the head, and only a minority of points represent facial features such as the eyes and mouth.
It is possible to reconstruct the face with incoherent facial features, and yet still score a lower LR
number compared to another reconstruction with a coherent and similar face, if the edges around the
incoherent face are generated more precisely.

In Figure 17, we compare the reconstructed images generated using models trained with various
wKL settings. In the first three examples from the left, we train our model on a dataset consisting
of four image classes (crab, face, pig, rabbit). We deliberately sketch input drawings that contain
features of two classes, such as a rabbit with a pig mouth and pig tail, a person with animal ears, and
a rabbit with crab claws. We see that the model trained using higher wKL weights, tend to generate
sketches with features of a single class that look more coherent, despite having lower LKL numbers.
For instance, the model with wKL = 1.00 omit pig features, animal ears, and crab claws from its
reconstructions. In contrast, the model with wKL = 0.25, with higher LKL, but lower LR numbers
tries to keep both inconsistent features, while generating sketches that look less coherent.

15

Published as a conference paper at ICLR 2018

In the last three examples in Figure 17, we repeat the experiment on models trained on single-class
images, and see similar results even when we deliberately choose input samples from the test set with
noisier lines.

If we look at the interpolations produced in the latent space interpolation examples from Section 4.2
in the main text, models with better KL loss terms also generate more meaningful reconstructions
from the interpolated space between two latent vectors. This suggests the latent vector for models
with lower LKL control more meaningful parts of the drawings, such as controlling whether the
sketch is an animal head only or a full animal with a body, or whether to draw a cat head or a pig head.
Altering such latent vectors can allow us to directly manipulate these animal features. Conversely,
altering the latent codes of models with higher LKL results in scattered movement of individual line
segments, rather than alterations of meaningful conceptual features of the animal.

This result is consistent with incoherent reconstructions seen in Figure 17. With a lower LKL, the
model is likely to generate coherent images given any random z. Even with a non-standard, or noisy,
input image, the model will still encode a z that produces coherent images. For models with lower
LKL numbers, the encoded latent vectors contain conceptual features belonging to the input image,
while for models with higher LKL numbers, the latent vectors merely encode information about
specific line segments. This observation suggests that when using sketch-rnn on a new dataset,
we should first try different wKL settings to evaluate the tradeoff between LR and LKL, and then
choose a setting for wKL (and KLmin) that best suit our requirements.

Figure 17: Reconstructions of sketch drawings using models with various wKL settings.

16

	Introduction
	Related Work
	Methodology
	Dataset
	Sketch-RNN
	Unconditional Generation
	Training

	Experiments
	Conditional Reconstruction
	Latent Space Interpolation
	Sketch Drawing Analogies
	Predicting Different Endings of Incomplete Sketches

	Applications and Future Work
	Conclusion
	Acknowledgements
	Appendix
	Dataset Details
	Training Details
	Model Configuration
	Model Limitations
	Multi-Sketch Drawing Interpolation
	Which Loss Controls Image Coherency?

