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ABSTRACT

We apply Wasserstein auto-encoders (WAEs) to the problem of disentangled
representation learning. We highlight the potential of WAEs with promising
results on a benchmark disentanglement task.

1 INTRODUCTION

Wasserstein auto-encoders (WAEs) are a recently introduced auto-encoder architecture with justifica-
tion stemming from the theory of Optimal Transport (Tolstikhin et al., 2018). Similarly to Variational
auto-encoders (VAEs), WAEs describe a particular way to train probabilistic latent variable models
(LVMs) PG. LVMs act by first sampling a code (feature) vector Z from a prior distribution PZ de-
fined over the latent space Z and then mapping it to a random input point X ∈ X using a conditional
distribution PG(X|Z) also known as the decoder.

Instead of minimizing the KL divergence between the LVM PG and the unknown data distribution
PX as done by VAEs, WAEs aim at minimizing any optimal transport distance between them. Given
any non-negative cost function c(x, x′) between two images, WAEs minimize the following objective
with respect to parameters of the decoder PG(X|Z):

min
Q(Z|X)

E
PX

E
Q(Z|X)

[
c
(
X,G(Z)

)]
+ λDZ(QZ , PZ), (1)

where the conditional distributions Q(Z|X) are commonly known as encoders, QZ(Z) :=∫
Q(Z|X)PX(X)dX is the aggregated posterior distribution, DZ is any divergence measure be-

tween two distributions over Z , and λ > 0 is a regularization coefficient. In practice Q(Z|X = x)
and G(z) are often parametrized with deep nets, in which case back propagation can be used with
stochastic gradient descent techniques to optimize the objective. We will consider only random
encoders Q(Z|X = x) mapping inputs to a distribution over the latent space.

The objective (1) is similar to that of the VAE and has two terms. The first reconstruction term aligns
the encoder-decoder pair so that the encoded images can be accurately reconstructed by the decoder
as measured by the cost function c (we will only use the cross-entropy loss throughout). The second
regularization term is different from VAEs: it forces the aggregated posterior QZ to match the prior
distribution PZ rather than asking point-wise posteriors Q(Z|X = x) to match PZ simultaneously
for all data points x. This means that WAEs explicitly control the shape of the entire encoded dataset
while VAEs constrain every input point separately.

In this work, we apply WAEs to the problem of disentangled representation learning, which is closely
related to the more general problem of manifold learning for which auto-encoding architectures are
often employed. The goal, though not precisely defined, is to learn representations of datasets such
that individual coordinates in the feature space correspond to human-interpretable generative factors
(also referred to as factors of variation in the literature). It is argued by Bengio et al. (2013) and
Lake et al. (2017) that learning such representations is essential for significant progress in machine
learning research.
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(a) 4-variable dSprites disentanglement task.
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(b) 5 variable dSprites disentanglement task.

Figure 1: Disentanglement vs reconstruction error for β-VAEs with various values of β and WAEs
with various L1 regularisation coefficients λ1 (up and left is better). Note that there is no direct
way to compare different values of β and λ1, but in both cases increasing the value of the hyper-
parameter is correlated with increasing reconstruction error. WAEs are capable of achieving
comparable or better disentanglement scores than the β-VAE while simultaneously achieving
lower reconstruction errors. In particular, WAE attains a maximum 98.8% on the 5-variable
disentanglement tast, compared to a maximum of 85.4% for β-VAE)

2 EXPERIMENTS

Recently, Higgins et al. (2017) proposed the synthetic dSprites dataset and a metric to evaluate
algorithms on their ability to learn disentangled representations. The dataset consists of 2-dimensional
white shapes on a black background with 5 factors of variation: shape, size, rotation, x-position and
y-position. Samples from this dataset can be seen in the first row of Figure 2.

The metric can be used to evaluate the “level of disentanglement” in the representation learned by a
model when the ground truth generative factors are known for each image, such as for the dSprites
dataset. We provide here an intuition of what the metric does; see Higgins et al. (2017) for full
details. Given a trained feature map ϕ : X → Z from the image space to the latent space, we ask the
following question. Suppose we are given two images x1 and x2 which have exactly one latent factor
whose value is the same—say they are both the same shape, but different in size, position and rotation.
By looking at the absolute values of the difference in feature vectors |ϕ(x1)− ϕ(x2)| ∈ RdZ , is it
possible to identify that it is the shape that they share in common, and not any other factor? The
idea is that if a disentangled representation has indeed been learned, then for each latent factor there
should be some feature coordinate ϕi corresponding to it. The value of |ϕi(x1)− ϕi(x2)| should
then be close to zero for the latent factor that is shared, while other coordinates should on average be
larger.

In the same paper, the authors introduce the β-VAE, which is currently considered to be the state-
of-the-art in disentangled learning algorithms. The β-VAE is a modification of the original VAE in
which the KL regularisation term is multiplied by a scalar hyper-parameter β. The authors show
that by tuning β, they are able to explore a trade-off between entangled representations with low
reconstruction error and disentangled representations with high reconstruction error.

We replicated the main experiment performed by Higgins et al. (2017) on the dSprites dataset, which
we describe in brief here. For further details, we refer the reader to Section 4.2 and Appendix
A.4 of their paper. We used a fixed fully connected architecture with the Bernoulli reconstruction
loss for all experiments, with a latent space dimension of 16. We trained 10 β-VAEs for β ∈
{1, 3, 10, 20, 30, 40, 50, 75, 100}. For each of the 10 replicates of each value of β, we calculated the
disentanglement metric 3 times. From the resulting list of 30 numbers, we discarded the bottom 50%.
For each experiment, we also record the test reconstruction error on a held out part of the dataset. At
the end of this procedure we had 15 pairs of numbers (test reconstruction error, disentanglement) for
each of the 9 choices of β.

∗Also affiliated with: Machine Learning Group, Engineering Department, University of Cambridge
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Figure 2: Row (a): Samples from the dSprites dataset; the remaining rows show reconstructions
of these images by: Row (b): the Gaussian WAE with the best reconstruction error amongst those
scoring > 98% on the 4-variable disentanglement metric; Row (c): the Gaussian WAE with the best
score on the 5-variable disentanglement metric; Row (d): the β-VAE with the best reconstruction
error amongst those scoring > 98% on the 4-variable disentanglement metric. This visually confirms
what is shown in Figure 1, namely that WAEs can disentangle better than β-VAEs while preserving
better reconstructions.

We repeated the same process with two types of random-encoder WAEs sharing the same architectures
as the β-VAE for the encoder and decoder. The first type had Gaussian priors and Gaussian encoders.
The second type had a uniform prior on [−1, 1]dZ and uniform encoder1 mapping to axis-aligned
boxes in Z . In both cases, the means of the encoders were constrained to be in the range (−1, 1)
on each dimension by tanh activation functions. We additionally added L1 regularisation to the
log-variances - doing so encourages the encoders to remain stochastic by preventing the log-variances
becoming too negative. More precisely, we added the following term to the objective function to be
minimised:

λp
N

N∑
n=1

dZ∑
i=1

∣∣log (σ2
i (xn)

)∣∣p (2)

where i indexes the dimensions of the latent space Z , n indexes the inputs in a mini-batch and
λp ≥ 0 is a new regularization coefficient. We trained such WAEs with L1 regularisation coefficients
λ1 ∈ {0, 0.1, 0.5, 1, 2, 3, 5, 8, 12}.
Higgins et al. (2017) report their results for disentangling on only 4 of the possible 5 variables.2
We additionally calculated the disentangling metric on the more challenging task of distinguishing
between all 5 of the latent variables. The results of our experimentation are displayed in Figure 1.
We were able to replicate their results showing that the β-VAE is capable of achieving essentially
100% on the 4-variable disentanglement task (Figure 1a), and that good disentanglement of β-VAE
comes at the expense of poorer reconstruction. On the 4-variable disentanglement task, we found
that WAEs were able to attain similar levels of disentanglement while retaining significantly better
reconstruction errors. On the 5-variable task (Figure 1b), WAEs significantly outperformed β-VAEs
simultaneously in terms of disentanglement and reconstruction.

Amongst all of the β-VAEs we trained attaining a 4-variable disentanglement score of > 98%, the
lowest training reconstruction error was 114.8 ± 5.2. The corresponding error for the WAEs was
40.8± 1.5. The WAE with the best 5-variable disentanglement scored an average of 98.8% across
the 3 independent disentanglement calculations for this experiment with a test reconstruction of
94.0± 5.8. The β-VAE performing best on the 5-variable disentanglement task scored an average
of 85.4% disentanglement with a test reconstruction of 156.1 ± 5.7. In summary, WAEs are able
to outperform β-VAEs simultaneously in terms of disentanglement metric and reconstruction error.
Sample reconstructions from each of the aforementioned experiments are displayed in Figure 2.

3 CONCLUSION

Preliminary experimentation suggests that Wasserstein auto-encoders may be a useful tool for
disentangled representation learning. Future directions for research include investigating the role of
more complex priors that can be composed together to model structured data, and whether optimal
values of the λ1 hyper-parameter can be found adaptively by the learning machine itself.

1Here the log-side-lengths were parametrised by the encoder, not the log-variances.
2Although there are 5 factors of variation in the dSprites dataset, the number 99.23± 0.1% they reported in

the Figure 6 of the main section of the paper refers to the ability of the β-VAE to provide a feature map with
which a classifier can predict whether x-position, y-position, scale and rotation are shared between pairs of
images, while ignoring shape. This is stated in Appendix A.4 of their paper.
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