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ABSTRACT

Deep feedforward neural networks are associated with complicated, nonconvex
objective functions. Yet, simple optimization algorithms can identify parameters
that generalize well to held-out data. We currently lack detailed descriptions of
this learning process, even on a qualitative level. We propose a simple tensor de-
composition model to study how hidden representations evolve over learning. This
approach precisely extracts the correct dynamics of learning in linear networks,
which admit closed form solutions. On deep, nonlinear architectures performing
image classification (CIFAR-10), we find empirically that a low-rank tensor model
can explain a large fraction of variance while extracting meaningful features, such
as stage-like learning and selectivity to inputs.

1 INTRODUCTION AND PROPOSED TENSOR MODEL

Deep networks can be difficult to optimize, yet carefully designed architectures and clever initializa-
tion and normalization strategies often yield state of the art performance on a variety of tasks. Prior
work has characterized deep network optimization by visualizing 1D or 2D slices of the objective
function (Goodfellow et al.|[2015;|Li et al., 2017)). While these studies provide a useful glimpse into
learning dynamics, they summarize the extremely rich and complex input-output functions of deep
networks as a single number (the loss). Other investigations into the optimization landscape of deep
networks include (Dauphin et al., 2014} |Choromanska et al.l 2015} |Guo et al., 2015).

To empirically study learning dynamics, we record the activations of /N units, in response to M test
inputs, at 7" instances over training. These data are naturally expressed as a N x M x 1" tensor, which
we denote X'. In modern settings, X may be very large and contain complex structure. However, we
hypothesized that a simple model may still explain a significant fraction of variance and yield insight
into cases of theoretical and practical interest. In particular, we sought to approximate X as a low-

rank tensor, X', which can be compactly expressed by its canonical polyadic (CP) decomposition:

R
[X]nmt = Zu;v:nwg ) (D
r=1

The rank of X is R, which represents the number of components in the model. Each component,
indexed by r, consists of a triplet of vectors: u” € RV, v € RM and w" € R, which we call
factors in analogy to learned features from matrix factorization models. Furthermore, as with matrix
factorization models, these factors have intuitive interpretations: each vector u” describes a pattern
of activity across the IV neurons in a layer, each v" indicates which images in the test set elicit this
pattern of activity, and each w” vector contains a learning curve for this neural representation. Thus,
we refer to w” as learning factors, v" as input factors, and u” as neuron factors. We fit these factors
using alternating least squares (with multiple random initializations), which is a standard method for
this model class (Carroll & Changl [1970; see|Kolda & Bader}, 2009, for review; see also |Williams
et al.| 2017|for a similar application to neuroscience data).

We emphasize two crucial features of the CP decomposition model:

*Equal contribution.
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Figure 1: The growth of learning modes in linear, ReLu, and tanh networks with one hidden layer,
trained to zero test error to replicate a teacher network of the same architecture, with initializa-
tion near the origin. For each architecture, we analyzed learning dynamics under gradient descent
(1.r.=0.3) and Adam (1.r.=0.003). Each plot shows the learning factors {w" le from a rank-5 ten-
sor decomposition, which in every case accounted for at least 85% of the variance. The z-axis is
training epoch, and the y-axis is strength of learning mode (a.u.).

e First, unlike subspace identification methods like PCA or CCA (which have previously
been applied to deep networks; Raghu et al., 2017) the CP tensor model can often recover
non-orthogonal features (Kruskal| |1977). This is particularly likely if we restrict u”, v”,
and w” to contain nonnegative entries (Qi et al.| 2016), which is a natural constraint for
networks with rectified linear units.

e Second, hypothesizing low-rank structure in higher-order tensors is a much stronger state-
ment than in the matrix case. An N x N x N tensor contains N> entries, while the CP
model has only O(RN) parameters. This massive difference in dimensionality implies that
a low-rank tensor dramatically simplifies our understanding of large-scale data.

2 LINEAR NETWORKS ADMIT PRECISE LOW-RANK DECOMPOSITIONS

Learning dynamics have been most rigorously studied in linear networks, which admit closed form
solutions under gradient descent dynamics, whitened input statistics, and initialization near the ori-
gin. In this regime, Saxe et al.|(2014) showed that a network with a bottleneck layer of R neurons
learns to match the top R singular vectors of the input-output covariance matrix ¥X*Y. Furthermore,
learning dynamics decouple in the basis of these singular vectors, and the rate at which each pair of
singular vectors is learned is inversely proportional to the singular value.

We point out that decoupled learning dynamics analytically derived by (Saxe et al.[ (2014} formally
map onto a low-rank tensor. Specifically, the left and right singular vectors of X*Y respectively map
onto the subspace spanned by the input factors, v", and the neuron factors, u”. The learning factors,
w”, map onto the sigmoidal learning curves that were analytically derived by |Saxe et al.| (2014).
To demonstrate this equivalence, we generated data from a low-rank linear teacher network with M
inputs and M outputs (M = 100), and we trained a linear student network with one hidden layer of
M neurons to zero test error under squared error loss. We collected data into a tensor X as described
in section (1} and recovered the exact results of [Saxe et al.|(2014) in a purely unsupervised manner
(Fig. 1, far left panel; input and neuron factors not shown).

While linear networks can provide important insights, there is a large gap between this analytically
tractable setting and modern machine learning applications. However, since the tensor decomposi-
tion model is entirely agnostic to the architecture and task, we wondered whether this framework
could empirically describe learning in cases where the assumptions of [Saxe et al.| (2014)) were bro-
ken. We used this technique to show that nonlinear networks with one hidden layer trained on non-
linear teachers exhibit qualitatively similar low-rank dynamics to the linear case, under the learning
dynamics of both gradient descent and Adam (Fig. 1). In these settings, very low-rank tensor de-
compositions were routinely able to capture over 85% of the variance of the original learning tensor.

3 CATEGORY-SPECIFIC LEARNING DYNAMICS IN A DEEP CONVNET

We next tested the CP decomposition model in a far more challenging setting: a convolutional
network with 8 hidden layers trained on CIFAR-10 images (Kaur, 2017)). To simplify our analysis
and reduce memory requirements, we recorded the maximal activation for each convolutional filter
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Figure 2: (a) Reconstruction error vs. number of tensor components. (b) Accuracy of a linear
classifier trained on tensor components. (¢) Representative learning factors (w”, left), input factors
(v", middle), and neuron factors (u", right) discovered on various network layers (color-coded).

into the data tensor, thus capturing a position-invariant measure of activation. We fit nonnegative
decompositions to data collected from each layer on 200 test images (20 images per category).

These models described a surprisingly large fraction of variance in this dataset. Figure[Zh shows the

normalized reconstruction error (|| X — X || /|| X || ) for several layers as a function of tensor rank,
R. Taking layer 8 (the final hidden layer) as an example, a rank-20 model explained ~60% of the
(uncentered) variance in the data, roughly a 2-fold improvement over a rank-1 model. Layer 9 (the
output layer) is even more cleanly described by a model with 10 components, corresponding to the
10 image categories, as indicated by a suggestive kink in the normalized error at R = 10.

Most importantly, tensor decompositions empirically identified factors that were human-
interpretable, task-relevant and of practical interest. For example, using input factors, v", from
any of the final four layers, we were able to infer the labels of the test images by a multiclass logistic
regressor (~90% accuracy, 10-fold cross-validated). This level of accuracy was comparable to (and
slightly exceeded) the accuracy of the network on the full test set (~84%).

The tensor factors themselves reveal interesting trends in the data. To provide a digestible and
representative sample, we chose 8 components (rows of Fig. [2t) across several layers of the network
that showed some selectivity for “automobile” images (test images 20-40). Similar results were
obtained for other image classes (not shown). In deep layers (upper rows), the input factors (middle
column) were sparse and selective for automobiles, while earlier layers were less selective. The
learning dynamics varied strongly across layers: learning in the final layer increased rapidly before
saturating while layers 4 and 6 ramped slowly over learning. Deeper layers, such as layer 8 (Fig
[k, blue), exhibited non-monotonic learning curves, suggesting shifting representations for the same
image class. Finally, the neuron factors (right column, sorted to illustrate sparsity) suggest that
learning in earlier layers tends to involve broader populations of neurons, whereas learning in deeper
layers is constrained to smaller, more sparse populations.

The framework we propose makes few assumptions about the computational task and network model
and thus may illuminate learning in a variety of settings, including recurrent architectures. For
example, we will investigate the extent to which hidden units that participate together in learning (as
identified by neuron factors) exhibit shared patterns in their input and output weights. We will also
scale our experiments up to larger-scale networks and test sets by incorporating recently developed
randomized algorithms for tensor decomposition (Erichson et al., 2017; Battaglino et al., 2017).
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