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ABSTRACT

Generative models provide a way to model structure in complex distributions and
have been shown to be useful for many tasks of practical interest. However, cur-
rent techniques for training generative models require access to fully-observed
samples. In many settings, it is expensive or even impossible to obtain fully-
observed samples, but economical to obtain partial, noisy observations. We con-
sider the task of learning an implicit generative model given only lossy measure-
ments of samples from the distribution of interest. We show that the true under-
lying distribution can be provably recovered even in the presence of per-sample
information loss for a class of measurement models. Based on this, we propose a
new method of training Generative Adversarial Networks (GANs) which we call
AmbientGAN. On three benchmark datasets, and for various measurement mod-
els, we demonstrate substantial qualitative and quantitative improvements. Gen-
erative models trained with our method can obtain 2-4x higher inception scores
than the baselines.

1 INTRODUCTION

Generative models are powerful tools to concisely represent the structure in large datasets. An
implicit generative model is a mechanism that only specifies a stochastic procedure to produce sam-
ples from a probability distribution. These models are attractive since they do not require an explicit
parametrization of the probability distribution they are trying to model.

Recently, there has been substantial progress in neural-network based implicit generative models
within the autoregressive and the adversarial framework. The adversarial framework was pioneered
by Generative Adversarial Networks (GANs) [Goodfellow et al. (2014)]. In these models, a genera-
tor network attempts to map samples from a simple low-dimensional distribution (such as standard
Gaussian) to points in a high-dimensional space that resemble the learned data distribution. At the
same time, a discriminator network attempts to distinguish between real and generated samples.
By setting up a min-max game between them, the two networks are jointly trained. The latent
probability distribution along with the learned generator network define a stochastic procedure that
can produce new samples. The adversarial framework has been shown to be extremely successful
in modeling complex distributions [Berthelot et al. (2017); Vondrick et al. (2016); Pascual et al.
(2017); Wu et al. (2016)], and the priors induced by these models are useful for various applications
[Shrivastava et al. (2016); Ho & Ermon (2016)].

This procedure for training generative models requires access to a large number of fully-observed
samples from the desired distribution. Unfortunately, obtaining multiple high-resolution samples
can be expensive or impractical for some applications. For example, many sensing and tomography
problems (e.g. MRI, CT Scan) require a large number of projections for good reconstruction. Com-
pressed sensing [Donoho (2006); Candes et al. (2006)] attempts to ameliorate this problem using
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Figure 1: AmbientGAN training. The output of the generator is passed through a simulated random
measurement function fΘ. The discriminator must decide if a measurement is real or generated.

models of the data structure. Recent work has shown that generative models can be particularly
effective for easier sensing [Bora et al. (2017); Mardani et al. (2017)]—but if sensing is expensive
in the first place, how can we collect enough data to train a generative model to start with?

This work solves this chicken-and-egg problem by training a generative model directly from noisy
or incomplete samples. We show that our observations can be even projections or more general
measurements of different types and the unknown distribution is still provably recoverable. A critical
assumption for our framework and theory to work is that the measurement process is known and
satisfies certain technical conditions.

We present several measurement processes for which it is possible to learn a generative model from
a dataset of measured samples, both in theory and in practice. Our approach uses a new way of
training GANs, which we call AmbientGAN. The idea is simple: rather than distinguish a real
image from a generated image as in a traditional GAN, our discriminator must distinguish a real
measurement from a simulated measurement of a generated image; see Figure 1. We empirically
demonstrate the effectiveness of our approach on three datasets and a variety of measurement mod-
els. Our method is able to construct good generative models from extremely noisy observations and
even from low dimensional projections with drastic per-sample information loss. We show this qual-
itatively by exhibiting samples with good visual quality, and quantitatively by comparing inception
scores [Salimans et al. (2016)] to baseline methods.

Theoretical results. We first consider measurements that are noisy, blurred versions of the desired
images. That is, we consider convolving the original image with a Gaussian kernel and adding
independent Gaussian noise to each pixel (our actual theorem applies to more general kernels and
noise distributions). Because of the noise, this process is not invertible for a single image. However,
we show that the distribution of measured images uniquely determines the distribution of original
images. This implies that a pure Nash equilibrium for the GAN game must find a generative model
that matches the true distribution. We show similar results for a dropout measurement model, where
each pixel is set to zero with some probability p, and a random projection measurement model,
where we observe the inner product of the image with a random Gaussian vector.

Empirical results. Our empirical work also considers measurement models for which we do not
have provable guarantees. We present results on some of our models now and defer the full explo-
ration to Section 8.

In Fig. 2, we consider the celebA dataset of celebrity faces [Liu et al. (2015)] under randomly placed
occlusions, where a randomly placed square containing 1/4 of the pixels is set to zero. It is hard
to inpaint individual images, so cleaning up the data by inpainting and then learning a GAN on the
result yields significant artifacts. By incorporating the measurement process into the GAN training,
we can produce much better samples.

In Fig. 3a we consider learning from noisy, blurred version of images from the celebA dataset. Each
image is convolved with a Gaussian kernel and then IID Gaussian noise is added to each pixel.
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Figure 2: (Left) Samples of lossy measurements used for training. Samples produced by (middle) a
baseline that trains from inpainted images, and (right) our model.

(a) (left) Samples of lossy measurements. Each
image is a blurred noisy version of the original.
Samples produced by (middle) a baseline that uses
Wiener deconvolution, and (right) our model.

(b) Samples produced by our model trained from two
1D projections of each image. On left, the training data
does not include the angle of the projections, so it can-
not identify orientation or chirality. On right, the train-
ing data includes the angle.

Figure 3: Results with Convolve+Noise on celebA (left) and 1D-projections on MNIST (right).

Learning a GAN on images denoised by Wiener deconvolution leads to poor sample quality while
our models are able to produce cleaner samples.

In Fig. 3b, we consider learning a generative model on the 2D images in the MNIST handwritten
digit dataset [LeCun et al. (1998)] from pairs of 1D projections. That is, measurements consist of
picking two random lines and projecting the image onto each line, so the observed value along the
line is the sum of all pixels that project to that point. We consider two variants: in the first, the choice
of line is forgotten, while in the second the measurement includes the choice of line. We find for
both variants that AmbientGAN recovers a lot of the underlying structure, although the first variant
cannot identify the distribution up to rotation or reflection.

2 RELATED WORK

There are two distinct approaches to constructing neural network based implicit generative models;
autoregressive [Kingma & Welling (2013); Oord et al. (2016b;a)], and adversarial [Goodfellow et al.
(2014)]. Some combination approaches have also been successful [Mescheder et al. (2017)].

The adversarial framework has been shown to be extremely powerful in modeling complex data
distributions such as images [Radford et al. (2015); Arjovsky et al. (2017); Berthelot et al. (2017)],
video [Liang et al. (2017); Vondrick et al. (2016)], and 3D models [Achlioptas et al. (2017); Wu
et al. (2016)]. A learned generative model can be useful for many applications. A string of papers
[Bora et al. (2017); Zhu et al. (2016); Yeh et al. (2016)] explore the utility of generative priors to
solve ill-posed inverse problems. [Shrivastava et al. (2016)] demonstrate that synthetic data can be
made more realistic using GANs. [Isola et al. (2016)] and [Zhu et al. (2017)] show how to translate
images from one domain to another using GANs.
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The idea of operating generators and discriminators on different spaces has been proposed before.
[Neyshabur et al. (2017)] explores an interesting connection of training stability with low dimen-
sional projections of samples. They show that training a generator against an array of discriminators,
each operating on a different low-dimensional projection of the data can improve stability. Our work
is also closely related to [Gadelha et al. (2016)] where the authors create 3D object shapes from a
dataset of 2D projections. We note that their setup is a special case of the AmbientGAN framework
where the measurement process creates 2D projections using weighted sums of voxel occupancies.

3 NOTATION AND OUR APPROACH

Throughout, we use superscript ‘r’ to denote real or true distribution, superscript ‘g’ for the gener-
ated distributions, ‘x’ for the underlying space and ‘y’ for measurements. Let prx be a real underlying
distribution over Rn. We observe lossy measurements performed on samples from prx. If we letm be
the size of each observed measurement, then, each measurement is an output of some measurement
function fθ : Rn → Rm, parameterized by θ. We allow the measurement function to be stochastic
by letting the parameters of the measurement functions have a distribution pθ. With this notation,
for a given x and θ, the measurements are given by y = fθ(x). We assume that it is easy to sample
Θ ∼ pθ and to compute fθ(x) for any x and θ. The distributions prx and pθ naturally induce a
distribution over the measurements y which we shall denote by pry . In other words, if X ∼ prx and
Θ ∼ pθ, then Y = fΘ(X) ∼ pry .

Our task is the following: there is some unknown distribution prx and a known distribution pθ. We
are given a set of IID realizations {y1, y2, . . . , ys} from the distribution pry . Using these, our goal is
to create an implicit generative model of prx, i.e., a stochastic procedure that can sample from prx.

Our main idea is to combine the measurement process with the adversarial training framework, as
shown in Fig. 1. Just like in the standard GAN setting, let Z ∈ Rk, Z ∼ pz be a random latent
vector for a distribution pz that is easy to sample from, such as IID Gaussian or IID uniform. Let
G : Rk → Rn be a generator. Let Xg = G(Z), and let pgx be the distribution of Xg . Thus, our goal
is to learn a generator G such that pgx is close to prx.

However, unlike the standard GAN setting, we do not have access to the desired objects (X ∼ prx).
Instead, we only have a dataset of measurements (samples from Y ∼ pry). Our main idea is to
simulate random measurements on the generated objectsXg , and use the discriminator to distinguish
real measurements from fake measurements. Thus, we sample a random measurement function fΘ

by sampling Θ ∼ pθ and apply it on Xg to obtain Y g = fΘ(Xg) = fΘ(G(Z)). Let pgy be the
distribution of Y g . We set up the discriminator to predict if a given y is a sample from the real
measurement distribution pry as opposed to the generated measurement distribution pgy . Thus, the
discriminator is a function D : Rm → R.

We let q(·) be the quality function that is used to define the objective, based on the discriminator
output. For vanilla GAN, q(x) = log(x) and for Wasserstein GAN [Arjovsky et al. (2017)], q(x) =
x. Accordingly, the AmbientGAN objective is the following:

min
G

max
D

EY r∼pry [q(D(Y r))] + EZ∼pz,Θ∼pθ [q(1−D(fΘ(G(Z))))].

We additionally require fθ to be differentiable with respect to its inputs for all θ. We implement
G and D as feedforward neural networks. With these assumptions, our model is end-to-end differ-
entiable and can be trained using an approach similar to the standard gradient-based GAN training
procedure. In each iteration, we sample Z ∼ pz , Θ ∼ pθ, and Y r ∼ UNIF{y1, y2, . . . , ys} to use
them to compute stochastic gradients of the objective with respect to parameters in G and D by
backpropagation. We alternate between updates to parameters of D and updates to parameters of G.

We note that our approach is compatible with and complementary to the various improvements pro-
posed to the GAN objective, network architectures, and the training procedures. Additionally, we
can easily incorporate additional information, such as per sample labels, in our framework through
conditional versions of the generator and discriminator. This is exemplified in our experiments,
where we use unconditional and conditional versions of DCGAN [Radford et al. (2015)], uncondi-
tional Wasserstein GAN with gradient penalty [Gulrajani et al. (2017)], and an Auxiliary Classifier
Wasserstein GAN [Odena et al. (2016)] with gradient penalty.
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4 MEASUREMENT MODELS

Now, we describe the measurement models that we use for our theoretical and empirical results. We
primarily focus on 2D images and thus our measurement models are tailored to this setting. The
AmbientGAN learning framework, however, is more general and can be used for other data formats
and other measurement models as well. For the rest of this section, we assume that input to the
measurement function (x) is a 2D image. We consider the following measurement models:

Block-Pixels: Each pixel is independently set to zero with probability p. Convolve+Noise: Let k
be a convolution kernel and let Θ ∼ pθ be the distribution of noise. Then the measurements are
given by fΘ(x) = k ∗x+Θ, where ∗ is the convolution operator. Block-Patch: A randomly chosen
k × k patch is set to zero. Keep-Patch: All pixels outside a randomly chosen k × k patch are set to
zero. Extract-Patch: A random k×k patch is extracted. Note that unlike the previous measurement
function, the information about the location of the patch is lost. Pad-Rotate-Project: We pad the
image on all four sides by zeros. Then we rotate the image by a random angle (θ) about its center.
The padding is done to make sure that the original pixels stay within the boundary. Finally, for each
channel in the image, we sum the pixels along the vertical axis to get one measurement vector. Pad-
Rotate-Project-θ: This is the same as the previous measurement function, except that along with the
projection values, the chosen angle is also included in the measurements. Gaussian-Projection: We
project onto a random Gaussian vector which is included in the measurements. So, Θ ∼ N (0, In),
and fΘ(x) = (Θ, 〈Θ, x〉).

5 THEORETICAL RESULTS

We show that we can provably recover the true underlying distribution prx for certain measurement
models. Our broad approach is to show that there is a unique distribution prx consistent with the
observed measurement distribution pry , i.e., the mapping of distributions of samples prx to distri-
bution of measurements pry is invertible even though the map from an individual image x to its
measurements fθ(x) is not. If this holds, then the following lemma immediately gives a consistency
guarantee with the AmbientGAN training procedure.

Lemma 5.1. As in Section 3, let prx be the data distribution, pθ be the distribution over parameters
of the measurement functions and pry be the induced measurement distribution. Further, assume that
for the given pθ, there is a unique probability distribution prx that induces the given measurement
distribution pry . Then, for the vanilla GAN model [Goodfellow et al. (2014)], if the Discriminator D

is optimal, so that D(·) =
pry(·)

pry(·)+pgy(·) , then a generator G is optimal iff pgx = prx.

All proofs including this one are deferred to Appendix A. Note that the previous lemma makes a
non-trivial assumption of uniqueness of the true underlying distribution given the measurement dis-
tribution. The next few theorems show that this assumption is satisfied under Gaussian-Projection,
Convolve+Noise and Block-Pixels measurement models, thus showing that that we can recover the
true underlying distribution with the AmbientGAN framework.

Theorem 5.2. For the Gaussian-Projection measurement model (Section 4), there is a unique un-
derlying distribution prx that can induce the observed measurement distribution pry .

Theorem 5.3. Let F(·) denote the Fourier transform and let supp(·) be the support of a function.
Consider the Convolve+Noise measurement model (Section 4) with the convolution kernel k and
additive noise distribution pθ. If supp(F(k))

c
= φ and supp(F(pθ))

c
= φ, then there is a unique

distribution prx that can induce the measurement distribution pry .

We remark that the required conditions in the preceding theorem are easily satisfied for the com-
mon setting of Gaussian blurring kernel with additive Gaussian noise. The same guarantee can be
generalized for any continuous and invertible function instead of a convolution. We omit the details.

Our next theorem makes an assumption of a finite discrete set of pixel values. This assumption holds
in most practical scenarios since images are represented with a finite number of discrete values per
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channel. In this setting, in addition to a consistency guarantee, we also give a sample complexity
result for approximately learning the distributions in the AmbientGAN framework.

Theorem 5.4. Assume that each image pixel takes values in a finite set P. Thus x ∈ Pn ⊂ Rn.
Assume 0 ∈ P , and consider the Block-Pixels measurement model (Section 4) with p being the
probability of blocking a pixel. If p < 1, then there is a unique distribution prx that can induce the
measurement distribution pry . Further, for any ε > 0, δ ∈ (0, 1], given a dataset of

s = Ω

(
|P |2n

(1− p)2n
ε2

log

(
|P |n

δ

))
IID measurement samples from pry , if the discriminator D is optimal, then with probability ≥ 1− δ
over the dataset, any optimal generator G must satisfy dTV (pgx, p

r
x) ≤ ε, where dTV (·, ·) is the total

variation distance.

6 DATASETS AND MODEL ARCHITECTURES

We used three datasets for our experiments. MNIST is a dataset of 28 × 28 images of handwritten
digits [LeCun et al. (1998)]. CelebA is a dataset of face images of celebrities [Liu et al. (2015)].
We use an aligned and cropped version where each image is 64 × 64 RGB. The CIFAR-10 dataset
consists of 32× 32 RGB images from 10 different classes [Krizhevsky & Hinton (2009)].

We briefly describe the generative models we used for our experiments. More details on archi-
tectures and hyperparameters can be found in the appendix. For the MNIST dataset, we use two
GAN models. The first model is a conditional DCGAN which follows the architecture in [Rad-
ford et al. (2015)]1 , while the second model is an unconditional Wasserstein GAN with gradient
penalty (WGANGP) which follows the architecture in [Gulrajani et al. (2017)]2 . For the celebA
dataset, we use an unconditional DCGAN and follow the architecture in [Radford et al. (2015)]3.
For the CIFAR-10 dataset, we use an Auxiliary Classifier Wasserstein GAN with gradient penalty
(ACWGANGP) which follows the residual architecture in [Gulrajani et al. (2017)]4.

For measurements with 2D outputs, i.e. Block-Pixels, Block-Patch, Keep-Patch, Extract-Patch, and
Convolve+Noise (see Section 4), we use the same discriminator architectures as in the original
work. For 1D projections, i.e. Pad-Rotate-Project, Pad-Rotate-Project-θ, we use fully connected
discriminators. The architecture of the fully connected discriminator used for the MNIST dataset
was 25-25-1 and for the celebA dataset was 100-100-1.

7 BASELINES

Now, we describe some baseline approaches that we implemented to evaluate the relative perfor-
mance of the AmbientGAN framework. Recall that we have a dataset of IID samples {y1, y2, . . . ys}
from the measurement distribution pry and our goal is to create an implicit generative model for prx.

A crude baseline is to ignore that any measurement happened at all. In other words, for cases where
the measurements lie in the same space as the full-samples (for example Convolve+Noise) we can
learn a generative model directly on the measurements and test how well it approximates the true
distribution prx. We call this the “ignore” baseline.

A stronger baseline is based on the following observation: If the measurement functions fθ were
invertible, and we observed θi for each measurement yi in our dataset, we could just invert the func-
tions to obtain full-samples xi = f−1

θi
(yi). Then we could directly learn a generative model using

these full-samples. Notice that both assumptions are violated in the AmbientGAN setting. First, we
may not observe θi and second, the functions may not be invertible. Indeed all the measurement
models in Section 4 violate one of the assumptions. However, we can try to approximate an in-
verse function and use the inverted samples to train a generative model. Thus, given a measurement
yi = fθi(xi), we try to “unmeasure” it and obtain x̂i, an estimate of xi. We then learn a generative
model with the estimated inverse samples and test how well it approximates prx.

1,3code reused from https://github.com/carpedm20/DCGAN-tensorflow
2,4code reused from https://github.com/igul222/improved_wgan_training
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Figure 4: Results with Block-Pixels on celebA. (left) Samples of lossy measurements. Each pixel is
blocked independently with probability p = 0.95. Samples produced by (middle) unmeasure-blur
baseline, and (right) our model.

(a) (left) Samples of lossy measurements. All except a randomly cho-
sen 32×32 patch is set to zero. (right) Samples produced by our model.

(b) Samples produced by our
model with Pad-Rotate-Project-θ
measurements.

Figure 5: Results on celebA with (a) Keep-Patch, and (b) 1D projections.

For the measurement models described in Section 4, we now describe the methods we used to
obtain approximate inverse functions: (a) For the Block-Pixels measurements, a simple approximate
inverse function is to just blur the image so that zero pixels are filled in from the surrounding.
We also implemented a more sophisticated approach to fill in the pixels by using total variation
inpainting. (b) For Convolve+Noise measurements with a Gaussian kernel and additive Gaussian
Noise, we approximate the inverse by a Wiener deconvolution. (c) For Block-Patch measurements,
we use the Navier Stokes based inpainting method [Bertalmio et al. (2001)] to fill in the zero pixels.

For other measurement models, it is unclear how to obtain an approximate inverse function. For the
Keep-Patch measurement model, no pixels outside a box are known and thus inpainting methods
are not suitable. Inverting Extract-Patch measurements is even harder since the information about
the position of the patch is also lost. For the Pad-Rotate-Project-θ measurements, a conventional
technique is to sample many angles, and use techniques for inverting the Radon transform [Deans
(2007)]. However, since we observe only a few projections at a time, these methods aren’t readily
applicable. Inverting Pad-Rotate-Project measurements is even harder since it lacks information
about θ. So, on this subset of experiments, we report only the results with the AmbientGAN models.

8 QUALITATIVE RESULTS

We present some samples generated by the baselines and our models. For each experiment, we show
the samples from the dataset of measurements (Y r) available for training, samples generated by the
baselines (when applicable) and the samples generated by our models (Xg). We show samples only
for a selected value of parameter settings. More results are provided in the appendix. All results on
MNIST are deferred to the appendix.

Block-Pixels: Fig. 4 shows results on celebA with DCGAN and Fig. 6 on CIFAR-10 with ACW-
GANGP. We see that the samples are heavily degraded in our measurement process (left image).
Thus, it is challenging for baselines to invert the measurements process, and correspondingly, they
do not produce good samples (middle image). Our models are able to produce images with good
visual quality (right image).

Convolve+Noise: We use a Gaussian kernel and IID Gaussian noise. Fig. 3a shows results on celebA
with DCGAN. We see that the measurements are drowned in noise (left image) and the baselines
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Figure 6: Results with Block-Pixels on CIFAR-10. (left) Samples of lossy measurements. Each pixel
is blocked independently with probability p = 0.8. Samples produced by (middle) unmeasure-blur
baseline, and (right) our model.

struggle to extract the original image, giving samples of low quality (middle image). Our models
are able to produce samples with clear faces (right image).

Block-Patch, Keep-Patch: Fig. 2 shows the results for Block-Patch and Fig. 5a for Keep-Patch
measurements on celebA with DCGAN. On both measurement distributions, our models are able to
create coherent faces (right image) by observing only parts of one image at a time.

1D projections: Pad-Rotate-Project and Pad-Rotate-Project-θ measurement models exhibit drastic
signal degradation; most of the information in a sample is lost during the measurements process.
For our experiments, we use two measurements at a time. Fig. 3b shows the results on MNIST
with DCGAN. While the first model is able to learn only up to rotation and reflection (left image),
we note that generated digits have similar orientations and chirality within each class without any
explicit incentive. We hypothesize that the model prefers this mode because it is easier to learn with
consistent orientation per class. The second measurement model contains the rotation angle and thus
produces upright digits (right image). While in both cases, the generated images are of lesser visual
quality, our method demonstrates that we can produce images of digits given only 1D projections.

Failure case: In Fig. 5b, we show the samples obtained from our model trained on celebA dataset
with Pad-Rotate-Project-θ measurements with a DCGAN. We see that the model has learned a very
crude outline of a face, but lacks details. This highlights the difficulty in learning complex distri-
butions with just 1D projections and a need for better understanding of distribution recovery under
projection measurement model as well as better methods for training GANs.

9 QUANTITATIVE RESULTS

We report inception scores [Salimans et al. (2016)] to quantify the quality of the generative mod-
els learned in the AmbientGAN framework. For the CIFAR-10 dataset, we use the Inception
model[Szegedy et al. (2016)] trained on the ImageNet dataset [Deng et al. (2009)]1. For computing
a similar score on MNIST, we trained a classification model with two conv+pool layers followed by
two fully connected layers2. The final test set accuracy of this model was 99.2%.

9.1 MNIST

For Block-Pixels measurements on MNIST, we trained several models with our approach and the
baselines, each with a different probability p of blocking pixels. For each model, after convergence,
we computed the inception score using the network described above. A plot of the inception scores
as a function of p is shown in Fig. 7 (left). We note that at p = 0, i.e. if no pixels are blocked, our
model is equivalent to a conventional GAN. As we increase p, the baseline models quickly start to
perform poorly, while the AmbientGAN models continue to perform relatively well.

1model weights reused from http://download.tensorflow.org/models/image/
imagenet/inception-2015-12-05.tgz

2code reused from https://www.tensorflow.org/get_started/mnist/pros
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Figure 7: Results on MNIST with WGANGP. (left) Block-Pixels (right) Convolve+Noise
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Figure 8: Quantitative results on CIFAR-10 with ACWGANGP, Block-Pixels measurement. (left)
Inception score vs blocking probability p. (right) Inception score vs training iteration with darkness
proportional to 1− p. Vertical bars indicate 95% confidence intervals.

For the Convolve+Noise measurements with a Gaussian kernel of radius 1 pixel, and additive Gaus-
sian noise with zero mean and standard deviation σ, we trained several models on MNIST by varying
the value of σ. A plot of the inception score as a function of σ is shown in Fig. 7 (right). We see
that for small variance of additive noise, Wiener deconvolution and the “ignore” baseline perform
quite well. However, as we start to increase the noise levels, these baselines quickly deteriorate in
performance, while the AmbientGAN models maintain a high inception score.

For 1D projection measurements, we report the inception scores for the samples produced by the
AmbientGAN models trained with two projection measurements at a time. The Pad-Rotate-Project
model produces digits at various orientations and thus does quite poorly, achieving an inception
score of just 4.18. The model with Pad-Rotate-Project-θ measurements produces well-aligned digits
and achieves an inception score of 8.12. For comparison, the vanilla GAN model trained with fully-
observed samples achieves an inception score of 8.99. Thus, the second model comes quite close to
the performance of the fully-observed case while being trained only on 1D projections.

9.2 CIFAR-10

In Fig. 8 (left), we show a plot of inception score vs the probability of blocking pixels p in the Block-
Pixels measurement model on CIFAR-10. We note that the total variation inpainting method is quite
slow and the performance on MNIST was about the same as unmeasure-blur baseline. So, we do
not run inpainting baselines on the CIFAR-10 dataset. From the plots, we see a trend similar to the
plot obtained with MNIST (Fig. 7, left), showing the superiority of our approach over baselines. We
show the inception score as a function of training iteration in Fig. 8 (right).
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10 CONCLUSION

Generative models are powerful tools, but constructing a generative model requires a large, high-
quality dataset of the distribution of interest. We show how to relax this requirement, by learning
a distribution from a dataset that only contains incomplete, noisy measurements of the distribution.
We hope that this will allow for the construction of new generative models of distributions for which
no high-quality dataset exists.
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Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual manipu-
lation on the natural image manifold. In European Conference on Computer Vision, pp. 597–613.
Springer, 2016.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017.

12



Published as a conference paper at ICLR 2018

APPENDIX A

10.1 PROOF OF LEMMA 5.1

Lemma. As in Section 3, let prx be the data distribution, pθ be the distribution over parameters of
the measurement functions and pry be the induced measurement distribution. Further, assume that
for the given pθ, there is a unique probability distribution prx that induces the given measurement
distribution pry . Then, for the vanilla GAN model [Goodfellow et al. (2014)], if the Discriminator D
is optimal, so that

D(·) =
pry(·)

pry(·) + pgy(·)
,

then a generator G is optimal iff pgx = prx.

Proof. From the same argument as in Theorem 1 in [Goodfellow et al. (2014)], it follows that pgy =
pry . Then, since there is a unique probability distribution prx that can induce the given measurement
distribution, it follows that pgx = prx. The converse is trivially true.

10.2 PROOF OF THEOREM 5.2

Theorem. For the Gaussian-Projection measurement model (Section 4), there is a unique underly-
ing distribution prx that can induce the observed measurement distribution pry .

Proof. We note that Since Θ ∼ N (0, In), all possible directions for projections are covered. Fur-
ther, since the measurement model includes the projection vector Θ as a part of the measurements,
in order to match the measurement distribution, the underlying distribution prx must be such that all
1D marginals are matched. Thus, by Cramer-Wold theorem [Cramér & Wold (1936)], any sequence
of random vectors that match the 1D marginals must converge in distribution to the true underlying
distribution. Thus, in particular, there is a unique probability distribution prx that can match all 1D
marginals obtained with the Gaussian projection measurements.

10.3 PROOF OF THEOREM 5.3

Theorem. Let F(·) denote the Fourier transform and let supp(·) be the support of a function. Con-
sider the Convolve+Noise measurement model (Section 4) with the convolution kernel k and ad-
ditive noise distribution pθ. If supp(F(k))

c
= φ and supp(F(pθ))

c
= φ, then there is a unique

distribution prx that can induce the measurement distribution pry .

Proof. LetX ∼ px. Let Θ ∼ pθ. Let Z = k∗X so that Z ∼ pz , and Y = Z+Θ, so Y ∼ py . With a
slight abuse of notation, we will denote the probability density functions (pdf) also by p subscripted
with the variable name. Then we have

Z = k ∗X,
⇔ F(Z) = F(k)F(X),

⇔ F(X) = F(Z)/F(k),

⇔ X = F−1(F(Z)/F(k)),

where the penultimate step follows since by assumption, F(k) is nowhere 0. In the last step, F−1

is the inverse Fourier transform.

Thus, there is a bijective map between X and Z. Since the Fourier and the inverse Fourier are
continuous transformations, this map is also continuous. So, we can write Z = h(X), where h is a
bijective, differentiable function. So, the pdfs of X and Z are related as

px(·) = pz(h(·)) |det(Jh(·))| ,

where Jh(x̃) is the Jacobian of h evaluated at x̃.
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Now, note that since Y is a sum of two random variables, its pdf is a convolution of the individual
probability density functions. So we have:

py = pz ∗ pθ

Taking the Fourier transform on both sides, we have

F(py) = F(pz)F(pθ),

⇔ F(pz) = F(py)/F(pθ),

⇔ pz = F−1(F(py)/F(pθ)),

where the penultimate step follows since by assumption, F(pθ) is nowhere 0.

Combining the two results, we have a reverse map from the measurement distribution py to a sample
distribution px. Thus, the reverse map uniquely determines the true underlying distribution px,
concluding the proof.

10.4 PROOF OF THEOREM 5.4

We first state a slightly different version of Theorem 1 from [Goodfellow et al. (2014)] for the
discrete setting. We shall use [n] to denote the set {1, 2, . . . n}, and use I(·) to denote the indicator
function.

Lemma 10.1. Consider a dataset of measurement samples {y1, y2, . . . ys}, where each yi ∈ [t]. We
define the empirical version of the vanilla GAN objective as

min
G

max
D

1

s

s∑
i=1

log(D(yi)) + EY g∼pgy [log(1−D(Y g))].

For j ∈ [t], let p̂ry(j) =
∑

I(yi = j)/s be the empirical distribution of samples. Then the optimal
discriminator for the empirical objective is such that

D(·) =
p̂ry(·)

p̂ry(·) + pgy(·)
.

Additionally, if we fix the discriminator to be optimal, then any optimal generator must satisfy
pgy = p̂ry .

Proof. The Empirical Risk Minimization (ERM) version of the loss is equivalent to the taking expec-
tation of the data dependent term with respect to the empirical distribution. Replacing the real data
distribution with the empirical version in the proof of Theorem 1 from [Goodfellow et al. (2014)],
we obtain the result.

Now we give a proof of Theorem 5.4.

Theorem. Assume that each image pixel takes values in a finite set P. Thus x ∈ Pn ⊂ Rn. Assume
0 ∈ P , and consider the Block-Pixels measurement model (Section 4) with p being the probability
of blocking a pixel. If p < 1, then there is a unique distribution prx that can induce the measurement
distribution pry . Further, for any ε > 0, δ ∈ (0, 1], given a dataset of

s = Ω

(
|P |2n

(1− p)2n
ε2

log

(
|P |n

δ

))
IID measurement samples from pry , if the discriminator D is optimal, then with probability ≥ 1− δ
over the dataset, any optimal generator G must satisfy dTV (pgx, p

r
x) ≤ ε, where dTV (·, ·) is the total

variation distance.
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Proof. We first consider a more general case and apply that to the Block-Pixels model. Consider
a discrete distribution px over [t]. We apply random measurement functions to samples from px
to obtain measurements. Assume that each measurement also belongs to the same set, i.e. [t].
Let A ∈ Rt×t be the transition matrix so that Aij is the probability (under the randomness in
measurement functions) that measurement i was produced by sample j. Then the distribution over
measurements py can be written in terms of px and A as:

py = Apx

Thus, if the matrix A is invertible, we can guarantee that the distribution px is recoverable from py .

Assuming A is invertible, we now turn to the sample complexity. Let λ be the minimum of mag-
nitude of eigenvalues of A. Since A is invertible, λ > 0. Let the dataset of measurements be
{y1, y2, . . . ys}. For j ∈ [t] and for k ∈ [s], Let Y jk = I(yk = j). Then for any ε > 0, we have

P
(
‖p̂ry − pry‖22 ≥

λ2ε2

t

)
= P

 t∑
j=1

(p̂ry(j)− pry(j))
2 ≥ λ2ε2

t

 ,

≤ P

 t⋃
j=1

{
(p̂ry(j)− pry(j))

2 ≥ λ2ε2

t2

} ,

≤
t∑

j=1

P
(
|p̂ry(j)− pry(j)| ≥ λε

t

)
,

=

t∑
j=1

P

(∣∣∣∣∣
∑s
k=1 Y

j
k

s
− pry(j)

∣∣∣∣∣ ≥ λε

t

)
,

≤
t∑

j=1

2 exp(−2sλ2ε2/t2),

= 2t exp(−2sλ2ε2/t2),

where we used union bound and Chernoff inequalities. Setting this to δ, we get

s =
t2

2λ2ε2
log

(
2t

δ

)
.

From Lemma 10.1, we know that the optimal generator must satisfy pgy = p̂ry . By invertibility of A,
we know that pgx = A−1pgy , and that prx = A−1pry . Thus, we obtain that with probability ≥ 1− δ,

2dTV (pgx, p
r
x) = ‖pgx − prx‖1,
≤
√
t‖pgx − prx‖2,

=
√
t‖A−1pgy − prx‖2,

=
√
t‖A−1p̂ry − prx‖2,

=
√
t‖A−1(pry + p̂ry − pry)− prx‖2,

=
√
t‖prx +A−1(p̂ry − pry)− prx‖2,

≤
√
t‖A−1‖2‖p̂ry − pry‖2,

≤
√
t
1

λ

λε√
t
,

= ε.
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Now we turn to the specific case of Block-Pixels measurement. We proceed by dividing the set of
all possible |P |n images into n+1 classes. The i-th class has those images that have exactly i pixels
with zero value. We sort the images according to their class number (arbitrary ordering within the
class) and consider the transition matrix A. Note that given an image from class i it must have j ≥ i
zero pixels after the measurement. Also, no image in class i can produce another image in the same
class after measurements. Thus, the transition matrix is lower triangular.

Since each pixel is blocked independently with probability p and since there are n pixels, the event
that no pixels are blocked occurs with probability (1− p)n. Thus, every image has at least (1− p)n
chance of being unaffected by the measurements. Any unaffected image maps to itself and thus
forms diagonal entries in the transition matrix. So, we observe that the diagonal entries of the
transition matrix are strictly positive and their minimum value is (1− p)n.

For a triangular matrix, the diagonal entries are precisely the eigenvalues and hence we have proved
that A is invertible and the smallest eigenvalue is (1− p)n. Combined with the result above, by
setting λ = (1− p)n, and t = |P |n, we conclude the proof.

APPENDIX B

10.5 MODEL ARCHITECTURE DETAILS

The DCGAN model on MNIST follows the architecture in [Radford et al. (2015)]. The noise input to
the generator (Z) has 100 dimensions where each coordinate is sampled IID Uniform on [−1, 1]. The
generator uses two linear layers followed by two deconvolutional layers. The labels are concatenated
with the inputs of each layer. The discriminator uses two convolutional layers followed by two linear
layers. As with the generator, the labels are concatenated with the inputs of each layer. Batch-norm
is used in both generator and the discriminator.

The WGANGP model on MNIST follows the architecture in [Gulrajani et al. (2017)]. The generator
takes in a latent vector of 128 dimensions where each coordinate is sampled IID Uniform on [−1, 1].
The generator then applies one linear and three deconvolutional layers. The discriminator uses three
convolutional layers followed by one linear layer. Batch-norm is not used.

The unconditional DCGAN model on celebA follows the architecture in [Radford et al. (2015)]. The
latent vector has 100 dimensions where each coordinate is Uniform on [−1, 1]. The generator applies
one linear layer followed by four deconvolutional layers. The discriminator uses four convolutional
layers followed by a linear layer. Batch-norm is used in both generator and the discriminator.

The ACWGANGP model on CIFAR-10 follows the residual architecture in [Gulrajani et al. (2017)].
The latent vector has 128 dimensions where each coordinate is sampled from IID standard Gaussian
distribution. The generator has a linear layer followed by three residual blocks. Each residual
block consists of two repetitions of the following three operations: conditional batch normalization
followed by a nonlinearity followed by an upconvolution layer. The residual blocks are followed
by another conditional batch normalization, a final convolution, and a final tanh non-linearity. The
discriminator consists of one residual block with two convolutional layers followed by three residual
blocks, and a final linear layer.

APPENDIX C

Here, we present some more results for various measurement models.
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(a) (left) Samples of lossy measurements. All except
a randomly chosen 14×14 patch is set to zero. (right)
Samples produced by the our model.

(b) (left) Samples of lossy measurements. A ran-
domly chosen 14×14 patch is extracted. (right) Sam-
ples produced by our model.

Figure 9: Results on MNIST with (a) Keep-Patch, and (b) Extract-Patch

Figure 10: Results with Convolve+Noise on MNIST. Each image is blurred with a Gaussian kernel
of radius 1 pixel and noise of std dev σ is added. Rows from top to bottom have σ = 0.0, 0.1,
0.2, and 0.5 respectively. Columns from left to right are: (1) Samples of lossy measurements. (2)
Samples produced by ignore baseline. (3) Samples produced by unmeasure-wiener-deconvolution
baseline. (4) Samples produced by our model.
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Figure 11: Results with Block-Pixels on MNIST. Rows from top to bottom have blocking proba-
bility 0.1, 0.5, 0.8, 0.9, 0.95 and 0.99 respectively. Columns from left to right are: (1) Samples of
lossy measurements. (2) Samples produced by unmeasure-blur baseline. (3) Samples produced by
unmeasure-inpaint-total-variation baseline. (4) Samples produced by our model.
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Figure 12: Results with Block-Patch on MNIST. (left) Samples of lossy measurements. A ran-
domly chosen 14×14 patch is set to zero. (middle) Samples produced by unmeasure-navier-stokes-
inpainting baseline. (right) Samples produced by the our model.

Figure 13: Results with Convolve+Noise on celebA. Each image is blurred with a Gaussian kernel
of radius 1 pixel and noise of std dev σ is added. Rows from top to bottom have σ = 0.0, 0.1, and
0.2 respectively. The left column shows samples of lossy measurements. The right column shows
samples produced by our model.
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Figure 14: Results with Block-Pixels on celebA. Rows from top to bottom have blocking probability
0.5, 0.8, 0.9, and 0.98 respectively. The left column shows samples of lossy measurements. The
right column shows samples produced by our model.
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Figure 15: Results with Block-Pixels on CIFAR-10. Rows from top to bottom have blocking prob-
ability 0.1, 0.5, 0.9, and 0.95 respectively. Columns from left to right are: (1) Samples of lossy
measurements. (2) Samples produced by unmeasure-blur baseline. (3) Samples produced by our
model.
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APPENDIX D
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Figure 16: MNIST with WGANGP (left) Robustness experiment with Block-Pixels measurement
(right) Compressed sensing using AmbientGAN. Vertical bars indicate 95% confidence intervals.

10.6 ROBUSTNESS TO MEASUREMENT MODEL MISMATCH

So far, in our analysis and experiments, we assumed that the parametric form of the measurement
function and the distribution of those parameters is exactly known. This was then used for simulat-
ing the stochastic measurement process. Here, we consider the case where the parameter distribution
is only approximately known. In this case, one would like the training process to be robust, i.e. the
quality of the learned generator to be close to the case where the parameter distribution is exactly
known. Through the following experiment, we empirically demonstrate that the AmbientGAN ap-
proach is robust to systematic mismatches in the parameter distribution of the measurement function.

Consider the Block-Pixels measurement model (Section 4). We use the MNIST dataset. Pixels
are blocked with probability p∗ = 0.5 to obtain a dataset of measurements. For several values
of blocking probability p for the measurement function applied to the output of the generator, we
train AmbientGAN models with this dataset. After training, we compute the inception score of the
learned generators and plot it as a function of p in Fig. 16 (left). We note that the plot peaks at
p = p∗ = 0.5 and gradually drops on both sides. This suggests that our method is somewhat robust
to parameter distribution mismatch.

10.7 COMPRESSED SENSING USING AMBIENTGAN

We provide further evidence that the generator learned through AmbientGAN approach captures
the data distribution well. Generative models have been shown to improve sensing over sparsity-
based approaches [Bora et al. (2017)]. We attempt to use the GAN learned using our procedure for
compressed sensing.

We trained an AmbientGAN with Block-Pixels measurement model (Section 4) on MNIST with
p = 0.5. Using the learned generator, we followed the rest of the procedure in [Bora et al. (2017)]
using their code3. Fig. 16 (right) shows a plot of reconstruction error vs the number of measure-
ments, comparing Lasso with AmbienGAN. Thus, we observe a similar reduction in the number of
measurements while using AmbientGAN trained with corrupted samples instead of a regular GAN
trained with fully observed samples.

3reused from https://github.com/AshishBora/csgm
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