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Abstract

In automatic emotion recognition (AER), la-001
bels assigned by different human annotators to002
the same utterance are often inconsistent due003
to the inherent complexity of emotion and the004
subjectivity of perception. Though determin-005
istic labels generated by averaging or voting006
are often used as the ground truth, it ignores007
the intrinsic uncertainty revealed by the incon-008
sistent labels. This paper proposes a Bayesian009
approach, deep evidential emotion regression010
(DEER), to estimating the uncertainty in emo-011
tion attributes. Treating the emotion attribute012
labels of an utterance as samples drawn from an013
unknown Gaussian distribution, DEER places014
an utterance-specific normal-inverse gamma015
prior over the Gaussian likelihood and predicts016
its hyper-parameters using a deep neural net-017
work model. It enables a joint estimation of018
emotion attributes along with the aleatoric and019
epistemic uncertainties. AER experiments on020
the widely used MSP-Podcast and IEMOCAP021
datasets showed DEER produced state-of-the-022
art results for both the mean values and the023
distribution of emotion attributes1.024

1 Introduction025

Automatic emotion recognition (AER) is the task026

that enables computers to predict human emotional027

states based on multimodal signals, such as au-028

dio, video and text. An emotional state is de-029

fined based on either categorical or dimensional030

theory. The categorical theory claims the exis-031

tence of a small number of basic discrete emo-032

tions (i.e. anger and happy) that are inherent in033

our brain and universally recognised (Gunes et al.,034

2011; Plutchik, 2001). Dimensional emotion the-035

ory characterises emotional states by a small num-036

ber of roughly orthogonal fundamental continuous-037

valued bipolar dimensions (Schlosberg, 1954; Nico-038

laou et al., 2011) such as valence-arousal and ap-039

proach–avoidance (Russell and Mehrabian, 1977;040

1Code will be publicly available upon acceptance.

Russell, 1980; Grimm et al., 2007). These dimen- 041

sions are also known as emotion attributes, which 042

allow us to model more subtle and complex emo- 043

tions and are thus more common in psychological 044

studies. As a result, AER includes a classification 045

approach based on emotion-class-based labels and 046

a regression approach based on attribute-based la- 047

bels. This paper focuses on attribute-based AER 048

with speech input. 049

Emotion annotation is challenging due to the in- 050

herent ambiguity of mixed emotion, the personal 051

variations in emotion expression, the subjectivity 052

in emotion perception, etc. Most AER datasets use 053

multiple human annotators to label each utterance, 054

which often results in inconsistent labels, either as 055

emotion categories or attributes. This is also a typi- 056

cal manifestation of the intrinsic data uncertainty, 057

also referred to as aleatoric uncertainty (Matthies, 058

2007; Der Kiureghian and Ditlevsen, 2009), that 059

arises from the natural complexity of emotion data. 060

It is common to replace such inconsistent labels 061

with deterministic labels obtained by majority vot- 062

ing (Busso et al., 2008, 2017) or (weighted) av- 063

erages (Ringeval et al., 2013; Lotfian and Busso, 064

2019; Kossaifi et al., 2019; Grimm and Kroschel, 065

2005). However, this causes a loss of data sam- 066

ples when a majority agreed emotion class doesn’t 067

exist (Majumder et al., 2018; Poria et al., 2018; 068

Wu et al., 2021) and also ignores the discrepancies 069

between annotators and the aleatoric uncertainty in 070

emotion data. 071

In this paper, we propose to model the uncer- 072

tainty in emotion attributes with a Bayesian ap- 073

proach based on deep evidential regression (Amini 074

et al., 2020), denoted deep evidential emotion re- 075

gression (DEER). In DEER, the inconsistent hu- 076

man labels of each utterance are considered as ob- 077

servations drawn independently from an unknown 078

Gaussian distribution. To probabilistically estimate 079

the mean and variance of the Gaussian distribution, 080

a normal inverse-gamma (NIG) prior is introduced, 081
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which places a Gaussian prior over the mean and an082

inverse-gamma prior over the variance. The AER083

system is trained to predict the hyper-parameters084

of the NIG prior for each utterance by maximising085

the per-observation-based marginal likelihood of086

each observed label under this prior. As a result,087

DEER not only models the distribution of emo-088

tion attributes but also learns both the aleatoric089

uncertainty and the epistemic uncertainty (Der Ki-090

ureghian and Ditlevsen, 2009) without repeating091

the inference procedure for sampling. Epistemic092

uncertainty, also known as model uncertainty, is as-093

sociated with uncertainty in model parameters that094

best explain the observed data. Aleatoric and epis-095

temic uncertainty are combined to induce the total096

uncertainty, also called predictive uncertainty, that097

measures the confidence of attribute predictions.098

As a further improvement, a novel regulariser is099

proposed based on the mean and variance of the100

observed labels to better calibrate the uncertainty101

estimation. The proposed methods were evaluated102

on the MSP-Podcast and IEMOCAP datasets.103

The rest of the paper is organised as follows.104

Section 2 summarises related work. Section 3 in-105

troduces the proposed DEER approach. Sections 4106

and 5 present the experimental setup and results107

respectively, followed by the conclusion.108

2 Related Work109

There has been previous work by AER researchers110

to address the issue of inconsistent labels. For emo-111

tion categories, a single ground-truth label can be112

obtained as either a continuous-valued mean vector113

representing emotion intensities (Fayek et al., 2016;114

Ando et al., 2018), or as a multi-hot vector obtained115

based on the existence of emotions (Zhang et al.,116

2020; Ju et al., 2020). Recently, distribution-based117

approaches have been proposed, which consider the118

labels as samples drawn from emotion distributions119

(Chou et al., 2022; Wu et al., 2022b).120

For emotion attributes, annotators often assign121

different values to the same attribute of each ut-122

terance. Davani et al. (2022) proposed a multi-123

annotator model which contains multiple heads to124

predict each annotator’s judgement. This approach125

is computationally viable only when the number of126

annotators is relatively small. The method requires127

sufficient annotations from each annotator to be128

effective. Deng et al. (2012) derived confidence129

measures based on annotator agreement to build130

emotion-scoring models. Han et al. (2017, 2021)131

proposed predicting the standard deviation of the 132

attribute label values as an extra task in the multi- 133

task training framework. Dang et al. (2017, 2018) 134

included annotator variability as a representation of 135

uncertainty in a Gaussian mixture regression model. 136

These techniques take the variance of human an- 137

notations either as an extra target or as an extra 138

input. More recently, Bayesian deep learning has 139

been introduced to the task, which models the un- 140

certainty in emotion annotation without explicitly 141

using the variance of human annotations. These 142

include the use of Gaussian processes (Atcheson 143

et al., 2018, 2019), variational auto-encoders (Srid- 144

har et al., 2021), Bayesian neural networks (Prabhu 145

et al., 2021), Monte-Carlo dropout (Sridhar and 146

Busso, 2020b) and sequential Monte-Carlo meth- 147

ods (Markov et al., 2015; Wu et al., 2022a). 148

So far, these methods have not distinguished 149

aleatoric uncertainty from epistemic uncertainty 150

which are defined in the introduction. Our proposed 151

DEER approach can simultaneously model these 152

two uncertainties. In addition, our approach is 153

more generic. It has no limits on the number of 154

annotators, the number of annotators per utterance, 155

and the number of annotations per annotator, and 156

thus can cope with large crowd-sourced datasets. 157

3 Deep Evidential Emotion Regression 158

3.1 Problem setup 159

In contrast to Bayesian neural networks that place 160

priors on model parameters (Blundell et al., 2015; 161

Kendall and Gal, 2017), evidential deep learn- 162

ing (Sensoy et al., 2018; Malinin and Gales, 2018; 163

Amini et al., 2020) places priors over the likelihood 164

function. Every training sample adds support to a 165

learned higher-order prior distribution called the 166

evidential distribution. Sampling from this distri- 167

bution gives instances of lower-order likelihood 168

functions from which the data was drawn. 169

Consider an input utterance x with M emotion 170

attribute labels y(1), . . . , y(M) provided by multiple 171

annotators. Assuming y(1), . . . , y(M) are observa- 172

tions drawn i.i.d. from a Gaussian distribution with 173

unknown mean µ and unknown variance σ2, where 174

µ is drawn from a Gaussian prior and σ2 is drawn 175

from an inverse-gamma prior: 176

y(1), . . . , y(M) ∼ N (µ, σ2) 177
178

µ ∼ N (γ, σ2υ−1), σ2 ∼ Γ−1(α, β) 179

where γ ∈ R, υ > 0, and Γ(·) is the gamma func- 180

tion with α > 1 and β > 0. 181
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Denote {µ, σ2} and {γ, υ, α, β} as Ψ and Ω.182

The posterior p(Ψ|Ω) is a NIG distribution, which183

is the Gaussian conjugate prior:184

p(Ψ|Ω) = p(µ|σ2,Ω) p(σ2|Ω)

= N (γ, σ2υ−1) Γ−1(α, β)

=
βα√υ

Γ(α)
√
2πσ2

(
1

σ2

)α+1

· exp
{
−2β + υ(γ − µ)2

2σ2

}185

Drawing a sample Ψi from the NIG distribution186

yields a single instance of the likelihood function187

N (µi, σ
2
i ). The NIG distribution therefore serves188

as the higher-order, evidential distribution on top189

of the unknown lower-order likelihood distribution190

from which the observations are drawn. The NIG191

hyper-parameters Ω determine not only the loca-192

tion but also the uncertainty, associated with the193

inferred likelihood function.194

By training a deep neural network model to out-195

put the hyper-parameters of the evidential distri-196

bution, evidential deep learning allows the uncer-197

tainties to be found by analytic computation of the198

maximum likelihood Gaussian without the need199

for repeated inference for sampling (Amini et al.,200

2020). Furthermore, it also allows an effective esti-201

mate of the aleatoric uncertainty computed as the202

expectation of the variance of the Gaussian distribu-203

tion, as well as the epistemic uncertainty defined as204

the variance of the predicted Gaussian mean. Given205

an NIG distribution, the prediction, aleatoric, and206

epistemic uncertainty can be computed as:207

Prediction:E[µ] = γ208

Aleatoric:E[σ2] =
β

α− 1
, ∀α > 1209

Epistemic:Var[µ] =
β

υ(α− 1)
, ∀α > 1210

3.2 Training211

The training of DEER is structured as fitting the212

model to the data while enforcing the prior to cali-213

brate the uncertainty when the prediction is wrong.214

3.2.1 Maximising the data fit215

The likelihood of an observation y given the eviden-216

tial distribution hyper-parameters Ω is computed217

by marginalising over the likelihood parameters Ψ:218

p(y|Ω) =

∫
Ψ
p(y|Ψ)p(Ψ|Ω) dΨ

= Ep(Ψ|Ω)[p(y|Ψ)]

(1)219

An analytical solution exists in the case of placing 220

an NIG prior on the Gaussian likelihood function: 221

p(y|Ω) =
Γ(1/2 + α)

Γ(α)

√
υ

π
(2β(1 + υ))α 222

·
(
υ(y − γ)2 + 2β(1 + υ)

)−( 1
2
+α)

223

= St2α

(
y|γ, β(1 + υ)

υ α

)
(2) 224

where Stν (t|r, s) is the Student’s t-distribution 225

evaluated at t with location parameter r, scale pa- 226

rameter s, and ν degrees of freedom. The predicted 227

mean and variance can be computed analytically as 228

E[y] = γ, Var[y] =
β(1 + υ)

υ(α− 1)
(3) 229

Var[y] represents the total uncertainty of model 230

prediction, which is equal to the summation of the 231

aleatoric uncertainty E[σ2] and epistemic uncer- 232

tainty Var[µ] according to the law of total variance: 233

Var[y] = E[Var[y|Ψ]] + Var[E[y|Ψ]] 234

= E[σ2] + Var[µ] 235

To fit the NIG distribution, the model is trained 236

by maximising the sum of the marginal likelihoods 237

of each human label y(m). The negative log likeli- 238

hood (NLL) loss can be computed as 239

LNLL(x;Θ) = − 1

M

M∑
m=1

log p(y(m)|Ω) (4) 240

= − 1

M

M∑
m=1

log

[
St2α

(
y(m)|γ, β(1 + υ)

υ α

)]
241

This is our proposed per-observation-based NLL 242

loss, which takes each observed label into consid- 243

eration for AER. This loss serves as the first part 244

of the objective function for training a deep neural 245

network model Θ to predict the hyper-parameters 246

{γ, v, α, β} to fit all observed labels of x. 247

3.2.2 Calibrating the uncertainty on errors 248

The second part of the objective function regu- 249

larises training by calibrating the uncertainty based 250

on the incorrect predictions. A novel regulariser 251

is formulated which contains two terms: Lµ and 252

Lσ that respectively regularises the errors on the 253

estimation of the mean µ and the variance σ2 of 254

the Gaussian likelihood. 255

The first term Lµ is proportional to the error 256

between the model prediction and the average of 257

the observations: 258

Lµ(x;Θ) = Φ |ȳ − E[µ]| 259
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where | · | is L1 norm, ȳ = 1
M

∑M
m=1 y

(m) is the260

averaged label which is usually used as the ground261

truth in regression-based AER, and Φ is an uncer-262

tainty measure associated with the inferred poste-263

rior. The reciprocal of the total uncertainty is used264

as Φ in this paper, which can be calculated as265

Φ =
1

Var[y]
=

υ(α− 1)

β(1 + υ)
266

The regulariser imposes a penalty when there’s an267

error in prediction and dynamically scales it by di-268

viding by the total uncertainty of inferred posterior.269

It penalises the cases where the model produces an270

incorrect prediction with a small uncertainty, thus271

preventing the model from being over-confident.272

For instance, if the model produces an error with a273

small predicted variance, Φ is large, resulting in a274

large penalty. Minimising the regularisation term275

enforces the model to produce accurate prediction276

or increase uncertainty when the error is large.277

In addition to imposing a penalty on the mean278

prediction as in (Amini et al., 2020), a second term279

Lσ is proposed in order to calibrate the estima-280

tion of the aleatoric uncertainty. As discussed in281

the introduction, aleatoric uncertainty in AER is282

shown by the different emotional labels given to283

the same utterance by different human annotators.284

This paper uses the variance of the observations to285

describe the aleatoric uncertainty in the emotion286

data. The second regularising term is defined as:287

Lσ(x;Θ) = Φ |σ̄2 − E[σ2]|288

where σ̄2 = 1
M

∑M
m=1(y

(m) − ȳ)2.289

3.3 Summary and implementation details290

For an AER task that consists of N emo-291

tion attributes, DEER trains a deep neural net-292

work model to simultaneously predict the hyper-293

parameters {Ω1, . . . ,ΩN} associated with the N294

attribute-specific NIG distributions, where Ωn =295

{γn, υn, αn, βn}. A DEER model thus has 4N out-296

put units. The system is trained by minimising the297

total loss w.r.t. Θ as:298

Ltotal(x;Θ) =
N∑

n=1

ϵnLn(x;Θ) (5)299

Ln(x;Θ) = LNLL
n (x;Θ)300

+ λn [Lµ
n(x;Θ) + Lσ

n(x;Θ)] (6)301

where ϵn is the weight satisfying
∑N

n=1 ϵn = 1, λn302

is the scale coefficient that trades off the training303

between data fit and uncertainty regulation.304

At test-time, the predictive posteriors are N sep- 305

arate Student’s t-distributions p(y|Ω1),p(y|Ω2) 306

, . . . , p(y|ΩN ), each of the same form as derived 307

in Eqn. (2)2. Apart from obtaining a distribution 308

over the emotion attribute of the speaker, DEER 309

also allows analytic computation of the uncertainty 310

terms, as summarised in Table 1. 311

Term Expression

Predicted mean E[y] = E[µ] = γ

Predicted variance
(Total uncertainty)

Var[y] = β(1+υ)
υ(α−1)

Aleatoric uncertainty E[σ2] = β
α−1

Epistemic uncertainty Var[µ] = β
υ(α−1)

Table 1: Summary of the uncertainty terms.

4 Experimental Setup 312

4.1 Dataset 313

The MSP-Podcast (Lotfian and Busso, 2019) and 314

IEMOCAP datasets (Busso et al., 2008) were used 315

in this paper. The annotations of both datasets 316

use N = 3 with valence, arousal (also called acti- 317

vation), and dominance as the emotion attributes. 318

MSP-Podcast contains natural English speech from 319

podcast recordings and is one of the largest publicly 320

available datasets in speech emotion recognition. 321

A seven-point Likert scale was used to evaluate 322

valence (1-negative vs 7-positive), arousal (1-calm 323

vs 7-active), and dominance (1-weak vs 7-strong). 324

The corpus was annotated using crowd-sourcing. 325

Each utterance was labelled by at least 5 human 326

annotators and has an average of 6.7 annotations 327

per utterance. Ground-truth labels were defined 328

by the average value. Release 1.8 was used in 329

the experiments, which contains 73,042 utterances 330

from 1,285 speakers amounting to more than 110 331

hours of speech. The average variance of the labels 332

assigned to each sentence is 0.975, 1.122, 0.889 333

for valence, arousal, and dominance respectively. 334

The standard splits for training (44,879 segments), 335

validation (7,800 segments) and testing (15,326 336

segments) were used in the experiments. 337

The IEMOCAP corpus is one of the most widely 338

used AER datasets. It consists of approximately 339

12 hours of English speech including 5 dyadic con- 340

versational sessions performed by 10 professional 341

2Since NIG is the Gaussian conjugate prior, the posterior is
in the same parametric family as the prior. Therefore, the pre-
dictive posterior has the same form as the marginal likelihood.
Detailed derivations see Appendix A.
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actors with a session being a conversation between342

two speakers. There are in total 151 dialogues343

including 10,039 utterances. Each utterance was344

annotated by three human annotators using a five-345

point Likert scale. Again, ground-truth labels were346

determined by taking the average. The average347

variance of the labels assigned to each sentence is348

0.130, 0.225, 0.300 for valence, arousal, and dom-349

inance respectively. Unless otherwise mentioned,350

systems on IEMOCAP were evaluated by training351

on Session 1-4 and testing on Session 5.352

4.2 Model structure353

The model structure used in this paper follows354

the upstream-downstream framework (Yang et al.,355

2021), as illustrated in Figure 1. WavLM (Chen356

et al., 2022) was used as the upstream model, which357

is a speech foundation model pre-trained by self-358

supervised learning. The BASE+ version3 of the359

model was used in this paper which has 12 Trans-360

former encoder blocks with 768-dimensional hid-361

den states and 8 attention heads. The parameters of362

the pre-trained model were frozen and the weighted363

sum of the outputs of the 12 Transformer encoder364

blocks was used as the speech embeddings and fed365

into the downstream model.366

The downstream model consists of two 128-367

dimensional Transformer encoder blocks with 4-368

head self-attention, followed by an evidential layer369

that contains four output units for each of the three370

attributes, which has a total of 12 output units. The371

model contains 0.3M trainable parameters. A Soft-372

plus activaton4 was applied to {υ, α, β} to ensure373

υ, α, β > 0 with an additional +1 added to α to en-374

sure α > 1. A linear activation was used for γ ∈ R.375

The proposed DEER model was trained to simulta-376

neously learn three evidential distributions for the377

three attributes. The weights in Eqn. (5) were set as378

ϵv = ϵa = ϵd = 1/3. The scale coefficients were379

set to λv = λa = λd = 0.1 for Eqn. (6)5.380

A dropout rate of 0.3 was applied to the trans-381

former parameters. The system was implemented382

using PyTorch and the SpeechBrain toolkit (Ra-383

vanelli et al., 2021). The Adam optimizer was used384

with an initial learning rate set to 0.001. Training385

took ∼ 8 hours on an NVIDIA A100 GPU.386

3https://huggingface.co/microsoft/wavlm-base-plus
4Softplus(x) = ln(1 + exp(x))
5The values were manually selected from a small number

of candidates.

Input waveform
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encoder block 1 …

Transformer 
encoder block 12

…

…

Convolutional 
feature encoder

Transformer 
encoder block*2

Evidential layer
Downstream 

model

𝑤𝑤12

𝑤𝑤1…

…

𝛾𝛾d 𝜐𝜐d 𝛼𝛼d 𝛽𝛽d𝛾𝛾v 𝜐𝜐v 𝛼𝛼v 𝛽𝛽v 𝛾𝛾a 𝜐𝜐a 𝛼𝛼a 𝛽𝛽a

Frames

𝛾𝛾d 𝜐𝜐d 𝛼𝛼d 𝛽𝛽d𝛾𝛾v 𝜐𝜐v 𝛼𝛼v 𝛽𝛽v 𝛾𝛾a 𝜐𝜐a 𝛼𝛼a 𝛽𝛽a

…

𝛾𝛾d 𝜐𝜐d 𝛼𝛼d 𝛽𝛽d

𝛾𝛾v 𝜐𝜐v 𝛼𝛼v 𝛽𝛽v
𝛾𝛾a 𝜐𝜐a 𝛼𝛼a 𝛽𝛽a

Figure 1: Illustration of the model structure. Weights
w1, . . . , w12 for the weighted sum of the 12 Transformer
encoder outputs are trainable and satisfy

∑12
i=1 wi = 1.

4.3 Evaluation metrics 387

4.3.1 Mean prediction 388

Following prior work in continuous emotion recog- 389

nition (Ringeval et al., 2015, 2017; Sridhar and 390

Busso, 2020a; Leem et al., 2022), the concordance 391

correlation coefficient (CCC) was used to evaluate 392

the predicted mean. CCC combines the Pearson’s 393

correlation coefficient with the square difference 394

between the mean of the two compared sequences: 395

ρccc =
2ρ σrefσhyp

σ2
ref + σ2

hyp +
(
µref − µhyp

)2 , 396

where ρ is the Pearson correlation coefficient be- 397

tween a hypothesis sequence (system predictions) 398

and a reference sequence, where µhyp and µref are 399

the mean values, and σ2
hyp and σ2

ref are the variance 400

values of the two sequences. Hypotheses that are 401

well correlated with the reference but shifted in 402

value are penalised in proportion to the deviation. 403

The value of CCC ranges from -1 (perfect disagree- 404

ment) to 1 (perfect agreement). 405

The root mean square error (RMSE) averaged 406

over the test set is also reported. Since the average 407

of the human labels, ȳ, is defined as the ground 408

truth in both datasets, ȳ were used as the reference 409

in computing the CCC and RMSE. However, using 410

ȳ also indicates that these metrics are less informa- 411

tive when the aleatoric uncertainty is large. 412

4.3.2 Uncertainty estimation 413

It is common to use NLL to measure the uncertainty 414

estimation ability (Gal and Ghahramani, 2016; 415

Amini et al., 2020). NLL is computed by fitting 416

data to the predictive posterior q(y). 417
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CCC ↑ RMSE ↓ NLL(avg) ↓ NLL(all) ↓
MSP-Podcast v a d v a d v a d v a d

L in Eqn. (6) 0.506 0.698 0.613 0.772 0.680 0.576 1.334 1.285 1.156 1.696 1.692 1.577
Lσ = 0 0.451 0.687 0.607 0.784 0.679 0.580 1.345 1.277 1.159 1.706 1.705 1.586
LNLL = L̄NLL 0.473 0.682 0.609 0.808 0.673 0.566 1.290 1.060 0.899 2.027 2.089 1.969

IEMOCAP v a d v a d v a d v a d

L in Eqn. (6) 0.596 0.755 0.569 0.755 0.457 0.638 1.070 0.795 1.035 1.275 1.053 1.283
Lσ = 0 0.582 0.752 0.553 0.772 0.466 0.655 1.180 0.773 1.061 1.408 1.069 1.294
LNLL = L̄NLL 0.585 0.759 0.555 0.786 0.444 0.633 1.001 0.727 1.036 1.627 1.329 1.441

Table 2: DEER results variations of the loss in Eqn. (6). ‘v’ , ‘a’, ‘d’ stands for valence, arousal, dominance. ‘↑’
denotes the higher the better, ‘↓’ denotes the lower the better. The ‘L in Eqn. (6)’ row systems used the complete
total loss of DEER. The ‘Lσ = 0’ row systems had no Lσ regularisation term in the total loss. The ‘LNLL = L̄NLL’
row systems replaced the individual human labels with L̄NLL in the total loss.

In this paper, NLL(avg) defined as − log q(ȳ)418

and NLL(all) defined as − 1
M

∑M
m=1 log q(y

(m))419

are both used. NLL(avg) measures how much the420

averaged label ȳ fits into the predicted posterior421

distribution, and NLL(all) measures how much how422

much every single human label y(m) fits into the423

predicted posterior. A lower NLL indicates better424

uncertainty estimation.425

5 Experiments and Results426

5.1 Effect of the aleatoric regulariser Lσ427

First, by setting Lσ = 0 in the total loss, an ablation428

study of the effect of the proposed extra regularis-429

ing term Lσ is performed. The results are given in430

the ‘Lσ = 0’ rows in Table 2. In this case, only431

Lµ is used to regularise LNLL and the results are432

compared to those trained using the complete loss433

defined in Eqn. (6), which are shown in the ‘L434

in Eqn. (6)’ rows. From the results, Lσ improves435

the performance in CCC and NLL(all), but not in436

NLL(ref), as expected.437

5.2 Effect of the per-observation-based LNLL438

Next, the effect of our proposed per-observation-439

based NLL loss defined in Eqn. (4), LNLL, is com-440

pared to an alternative. Instead of using LNLL,441

L̄NLL = − log p(ȳ|Ω)442

is used to compute the total loss during training,443

and the results are given in the ‘LNLL = L̄NLL’444

rows in Table 2. While LNLL considers the like-445

lihood of fitting each individual observation into446

the predicted posterior, L̄NLL only considers the447

averaged observation. Therefore, it is expected448

that using L̄NLL instead of LNLL yields a smaller449

NLL(avg) but larger NLL(all), which have been450

validated by the results in the table.451

5.3 Baseline comparisons 452

Three baseline systems were built: 453

• A Gaussian Process (GP) with a radial basis 454

function kernel, trained by maximising the 455

per-observation-based marginal likelihood. 456

• A Monte Carlo dropout (MCdp) system with 457

a dropout rate of 0.4. During inference, the 458

system was forwarded 50 times with different 459

dropout random seeds to obtain 50 samples. 460

• An ensemble of 10 systems initialised and 461

trained with 10 different random seeds. 462

The MCdp and ensemble baselines used the same 463

model structure as the DEER system, expect that 464

the evidential output layer was replaced by a stan- 465

dard fully-connected output layer with three output 466

units to predict the values of valence, arousal and 467

dominance respectively. Following prior work (Al- 468

Badawy and Kim, 2018; Atmaja and Akagi, 2020b; 469

Sridhar and Busso, 2020b), the CCC loss, 470

Lccc = 1− ρccc 471

was used for training the MCdp and ensemble base- 472

lines. The CCC loss was computed based on the 473

sequence within each mini-batch of training data. 474

The CCC loss has been shown by previous stud- 475

ies to improve the continuous emotion predictions 476

compared to the RMSE loss (Povolny et al., 2016; 477

Trigeorgis et al., 2016; Le et al., 2017). For MCdp 478

and ensemble, the predicted distribution of the emo- 479

tion attributes were estimated based on the obtained 480

samples by kernel density estimation. 481

The results are listed in Table 3. The proposed 482

DEER system outperforms the baselines on most of 483

the attributes and the overall values. In particular, 484

DEER outperforms all baselines consistently in the 485

NLL(all) metric. 486
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CCC ↑ RMSE ↓ NLL_ref ↓ NLL_all ↓
MSP-Podcast v a d v a d v a d v a d

DEER 0.506 0.698 0.613 0.772 0.680 0.576 1.334 1.285 1.156 1.696 1.692 1.577
GP 0.342 0.595 0.486 0.811 0.673 0.566 1.447 1.408 1.297 1.727 1.808 1.592

MCdp 0.476 0.667 0.594 0.874 0.702 0.623 1.680 1.300 1.071 2.050 2.027 1.776
Ensemble 0.511 0.679 0.608 0.855 0.692 0.615 1.864 1.384 1.112 2.096 2.066 1.795

IEMOCAP v a d v a d v a d v a d

DEER 0.596 0.756 0.569 0.755 0.457 0.638 1.070 0.795 1.035 1.275 1.053 1.283
GP 0.535 0.717 0.512 0.763 0.479 0.657 1.209 0.791 1.047 1.295 1.205 1.380

MCdp 0.539 0.724 0.568 0.786 0.561 0.702 1.291 0.849 1.133 1.549 1.325 1.747
Ensemble 0.580 0.754 0.560 0.778 0.476 0.686 1.296 0.864 1.110 1.584 1.218 1.749

Table 3: Comparison with the baselines. ‘v’, ‘a’, ‘d’ stands for valence, arousal, dominance. ‘↑’ denotes the higher
the better, ‘↓’ denotes the lower the better. Best results in each column shown in bold.

5.4 Cross comparison of mean prediction487

Table 4 compares results obtained with those pre-488

viously published in terms of the CCC value. Pre-489

vious papers have reported results on both version490

1.6 and 1.8 of the MSP-Podcast dataset. For com-491

parison, we also conducted experiments on version492

1.6 for comparison. Version 1.6 of MSP-Podcast493

database is a subset of version 1.8 and contains494

34,280 segments for training, 5,958 segments for495

validation and 10,124 segments for testing. For496

IEMOCAP, apart from training on Session 1-4 and497

testing on Session 5 (Ses05), we also evaluated498

the proposed system by a 5-fold cross-validation499

(5CV) based on a “leave-one-session-out” strategy.500

In each fold, one session was left out for testing and501

the others were used for training. The configuration502

is speaker-exclusive for both settings. As shown in503

Table 4, our DEER systems achieved state-of-the-504

art (SOTA) results both versions of MSP-Podcast505

and both test setting of IEMOCAP.506

5.5 Analysis of uncertainty estimation507

5.5.1 Visualisation508

Based on a randomly selected subset test set of509

MSP-Podcast version 1.8, the aleatoric, epistemic510

and total uncertainty of the dominance attribute511

predicted by our proposed DEER system are shown512

in Figure 2.513

Figure 2 (a) shows the predicted mean ± square514

root of the predicted aleatoric uncertainty (E[µ]±515 √
E[σ2]) and the average label ± the standard de-516

viation of the human labels (ȳ ± σ̄). It can be seen517

that the predicted aleatoric uncertainty (blue) over-518

laps with the label standard deviation (grey) and519

the overlapping is more evident when the mean520

predictions are accurate (i.e. samples around index521

0 20 40 60 80 100

4

6

y E[ ] E[ 2]

(a) Aleatoric uncertainty

0 20 40 60 80 100

4

6

y E[ ] Var[ ]

(b) Epistemic uncertainty

0 20 40 60 80 100

4

6

y E[y] Var[y]

(c) Total uncertainty

Figure 2: Visualisation of (a) aleatoric (b) epistemic (c)
total uncertainty of dominance for MSP-Podcast. x-asix
is the test utterance index.

80-100). 522

Figure 2 (b) shows the predicted mean ± square 523

root of the predicted epistemic uncertainty (E[µ]± 524√
Var[µ]). The epistemic uncertainty is high when 525

the predicted mean deviates from the target (i.e. 526

samples around index 40-50) while low then the 527

predicted mean matches the target (i.e. samples 528

around index 80-100). 529

Figure 2 (c) shows the predicted mean ± square 530

root of the total epistemic uncertainty (E[y] ± 531√
Var[y]) which combines the aleatoric and epis- 532

temic uncertainty. The total uncertainty is high 533
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MSP-podcast

Paper Version v a d Average

Ghriss et al. (2022) 1.6 0.412 0.679 0.564 0.552
Mitra et al. (2022) 1.6 0.57 0.75 0.67 0.663

Srinivasan et al. (2022) 1.6 0.627 0.757 0.671 0.685
DEER 1.6 0.629 0.777 0.684 0.697

Leem et al. (2022) 1.8 0.212 0.572 0.505 0.430
DEER 1.8 0.506 0.698 0.613 0.606

IEMOCAP

Paper Setting v a d Average

Atmaja and Akagi (2020a) Ses05 0.421 0.590 0.484 0.498
Atmaja and Akagi (2021) Ses05 0.553 0.579 0.465 0.532

DEER Ses05 0.596 0.756 0.569 0.640

Srinivasan et al. (2022) 5CV 0.582 0.667 0.545 0.598
DEER 5CV 0.625 0.720 0.548 0.631

Table 4: Cross comparison of the CCC value on MSP-Podcast and IEMOCAP. ‘v’, ‘a’, ‘d’ stands for valence,
arousal, dominance. ‘Version’ of MSP-Podcast denotes the release version of the dataset., and only the results
from the same dateset version are comparable. ‘Test set’ of IEMOCAP denotes the train/set split. ‘Ses05’ denotes
training on Session 1-4 and tested on Session 5. ‘5CV’ denotes leave-one-session-out 5-fold cross validation.

either when the input utterance is complex or the534

model is not confident.535

5.5.2 Reject option536

A reject option was applied to analyse the uncer-537

tainty estimation performance, where the system538

has the option to accept or decline a test sample539

based on the uncertainty prediction. Since the eval-540

uation of CCC is based on the whole sequence541

rather than individual samples, its computation542

would be affected when the sequence is modified543

by rejection (Wu et al., 2022a). Therefore, the544

reject option is performed based on RMSE.545

0 10 20 30 40 50 60 70 80 90
Percentage of rejection (%)

0.50

0.55

0.60

0.65

0.70

0.75
v
a
d

(a) MSP-Podcast

0 10 20 30 40 50 60 70 80 90
Percentage of rejection (%)

0.45

0.50

0.55

0.60

0.65

0.70

0.75 v
a
d

(b) IEMOCAP

Figure 3: Reject Option of RMSE based on predicted
variance for (a) MSP-Podcast and (b) IEMOCAP.

Confidence is measured by the total uncertainty546

given in Eqn. (3). Figure 3 shows the performance547

of the proposed DEER system with a reject option548

on MSP-Podcast and IEMOCAP. A percentage of549

utterances with the largest predicted variance were550

rejected. The results at 0% rejection corresponds551

to the RMSE achieved on the entire test data. As552

the percentage of rejection increases, test coverage553

decreases and the average RMSE decreases show- 554

ing the predicted variance succeeded in confidence 555

estimation. The system then trades off between the 556

test coverage and performance. 557

6 Conclusions 558

Two types of uncertainty exist in AER: (i) aleatoric 559

uncertainty arising from the inherent ambiguity of 560

emotion and personal variations in emotion expres- 561

sion; (ii) epistemic uncertainty associated with the 562

estimated network parameters given the observed 563

data. This paper proposes DEER for estimating 564

those uncertainties in emotion attributes. Treating 565

observed attribute-based annotations as samples 566

drawn from a Gaussian distribution, DEER places 567

a normal-inverse gamma (NIG) prior over the Gaus- 568

sian likelihood. A novel training loss is proposed 569

which combines a per-observation-based NLL loss 570

with a regulariser on both the mean and the vari- 571

ance of the Gaussian likelihood. Experiments on 572

the MSP-Podcast and IEMOCAP datasets show 573

that DEER can produce SOTA results in estimating 574

both the mean value and the distribution of emotion 575

attributes. The use of NIG, the conjugate prior to 576

the Gaussian distribution, leads to tractable analytic 577

computation of the marginal likelihood as well as 578

aleatoric and epistemic uncertainty associated with 579

attribute prediction. Uncertainty estimation is anal- 580

ysed by visualisation and a reject option. Beyond 581

the scope of AER, DEER could also be applied 582

to other tasks with subjective evaluations yielding 583

inconsistent labels. 584
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Limitations585

The proposed approach (along with other meth-586

ods for estimating uncertainty in inconsistent an-587

notations) is only viable when the raw labels from588

different human annotators for each sentence are589

provided by the datasets. However, some multiple-590

annotated datasets only released the majority vote591

or averaged label for each sentence (i.e. Poria et al.,592

2019).593

The proposed method made a Gaussian assump-594

tion on the likelihood function for the analytic com-595

putation of the uncertainties. The results show that596

this modelling approach is effective. Despite the597

effectiveness of the proposed method, other distri-598

butions could also be considered.599

Apart from aleatoric and epistemic uncertainty,600

distributional uncertainty can also occur when test-601

ing on unseen data. Distributional uncertainty (also602

called dataset shift) results from the mismatch be-603

tween the training and test distributions. Aleatoric604

uncertainty is sometimes considered as “known-605

unknown” – the knowledge the model learnt from606

the training set can be well-generalised to the test607

data and the model knows how difficult it is to pre-608

dict from the data. Distributional uncertainty is609

an “unknown-unknown” – the model is unfamiliar610

with the test data and cannot make predictions con-611

fidently. Unseen data is not discussed in this paper612

but can be an interesting extension to investigate613

and the DEER method should have the potential to614

address this issue.615

Data collection processes for AER datasets vary616

in terms of recording conditions, emotional elici-617

tation scheme, and annotation procedure etc. This618

work was tested on two typical datasets: IEMO-619

CAP and MSP-Podcast. The two datasets are both620

publicly available and differ in various aspects:621

• IEMOCAP contains emotion acted by pro-622

fessional actors while MSP-Podcast contains623

natural emotion.624

• IEMOCAP contains dyadic conversations625

while MSP-Podcast contains Podcast record-626

ings.627

• IEMOCAP contains 10 speakers and MSP-628

Podcast contains 1285 speakers.629

• IEMOCAP contains about 12 hours of speech630

and MSP-Podcast contains more than 110631

hours of speech.632

• IEMOCAP was annotated by six professional633

evaluators with each sentence being annotated634

by three evaluators. MSP-Podcast was an- 635

notated by crowd-sourcing where a total of 636

11,799 workers were involved and each work 637

annotated 41.5 sentences on average. 638

The proposed approach has been shown effective 639

over both datasets. We believe the proposed tech- 640

nique should be generic. Furthermore, although 641

validated only for AER, the proposed method could 642

also be applied to other tasks with disagreements 643

in subjective annotations such as hate speech detec- 644

tion and language assessment. 645

Ethics Statement 646

For subjective tasks such as emotion recognition, 647

it is common to employ multiple human annota- 648

tors to give multiple annotations to each data in- 649

stance. In face of annotator disagreements, ma- 650

jority voting and averaging are commonly used to 651

derive single ground truth labels for training su- 652

pervised machine learning models. However, in 653

many subjective tasks, there is usually no single 654

"correct" answer. And a potential risk of enforc- 655

ing a single ground truth is ignoring the valuable 656

nuance in each annotator’s evaluation and their dis- 657

agreements. This can cause minority views to be 658

under-represented. The DEER approach proposed 659

in this work could be beneficial to this concern as it 660

models uncertainty in annotator disagreements and 661

provides some explainability of the predictions. 662

While our method helps preserve minority per- 663

spectives, misuse of this technique might lead to 664

ethical concerns. Emotion recognition is at risk of 665

exposing a person’s inner state to others and this in- 666

formation could be abused. Furthermore, since the 667

proposed approach takes each annotation into con- 668

sideration, it is important to protect the anonymity 669

of annotators. 670
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A Derivation of the predictive posterior 961

Since NIG is the Gaussian conjugate prior, 962

p(Ψ|Ω) = N (γ, σ2υ−1) Γ−1(α, β)

=
βα√υ

Γ(α)
√
2πσ2

(
1

σ2

)α+1

· exp
{
−2β + υ(γ − µ)2

2σ2

} 963

its posterior p(Ψ|D) is in the same parametric fam- 964

ily as the prior p(Ψ|Ω). Therefore, given a test 965

utterance x∗, the predictive posterior p(y∗|D) has 966

the same form as the marginal likelihood p(y|Ω), 967

where D denotes the training set. 968

p(y∗|D) =

∫
p(y∗|Ψ)p(Ψ|D) dΨ (7) 969

p(y|Ω) =

∫
p(y|Ψ)p(Ψ|Ω) dΨ (8) 970

In DEER, the predictive posterior and posterior 971

are both conditioned on Ω, written as p(y∗|D,Ω) 972

and p(Ψ|D,Ω) to be precise. Also, the informa- 973

tion of D is contained in Ω∗ since Ω∗ = fΘ̂(x∗) 974

and Θ̂ is the optimal model parameters obtained by 975

training on D. Then the predictive posterior can be 976

written as p(y∗|Ω∗). Given the conjugate prior, the 977

predictive posterior in DEER can be computed by 978

directly substituting the predicted Ω∗ into the ex- 979

pression of marginal likelihood derived in Eqn. (2), 980

skipping the step of calculating the posterior. 981

B Fusion with text modality 982

This appendix presents bi-modal experiments 983

that incorporate text information into the DEER 984

model. Transcriptions were obtained from a pub- 985

licly available automatic speech recognition (ASR) 986

model “wav2vec2-base-960h" 6 which fine-tuned 987

the wav2vec 2.0 (Baevski et al., 2020) model on 988

960 hours Librispeech data (Panayotov et al., 2015). 989

Transcriptions were first encoded by a RoBERTa 990

model (Liu et al., 2019) and fed into another two- 991

layer Transformer encoder. As shown in Figure 4, 992

outputs from the text Transformer were concate- 993

nated with the outputs from the audio Transformer 994
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Figure 4: Model structure for bi-modal experiments.

MSP-podcast
Modality v a d

A 0.506 0.698 0.613
A+T 0.559 0.699 0.614

IEMOCAP
Modality v a d

A 0.596 0.756 0.569
A+T 0.609 0.754 0.575

Table 5: CCC value for bi-modal experiments. ‘A’ and
‘T’ stands for audio and text. ‘v’, ‘a’, and ‘d’ stand for
valence, arousal, and dominance. Release 1.8 is used
for MSP-Podcast. ‘Ses05’ setup used for IEMOCAP
that trains on Session 1-4 and tested on Session 5.

encoder and fed into the evidential output layer.995

Results are shown in Table 5. Incorporating text996

information improves the estimation of valence but997

not necessarily for arousal and dominance. Similar998

phenomena were observed by (Triantafyllopoulos999

et al., 2022). A possible explanation is that text1000

is effective for sentiment analysis (positive or neg-1001

ative) but may not be as informative as audio to1002

determine a speaker’s level of excitement. CCC1003

for dominance improves more for IEMOCAP than1004

MSP-Podcast possibly because IEMOCAP is an1005

acted dataset and the emotion may be exaggerated1006

compared with MSP-Podcast which contains natu-1007

ral emotion.1008

6Available at: https://huggingface.co/facebook/wav2vec2-
base-960h
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