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ABSTRACT

It has been argued that the brain is a prediction machine that continuously learns
how to make better predictions about the stimuli received from the external envi-
ronment. It builds a model of the world around us and uses this model to infer the
external stimulus. Predictive coding has been proposed as a mechanism through
which the brain might be able to build such a model of the external environment.
However, it is not clear how predictive coding can be used to build deep neural
network models of the brain while complying with the architectural constraints
imposed by the brain. In this paper, we describe an algorithm to build a deep
generative model using predictive coding that can be used to infer latent repre-
sentations about the stimuli received from external environment. Specifically, we
used predictive coding to train a deep neural network on real-world images in a
unsupervised learning paradigm. To understand the capacity of the network with
regards to modeling the external environment, we studied the latent representa-
tions generated by the model on images of objects that are never presented to the
model during training. Despite the novel features of these objects the model is
able to infer the latent representations for them. Furthermore, the reconstructions
of the original images obtained from these latent representations preserve the im-
portant details of these objects.

1 INTRODUCTION

The general idea of predictive coding (Mumford, 1991; 1992; Pennartz, 2015) postulates that the
brain is continuously trying to predict the information it receives from external environment. An
implementation of predictive coding was first proposed as a model of visual information process-
ing in the brain (Rao & Ballard, 1999). Recently, it was described as an implementation of the
free-energy principle in the brain (Friston, 2008). Predictive coding models the visual information
processing pathways as a recurrently connected hierarchical neural network. Feedback connections
from higher to lower level areas convey predictions about the activities of the lower level neurons
and feedforward connections convey the residual errors in these predictions to higher level areas.

Several studies have focused on the biological plausibility of predictive coding and its relation to
other learning approaches. In Spratling (2008), the author showed that a model of biased competi-
tion (Desimone & Duncan, 1995) that uses lateral inhibition to suppress the input of other nodes is
equivalent to the linear model of predictive coding. An extension to predictive coding has been pro-
posed in Spratling (2012) that relaxes the requirement of symmetric weights between two adjacent
layers in the network. In a similar study, it was shown that the error-backpropagation and predictive
coding use similar forms of weight changes during learning Whittington & Bogacz (2017).

From the perspective of training deep neural networks, predictive coding is an approach that is
widely supported by neurophysiological data (Jehee & Ballard, 2009) and adheres to the archi-
tectural and locality (in terms of learning) constraints imposed by the brain. Existing studies on
predictive coding has focused on small neural network models to study the development of orien-
tation selective receptive fields in primary visual cortex (Rao & Ballard, 1999; Spratling, 2012). It
is unclear how predictive coding can be used to build deep neural network models of the brain to
study more complicated brain processes like attention, memory, etc. Another important question
that arises while building models of the brain is how can we comply with the architectural con-
straints applicable in the brain like the retinotopic arrangement of receptive fields that is found in

1



Under review as a conference paper at ICLR 2018

the sensory cortical areas. At present, mostly neural networks with fully connected layers are used,
which implies that the receptive fields of neurons are as big as the field of view. To overcome this,
neural network models are trained on patches from real world images. This approach works well
when training small neural network models but it is difficult to extend it for training deep neural
networks.

In this paper, we present a systematic approach for training deep neural networks using predictive
coding in a biologically plausible manner. The network is used to learn hierarchical latent represen-
tations for a given input stimulus. The architecture of these neural networks is inspired by convolu-
tional neural networks (LeCun et al., 1998). However, to comply with the retinotopic arrangement
of receptive fields observed in sensory cortical areas, we employ neural networks in which filters
are not applied across the entire layer, similar to locally connected layers used in Taigman et al.
(2014). Instead, filters are applied only to a small receptive field which allows us to train the filters
associated with different receptive fields independently. This approach can be easily scaled to train
deep neural networks for modeling information processing along the sensory processing pathways.

In general, the approach proposed in this paper can be used for stimuli in any modality. To illustrate
the effectiveness of the approach, we trained a deep neural network using predictive coding on
1000 real-world images of horses and ships from the CIFAR-10 data set. The model is trained in
an unsupervised learning paradigm to build a generative model for real-world images and is used
to infer latent representations for real-world. To estimate the capacity of the network in modeling
real-world images, we used the model to infer latent representations for new images of horses and
ships as well as objects that are never presented to the network during training. The model is able
to reconstruct the original real-world images from the inferred latent representations while retaining
the important features of the objects in these images. This shows that the model can capture the
causal regularities in real-world images.

The paper is organized as follows: Section 2 describes the architecture and the predictive coding
based learning algorithm used for training deep neural network models. Section 3 describes the
results of studies conducted using the trained models. Section 4 discusses the computational im-
plications of deep predictive coding and its relationship with other approaches in machine learning.
Section 5 summarizes the conclusions from the experiments reported in this paper.

2 MODEL

Suppose, we have a set of training images (x1, · · · ,xi, · · · ) where xi ∈ RW×H×C . The aim of the
learning algorithm is to learn a generative model that can be used to infer the latent representations
for the training images and other images that have not been used in training.

2.1 ARCHITECTURE

Consider a neural network with (N + 1) layers where 0 represents the input layer and N represents
the topmost layer in the network. The input layer is used to present the training images to the
network. Figure 1 shows a section of this network that depicts the connections between the layer l
and the layers above (l + 1) and below (l − 1) it. The neurons in a given layer (l) are arranged in a
3-dimensional block of shape Yl ×Xl ×Kl. Here, Yl, Xl and Kl denote the height, width and the
number of channels in layer l, respectively. The neurons in the layers l and (l + 1) are connected
through Kl+1 filters of size Dl and a stride of sl. Based on this, the height and width of the layer
(l + 1) are given as

Yl+1 =
(Yl −Dl)

sl
+ 1 (1)

Xl+1 =
(Xl −Dl)

sl
+ 1 (2)

The number of channels in layer (l + 1) is equal to the number of filters between the layers l and
(l + 1).

The architecture of the network in Figure 1 bears some resemblance to to the architecture of a
Convolutional Neural Networks (CNNs). However, there are two important differences between
CNNs and the neural network used in this paper:

2



Under review as a conference paper at ICLR 2018

...
...

To the

input layer

To
layer N

Figure 1: Architecture of the deep predictive coding neural network

• The neurons in a given layer in the network, shown in Figure 1 project to neurons only
in their receptive field. This implies that the neurons in a particular channel in layer l are
connected to the neurons in layer (l + 1) through filters that are learned independently.
• The most important difference is in the direction of information propagation with respect

to CNNs. In a conventional CNN, the information propagates from layer 0 to layer N
and during learning the error gradients propagate from layer N to layer 0. In contrast, in
our predictive coding network the information propagates from layer N to layer 0 in the
network shown in Figure 1 and the error gradients propagate in the opposite direction.

To better understand the structure of connections between layer l and the layer (l− 1), let us denote
the output of the neurons in the mth row and the nth column (here, referred to as (m,n)) of layer l
as y(l)m,n which is a vector with Kl elements. Based on this, the output of the neurons in layer (l− 1)
is given as

ŷ
(l−1)
(sl−1m+i),(sl−1n+j) = φ(w

(l)
m,n,i,jy

(l)
m,n),

i, j ∈ {1, · · · , D(l−1)},
m ∈ {1, · · · , Yl}, n ∈ {1, · · · , Xl} (3)

where w
(l)
m,n,i,j denotes the filters through which the neurons at position (m,n) in layer l project

to the position (sl−1m + i, sl−1n + j) in layer (l − 1). The filter w(l)
m,n,i,j will be a matrix with

dimensions Kl−1 × Kl. φ represents a non-linear vector-valued activation function with K(l−1)
elements.

It may be notes that when the stride is less than the filter size, it results in an architecture with
overlapping receptive fields. As a result, neurons in layer l project to the overlapping positions in
layer (l − 1). Therefor, to determine the output of neurons in layer (l − 1) we compute the average
of the projections made by the layer l. This procedure is analogous to unpooling in a deconvolution
network (Zeiler et al., 2010) in order to retain the dimensions of a layer.

2.2 LEARNING ALGORITHM

In this paper, the classical methodology of predictive coding Rao & Ballard (1999) is employed
to train a generative neural network model that can be used to infer the latent representations of a
given input image. For a given input image (xi), the latent representations at layer (l) in the network
are learned such that they can accurately predict (using Equation 3) the latent representations at the
layer below (l − 1). The learned representations at layer l serve as target for learning the latent
representations at layer (l + 1) in the network.

Suppose yl and ŷl represent the actual and predicted latent representations for the neurons in layer
l of the network, then the total error (E) for all the layers in the network is given as

E =

N∑
l=0

`p(y(l) − ŷ(l)) + `p(y(l)) +
∑

m,n,i,j

`p(w
(l)
m,n,i,j)

 (4)

where `p(.) denotes the loss computed in accordance with p-norm. The total error in Equation
4 includes both the loss due to prediction and the regularization loss. Note that the limits of the
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summation in Equation 4 are from 0 to N (instead of 0 to (N + 1)). This is because there is no layer
that learns to predict the activities of the neurons in the topmost layer of the network.

The total error in Equation 4 is used to simultaneously learn the latent representations and the synap-
tic weights in the model such that the prediction error at each layer in the network is minimized. This
implies that the latent representations at a particular layer in the network try to capture the informa-
tion present in the latent representations at the layer below. This allows us to train a deep generative
model of the external stimulus presented to the network. To explicitly include the aspect of the net-
work architecture with non-shared weights in the total error, the error in Equation 4 is expanded as:

E =

N∑
l=0

Yl,Xl∑
m,n

`p(y(l)m,n − ŷ(l)m,n) +

Yl,Xl∑
m,n

`p(y(l)m,n) +
∑

m,n,i,j

`p(w
(l)
m,n,i,j)

 (5)

The gradient of the error function in Equation 5 is used to adapt the latent representations. The
change in the latent representations (∆y(l)m,n) at a given position (m,n) in layer l is given as

∆y(l)m,n = εbu

 D(l−1)∑
i=1,j=1

`
′

p(y
(l−1)
(m+i),(n+j) − ŷ

(l−1)
(m+i),(n+j))φ

′(w
(l)
m,n,i,jy

(l)
m,n)(w

(l)
m,n,i,j)

T


−εtd(y(l)m,n − ŷ(l)m,n)− εp`

′

p(y(l)m,n)

(6)

where `
′

p(.) denotes the partial differentiation of the p-norm. εbu is termed the bottom-up learning
rate, εtd is termed the top-down learning rate and εp is the learning rate due to regularization. For
a given layer l, the bottom-up learning rate helps in learning representations that can make better
predictions of the representations in the layer below (l − 1) and the top-down learning rate helps
in learning representations that can be easily predicted by the layer above (l + 1). Together, these
update terms help in learning sparse latent representations and provide numerical stability to the
learning process.

The gradient of the error function in Equation 5 is also used to learn the filter in the network. The
change in the filters (∆w

(l)
m,n,i,j) is given as

∆w
(l)
m,n,i,j = εw`

′

p(y
(l−1)
(m+i),(n+j) − ŷ

(l−1)
(m+i),(n+j))φ

′(w
(l)
m,n,i,jy

(l)
m,n)(y(l)m,n)T − εp`

′

p(w
(l)
m,n,i,j) (7)

where εw is the learning rate.

It may be observed from Equation 6 that the update for latent representations at a given position
(m,n) in a particular layer l depends only on the predictions made by the neurons at this position
and the filters for this position. Similarly, the update for the filters (Equation 7) associated with
location (m,n) depends only on the corresponding latent representations. This allows us to learn
the latent representations for the neurons in position (m,n) in layer l and the associated filters in
parallel with all the other positions in that layer.

Next, we will describe the update process for the latent representations and the filters using the
Equations 6 and 7, respectively. At first the filters are held constant and the latent representations
are learned using Equation 6. For a given image and a particular layer, we apply κ update steps on
the latent representations. This implies that we alternate between computing the error in Equation
5 and updating latent representations (using Equation 6) κ times before updating the filters. This
approach greatly improves convergence rate of the learning algorithm, reducing the overall number
of epochs required for convergence. After these κ update steps, the learned latent representations are
held constant and a single update step is used to update the filters (using Equation 7). A summary
of the learning process is provided in Algorithm 1.

3 EXPERIMENTS

In this section, we study the capabilities of the network in inferring the latent representations for a
given input image. Firstly, we will study the capabilities of the generative model in reconstructing
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Algorithm 1
1: while not converged do
2: for each input image do
3: for each layer (except the input layer) do
4: for step = 1 : κ do
5: Update latent representations yl

6: end for
7: Update filters w(l)

m,n,i,j

8: end for
9: end for

10: end while

the original images from the inferred latent representations. Secondly, we study the capability of
the model to infer the latent representations for an image that is a translated version of the original
image. Finally, we analyze the model’s abilities in estimating the latent representations for a new
image that was not used in training. For this purpose, we trained a 5-layered neural network on 1000
images of horses and ships from the CIFAR-10 data set. The details of the training procedure are
provided in Appendix.

3.1 GENERATIVE MODEL

The learning algorithm estimates the latent representations for the input images presented to the
network at each layer in the model. For a given layer l, these latent representations are presented as
the output of the neurons in that layer. Based on this, the information is propagated in the network
from layer l to the input layer in the network. The output of the input layer neurons produces a
reconstruction of the original image. This procedure was repeated for the latent representations
estimated at each layer in the model and a reconstruction of the original image was obtained. Figure
5 presents some examples of the images reconstructed using the latent representations at each layer
in the trained generative model.

It may be seen from Figure 5 that it is possible to reconstruct the original images using the latent
representations generated by the model. However, the images reconstructed by the model are blurry
in comparison to the original images. This is a known problem with the mean square error Ledig

Figure 2: Example images reconstructed by the generative model when the estimated latent repre-
sentations are presented at corresponding layers in the network. The images are arranged in a table
with 2 columns, separated by the vertical bar. Each cell in the table contains a set of five images.
The first image in each cell represents the original image from the CIFAR data set and the following
4 images represent the images reconstructed by the model using latent representations generated at
layers 1, 2, 3, 4 in the network.
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Figure 3: Images reconstructed by the generative model using the latent representations for the
translated images. Again, the images are arranged in a table with 2 columns and each cell in the table
contains a set of five images. The first image in each cell shows a translated version of the original
image from the CIFAR data set and the following 4 images represent the images reconstructed by
the model using latent representations generated at different layers in the network.

et al. (2016). It may be possible to obtain visually better images using l1-norm, as suggested in
Mathieu et al. (2015).

3.2 TRANSLATION INVARIANCE

To study translation invariance in the model, the pixels in the images are shifted to the right and down
by 4 pixels. The boundary pixels on the left and top of the original images are used in place of the
pixels introduced as a result of shifting the image. For this study, we used images of horses and ships
that are used for training as well as images of other objects that are never used in training. These
translated images are then presented to the trained generative model and the latent representations
for these images are inferred using the Equation 6. Note that in this case the filters in the model are
not re-learned. The latent representations for the translated images at each layer in the network are
then used to reconstruct the translated images using the procedure described in Section 3.1. Figure
6 shows some examples of the reconstructed images obtained using the latent representations for the
translated images.

It can be observed from Figure 6 that the network can generate latent representations for translated
images that capture the information present in the input stimulus.

3.3 GENERALIZATION

To study generalization, we used the network to infer latent representations of images from the
CIFAR-10 data set outside the 1000 images that were used in training. These images are presented
to the trained model and the latent representations for these images are inferred using Equation 6.
Similar to the previous section, the estimated latent representations at each layer in the network are
used to reconstruct the original images using the mechanism described in Section 3.1. Figure 7
presents examples of the images reconstructed from the latent representations that are determined
using predictive coding.

It can be seen from Figure 7 that the model can also infer latent representations for images that were
never used in training. Furthermore, the generalization ability of the model is not limited to only
those objects that are used in training the model. The model can also infer latent representations for
objects that are not used training like frog, cars, truck, sparrow, etc (Figure 7). This is due to the
retinotopic arrangement of the receptive fields in the network. Such an architecture allows the model
to capture granular regularities in real-world images in the lower layers in the network. These gran-
ular regularities are common across all real-world images and help the model in generating latent
representations for unforeseen objects. Successive layers in the network build upon these regular-
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Figure 4: Non-training images reconstructed by the generative model using the latent representations
estimated by predictive coding. These images are also arranged in 2 columns and each cell shows
the original image and the images reconstructed from its latent representations.

ities to generate more abstract representations of the input images. Note that these generalization
properties of the model are achieved while training only on 1000 images whereas most machine
learning algorithms rely on large amount of data to improve generalization properties in the model.

4 DISCUSSION

In this section, we discuss the computational implications of the algorithm presented in this paper
and the similarities it shares with existing approaches in machine learning.

Deep neural networks have improved the state-of-the-art performances in many problems related
to image processing like classification, semantic segmentation, etc. These improvements have been
achieved by exploiting the availability of cheap computational power. However, with increases in the
complexity of neural network architectures, the problem of developing efficient learning algorithms
has become prominent. A large body of work in machine learning literature has been dedicated to
improving the speed of error-backpropagation which is one of the most used learning algorithms for
training deep neural networks. However, an inherent property of error-backpropagation is to sys-
tematically propagate information through the network in the forward direction and during learning,
propagate the error gradients in the backward direction. This imposes restrictions on the extent of
parallelization that can be achieved with error back-propagation.

In this respect, the proposed learning algorithm can be extensively parallelized. It can be observed
from Equations 6 and 7 that the latent representations for the neurons in a given layer depend only
on the error in predicting the latent representations at the layer below. This aspect of the learning
algorithm can be leveraged to update the latent representations and filters at each layer in the network
in parallel. Thus the feedforward and feedback processes can be performed at each layer in parallel.
Further, the use of a network architecture with retinotopical arrangement of receptive fields allows
us to update the latent representations and filters associated with all positions in a given layer in
parallel. Thus, the learning algorithm proposed in this paper is amenable to parallelization and can
be useful for speeding up the training of deep neural architectures.

Another interesting aspect of the predictive coding is its proximity to the idea of deconvolutional
neural networks (Zeiler et al., 2010). Deconvolutional neural networks have also been used to learn
the latent representations for a given input image and have been used for the problem of semantic
segmentation (Noh et al., 2015). The problem of learning latent representations is inherently an
ill-posed problem as there is no unique solution for a given input stimulus. To overcome this issue
deconvolutional neural networks optimize on auxiliary variables and the generated latent represen-
tations in alternation. A continuation parameter β is continuously increased during the learning
process until the latent representations are strongly clamped to the auxiliary variables. This re-
quires carefully controlling the learning process and increases the computational requirements of

7



Under review as a conference paper at ICLR 2018

the learning algorithm due to an extra optimization step on auxiliary variables. Predictive coding
provides an alternate solution to this problem. In Equation 6, the update term associated with εtd
constraint the learning algorithm to generate latent representations that can be easily predicted by
the successive layers in the network. The effect of this constraint on the learning algorithm is same
as that of the auxiliary variables in deconvolutional neural networks and impart numerical stability
to the learning process. This approach provides a more simpler solution to the problem of learning
latent representations without imposing the additional computational effort of optimizing auxiliary
variables.

5 CONCLUSION

In this paper, we describe a method to train deep neural networks using predictive coding for model-
ing information processing along cortical sensory hierarchies. The approach uses a neural network
in which neurons project only to neurons in their respective receptive fields. This kind of architecture
respects the retinotopic arrangement of receptive fields observed in the visual cortical areas.

The method can be used to build a deep generative model for data in any modality. For illustration,
we trained the model on a set of real-world images and then used the trained model to infer hierar-
chical latent representations. Even though the model is trained on a small data set of 1000 images of
horses and ships, it can infer effective latent representations for images of other objects like sparrow,
cats, trucks, cars, etc. This shows that the trained model is able to capture the statistical regularities
present in the real-world images. In this regards, the generalization ability of the model is better than
most existing algorithms that usually rely on large amount of data to achieve better generalization.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2323, 1998.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, and Wenzhe Shi. Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network. arXiv, pp. 1–14, 2016.

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep Multi-scale Video Prediction Beyond
Mean Square Error. arXiv, 2015.

D. Mumford. On the computational architecture of the neocortex - I. The role of the thalamo-cortical
loop. Biological Cybernetics, 65(2):135–145, 1991.

D. Mumford. On the computational architecture of the neocortex - II The role of cortico-cortical
loops. Biological Cybernetics, 66(3):241–251, 1992.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for se-
mantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision,
volume 2015 Inter, pp. 1520–1528, 2015.

8



Under review as a conference paper at ICLR 2018

Cyriel MA Pennartz. The brain’s representational power: on consciousness and the integration of
modalities. MIT Press, 2015.

Rajesh P N Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpreta-
tion of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87, 1999.

M. W. Spratling. Unsupervised Learning of Generative and Discriminative Weights Encoding Ele-
mentary Image Components in a Predictive Coding Model of Cortical Function. Neural Compu-
tation, 24(1):60–103, 2012.

Michael W. Spratling. Reconciling Predictive Coding and Biased Competition Models of Cortical
Function. Frontiers in Computational Neuroscience, 2, 2008.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. DeepFace: Closing the gap
to human-level performance in face verification. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 1701–1708, 2014.

James C.R. Whittington and Rafal Bogacz. An Approximation of the Error Backpropagation Algo-
rithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity. Neural computa-
tion, 29:1229–1262, 2017.

Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus. Deconvolutional networks.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pp. 2528–2535, 2010.

9



Under review as a conference paper at ICLR 2018

6 APPENDIX

6.1 TRAINING PROCEDURE

We trained a 5-layered neural network on 1000 images of horses and ships from the CIFAR-10 data
set. Each layer in the network used filters of dimension 5 × 5. The neurons in a given position
(m,n) in layer 1 project to the neurons in input layer through 32 filters (K1). The number of filters
in each layer are doubled in each successive layer resulting in 256 filters for the neurons in the last
layer. The neurons in all the layers of the network use a linear activation function.

Next, we will describe the procedure for setting the values of different training parameters. At the
beginning of training the latent representations at each level in the hierarchy are initialized randomly
and there is no causal structure in these latent representations. As a result, the prediction errors are
high even for adjacent neurons in a given layer. This results in large update steps which causes
problems in the learning process. To avoid these problems, we use a small learning process at the
beginning of training and increase it gradually during training. εbu and εtd are set to 0.0001 at the
beginning of training and are increased by a factor of 10 after every 30 epochs until a maximum
value of 0.01. εp is set to 0.00001 at the beginning of training and is similarly increased by a
factor of 10 after every 30 epochs until a maximum value of 0.001. εw is set to 0.01 throughout
the training process. The losses are always computed using the l2-norm which leads to the blurry
reconstructions. Using l1-norm may result in more visually appealing images.

Figure 5: Example images reconstructed by the generative model when the estimated latent causes
are presented at corresponding layers in the network. The images are arranged in a table with 2
columns, separated by the vertical bar. Each cell in the table contains a set of five images. The first
image in each cell represents the original image from the CIFAR data set and the following 4 images
represent the images reconstructed by the model using latent representations generated at layers 1,
2, 3, 4 in the network.
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6.2 GENERATIVE MODEL

This section presents some more results on generative modeling using the trained model.

6.3 TRANSLATION INVARIANCE

This section presents some more results on translation invariance using the trained model.

Figure 6: Images reconstructed by the generative model using the latent representations for the
translated images. Again, the images are arranged in a table with 2 columns and each cell in the table
contains a set of five images. The first image in each cell shows a translated version of the original
image from the CIFAR data set and the following 4 images represent the images reconstructed by
the model using latent representations generated at different layers in the network.

6.4 GENERALIZATION

This section presents some more results on generalization using the trained model.
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Figure 7: Non-training images reconstructed by the generative model using the latent representations
estimated by predictive coding. These images are also arranged in 2 columns and each cell shows
the original image and the images reconstructed from its latent representations.
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