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Abstract

In recent years, bike sharing systems have become very popular in many major1

cities. Thanks to the data they generate, their activity can be tracked down, giving2

an overall view of how human activities are spread over time and space. We propose3

in the present article a novel method to extract mobility patterns that occur in such4

large-scale transportation systems. The trips made by the users are first represented5

as flows between the different stations of the system, describing a network whose6

structure evolves over time. A decomposition technique is then proposed using7

non-negative matrix factorisation, to express the resulting temporal networks as8

a mixture of sub-networks, each of them characterising the different behaviours9

of users over time and space. This method is applied on the Lyon’s bike sharing10

system, and it is emphasised that key spatio-temporal elements of urban activity11

are retrieved, capturing known phenomena such as commuting. This approach12

could be easily extended to large-scale transportation systems exhibiting a network13

structure, paving the way to an unsupervised modelling of mobility patterns.14

1 Introduction15

Many cities have developed bike sharing system (BSS) program over recent years [6], promoting16

environmentally friendly and healthy means of transportation to reduce traffic congestion in urban17

areas. These systems offer bikes that can be hired in any of the fully automated stations spread18

over the city, and returned at any other station. This flexibility, allowing an easy integration along19

traditional means of public transportation, has been decisive in the success of BSS systems in world’s20

top major cities, e.g., in Paris with the Vélib system [15]. As any recent systems, a large amount of21

data is collected and is used for the exploitation and the maintenance. Their use in research context22

has led to new insights concerning spatial and temporal distribution of the activity [8, 1, 12, 4], as23

well as to study the users of such systems and their practice of shared bikes [18, 14]. In these works,24

traditional clustering techniques, such as K-means, are applied on extracted features, designed for a25

specific task, for instance to establish a typology of stations or users. Therefore, these approaches26

do not allow for the intrinsic nature of movements, lying on a network of stations and distributed27

over space and over time. In [2], a temporal network model has been proposed to take into account28

this spatio-temporal structure. The resulting analysis is nonetheless limited to snapshots of the29

network, upon which static network tools are applied to cluster stations. In the present article, we30

propose to use a similar temporal network representation of bike sharing systems, with the aim to to31

automatically extract relevant spatio-temporal components. A method to consider jointly time and32

space, whose preliminary results have been discussed in [10], is introduced, relying on non-negative33

matrix factorisation (NMF) [13]. A formal representation of bike sharing systems by temporal34

networks is first given, followed by a presentation of the decomposition technique used to express the35

resulting temporal networks as a mixture of sub-networks, characterising different spatio-temporal36

components. An application on the Lyon’s bike sharing system, called Vélo’v, is then presented,37
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highlighting the ability of this framework to capture significant mobility patterns occurring in a38

large-scale transportation system.39

2 Proposed method40

2.1 Representation of BSS as temporal network41

A temporal network representation is used to model the flows of bikes between stations of a bike42

sharing system. Each station of the system is considered as a vertex of the network, and connections43

between stations appear over time according to the individual trips made by the users. Unlike other44

transportation networks, such as road or subway networks, users have the freedom to start from any45

station of the network, and travel to any other station (including the departure station). It implies that46

the network is complete, i.e., each vertex is connected to all other vertices. In practice however, some47

trips seldom occur, in particular between stations at the periphery who are too distant to be travelled48

by bike. To take into account this phenomenon, weighted edges have to be introduced, to denote the49

number of trips made between each pair of stations.50

A formal definition is introduced in the following. Let S be the set of stations of the network, and T51

the continuous time interval of the experiment. T is first divided between I intervals of length ∆t,52

which forms the set of intervals I:53

I = {Ii}k∈{0,...,I−1} =
{

[kL, kL+ ∆t[
}
k∈{0,...,I−1} such that

I−1⋃
k=0

Ik = I (1)

where L is the hop size, i.e., the shift in time between two consecutive intervals, and is comprised54

between 0 (excluded) and ∆t. If L is equal to ∆t, there is no overlap between intervals. Conversely,55

decreasing L increasing the overlap and then the redundancy of information. We will consider in the56

following L = ∆t. From there, t ∈ T belongs to the interval Ik if t ∈ [kL, kL + ∆t[. The value57

of ∆t determines the temporal resolution of the resulting temporal network: if ∆t is small (in the58

order of the minute), almost each trip separately will be considered, at the cost of a great variability.59

Conversely, a high value for ∆t (more than 2 hours) will allow smoother transitions between each60

snapshot of the temporal network, but will also remove relevant information. As described in [1],61

∆t = 1h is shown to be a satisfactory compromise ensuring smoothness while preserving enough62

information. By convenience, I will refer to the set of indices of intervals {0, . . . , I − 1}, instead of63

the intervals themselves.64

A trip, defined as a user leaving a station m at time tm and arriving at a station n at time tn, can65

be formally defined as an element of the set S2 × I2 ; (m,n) ∈ S2 is an ordered pair of stations,66

where m (respectively n) is the departure (respectively arrival) stations, while (im, in) ∈ I2 is an67

ordered pair of time intervals, such as the time of departure tm (respectively of arrival tn) belongs68

to the interval Iim (respectively Iin). It is also possible to consider undirected trip by considered69

unordered pairs {im, in}, but we will restrain our study to the directed case.70

A preliminary temporal network is then defined by G0 = (V, E), where the set of vertices V is the set of71

stations S , and the set of edges E is a subset of S2 × I . From a trip (m,n, tm, tn), the corresponding72

edge is obtained using either the departure or the arrival time, such that e = (m,n, im) ∈ E if73

tm ∈ Iim . It is also possible to consider an edge during all time intervals in which the movement74

occurs. The effects of this choice is not studied in the following, where only the departure time is75

used. This graph can be extended by adding weights on directed edges, by counting the number76

of repetitions of a given element E . A weighted graph GW = (S, E ,W) is then introduced, where77

W = N+
S2×I , and we ∈ W gives the number of occurrences of trip leading to edge e in the dataset.78

From this definition, the resulting temporal network is defined over a potentially long period of time.79

As discussed in [1], it is relevant to average these intervals over a shorter period of time, typically80

chosen as the week, in order to reduce the fluctuations. We then introduced a temporal network G̃Week81

exploiting this idea: Let D : I → {1, . . . , 7} a mapping from an interval i ∈ I to the day of the82

week (1: Sunday, 2: Monday, etc.). For practical reasons, we will assume in the following that an83

interval does not overlap between two days. We have then G̃Week = (S, E , W̃), where W̃ = {w̃e}e∈E84

is defined for an edge e defined on the interval i by85

w̃e =
1

Ni

∑
j∈I

1D(i)=D(j)we (2)
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with Nj =
∑
j∈I 1D(i)=D(j).86

As introduced, the temporal network G is a sequence of networks, each of them giving a snapshot of87

movements made between stations during a specific time intervals. An alternative way to represent G88

is to define an adjacency tensor A ∈ NS
2×I

+ , where each slice Ak ∈ NS2

+ gives the weights of edges89

between all pairs of stations for the interval k. This representation allows for the use of technique90

such as non-negative matrix factorisation, introduced in the next section.91

2.2 Decomposition of temporal adjacency matrix92

Besides the wide collection of techniques to decompose networks into clusters, commonly called93

communities [7], only a few works have been focused on temporal networks. In [9], the temporal94

adjacency matrix is decomposed as a tensorial product of rank-one matrix, using non-negative tensor95

factorisation [3]. The low-rank decomposition favours the apparition of blocks of vertices, forming96

clusters In the case of BSS temporal network, this structure in communities may be relevant on97

static networks, as described in [2], but has less sense in the temporal case. We then propose to use98

non-negative matrix factorisation (NMF) for the decomposition, with the advantage that no hard99

constraints on extracted network structures, such as clusters, are implied.100

NMF consists in approximating a non-negative data matrix V ∈ RF×N+ as the product WH of two101

non-negative matrices W ∈ RF×K+ and H ∈ RK×N+ . Often, K < min (F,N), such that WH is a102

low-rank approximation of V. Every sample vn, the n-th column of V, is thus decomposed as a linear103

combination of K elementary components or patterns w1, . . . ,wK ∈ RF+, the columns of W. The104

coefficients of the linear combination are given by the n-th column hn of H. The non-negativity105

constraint of W and H induces to express the data matrix V as an additive combination of K basis106

components, given by the columns of W, whose mixture coefficients are given by the rows of H.107

In [5] and [16], several algorithms have been proposed for the unsupervised estimation of W and H108

from V, by minimising the following cost function109

Dβ(V |WH) =
∑
fn

dβ(vfn|[WH]fn) (3)

where dβ(x|y) is the β-divergence, whose special cases include the Euclidean distance (β = 2)110

and the Kullback-Leibler divergence (β = 1). Due to the non-convexity of this problem, resulting111

matrices are only an approximation of the best solution, and a better estimates is obtained by repeating112

the optimisation process 10 times and retaining the best achieved solution.113

As defined in (3), NMF is defined for matrices. In our application, the temporal adjacency matrix of114

dimensions S × S × I is transformed into a matrix by stacking end-to-end the columns of Ak for115

each interval k. The resulting matrix V is then a matrix of dimension S2 × I , and is used as input116

of the NMF. After minimisation of (3), the columns of matrix W regroups a collection of K spatial117

patterns, which can be unfold to form an adjacency matrix describing a static network structure118

between stations. For each snapshot of the temporal network, the rows of H give the mixture of these119

patterns, and then reveal the sub-structures of the activity. Before applying NMF, two parameters120

need to be set, namely the measure of dissimilarity, controlled by the value of β, and the number of121

components K. The choice of β is guided by the probabilistic model of the data we consider: entries122

vit of the data matrix V describe an average number of bikes departing from a station to another one123

during a time interval, and may be described by a Poisson law: vit ∼ P(vit,
∑K
k=1 wikhkt), where124

P(x, λ) = e−λ λx

Γ(x+1) with Γ(x+ 1) the Gamma function. As proven in [17], under the assumption125

that the entries of V are i.i.d., maximising the likelihood of this model is equivalent to minimising126

the Kullback-Leibler divergence, that is to say the β-divergence for β = 1. As for the number of127

components, there is no natural choice as it is in practice guided by the data as well as the required128

level of details. A low number of components is easier to interpret, but can fail to capture all the129

information. Conversely, a high number of components increases the diversity of spatio-temporal130

profiles, but makes the interpretation more complex. For this study, the number of components is131

arbitrarily set to 6, selected as a compromise value between complexity and interpretation.132
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3 Experiments on Lyon’s bike sharing system133

Thanks to a partnership with the “Grand Lyon” City Hall and the operator Cyclocity, all the records134

of the Vélo’v system1 in Lyon, France, were made available to us for the year 2011. For this year,135

the system comprises 343 stations spread over the cities of Lyon and Villeurbanne. Previous studies136

[1] have highlighted that Vélo’v activity over the day and the week, captured through the measure137

of number of rentals, is not stationary over the year. We then focus our study on the spring season,138

as the good weather and the absence of holidays reduce the variability of data. A temporal network139

including trips from this period of time averaged over the week is built, and decomposed using the140

method described above.141

(a) Component 1 (b) Component 2

(c) Component 3 (d) Component 4

(e) Component 5 (f) Component 6

Figure 1: Activation coefficient for each component. The intensity is normalised by the highest
intensity for all components.

Figure 1 displays for each component the activation coefficients over the week. Temporal description142

of activation coefficients lead to a classification of components according two modalities, the type of143

day (weekdays or weekend) and the period of the day (morning, midday, afternoon, evening, night).144

Weekend activities is mainly caught by component 6, even if the mobility pattern represented by this145

component is also present in weekdays with a lower intensity. For weekdays, components 2 and 3146

describe the activity in the morning, components 2 and 4 at midday, and components 4 and 5 for late147

afternoon / evening. It is interesting to note that the midday activity is composed of patterns present148

both in the morning and in the evening. We also observe small variations of the amplitude of peaks149

with respect to the day, and more particularly, a lower amplitude appears on Wednesday, that may be150

explained by the primary school schedule. This modulation is clearly visible in component 1, which151

spans over the whole week during the night, but with a different amplitude for each day. The intensity152

of peaks follows the expected intensity of the nightlife, much more stronger on Thursday, Friday and153

Saturday night than the other day. These extracted temporal components are consistent with the ones154

identified in various studies on Vélo’v, for instance in peak activities described in [1].155

One of the advantages of a joint decomposition in time and space is that a mobility pattern is156

associated to each component, captured in the columns of the matrix W. They are displayed in157

Figure 2 as static network embedded in the geographical area of Lyon and Villeurbanne. Each vertex158

(represented as dot) corresponds to a Vélo’v station. Colour of dots indicates the weighted degree of159

the corresponding vertex, i.e., the average weight of outgoing and in-going edges. This is then related160

to the activity of the station (number of rentals and of deposits). Size of dots depends on the ratio161

between in-going weighted degree (average weight of in-going edges) and outgoing weighted degree162

1http://www.velov.grandlyon.com

4



(a) Component 1 (b) Component 2

(c) Component 3 (d) Component 4

(e) Component 5 (f) Component 6

Figure 2: Representation of patterns (columns of V as network embedded in the geographical area of
Lyon and Villeurbanne. Vertices correspond to stations. Their colour indicates their weighted degree,
i.e., the average weight of outgoing and in-going edges, while their size indicates the ratio between
in-going weighted degree (average weight of in-going edges) and outgoing weighted degree (average
weight of outgoing edges). For sake of readability, directed edges are not displayed.
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(average weight of outgoing edges). Large dots correspond to stations being filled with bikes, while163

small dots represent stations being emptied. For sake of readability, directed edges are not displayed.164

Using this decomposition, it becomes much easier to explore the spatial distribution of flows of165

bikes over the city. A little knowledge of the metropolis is sufficient to interpret the structure of the166

extracted networks, and understand the key characteristics of the use of the Vélo’v system. First,167

we can note that for all components, the activity is mainly concentrated on a specific zones such as168

Part-Dieu district, regrouping the main railway station and business and shopping precincts, as well169

as the Presqu’île, the strip of land between the two rivers considered as the nerve centre of the city of170

Lyon. Second, stations located in hilly zones, such as the west side of the city or above the Presqu’île,171

are likely to be empty as going up is tiresome when cycling (this phenomenon is particularly visible172

in component 6, where only stations from these areas are represented by small dots).173

An joint interpretation between the mobility patterns and their activation coefficients gives some hints174

on some behaviours: for the weekdays in the morning, movements are mainly from residential areas175

to employment or educational areas, as indicated by the small dots in the outskirts of the city and176

the city centre regrouping many residential areas, and larger dots close to universities and business177

precincts in components 2 and 3. Conversely, flows in the opposite direction appear in components 4178

and 5, representing spatial distribution of the activity in the late afternoon. It is interesting to note179

that these patterns, highlighting the use of BSS for commuting, also appear at midday, albeit less180

strongly. Other types of behaviours arise at different period of time, outlining different uses of the181

system: in component 1, night activity is concentrated around around theatres, restaurants and bars.182

The stations close to these areas of interest tend to get empty, in favour of the ones at the outskirts of183

the city, located in residential areas. This component then suggests that bike-sharing system might be184

an alternative mean of transportation at night, when public transportation has closed.185

Table 1: Classification of NMF components

# Period of time Space distribution Direction
1 Evening and night Nightlife districts City outskirts
2 Weekdays - Morning and midday Residential and business areas Universities / schools
3 Weekdays - Early morning Residential and business areas Universities
4 Weekdays - Midday and afternoon City centre / Railway station City centre
5 Weekdays - Late afternoon Residential and business areas Residential areas
6 Weekend - Daytime Recreational areas City centre

A summary of the interpretation of components is given in Table 1. This example showed that186

even without prior information on bike-sharing systems, it is possible to achieve a relevant spatio-187

temporal characterisation on the main behaviours. Further investigations should be done to precisely188

characterise spatial components, with respect for instance to socio-economic variables.189

4 Conclusion190

In this paper, we proposed a novel framework to explore large datasets of trips made using bike191

sharing system, through a joint analysis of temporal and spatial dynamics. The method, based on192

a temporal network representation and a decomposition technique, automatically extracts the most193

significant spatio-temporal patterns. It has been successfully applied on real-world data from the194

bike-sharing system in Lyon: The extracted components are consistent with the current knowledge195

about the system studied through extensive socio-economical surveys, confirming the relevance196

of the proposed approach to easily access to a simplified view of how the system works, without197

any supervision. These components could be used to gain new insights about how transportation198

systems involving fleets of vehicles is spatially and temporally structured, and therefore help to build199

predictive model of the traffic flows over a transportation network.200
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