
Workshop track - ICLR 2018

HYPERPARAMETER OPTIMIZATION WITH HYPERNETS

Jonathan Lorraine & David Duvenaud
Department of Computer Science
University of Toronto
{lorraine, duvenaud}@cs.toronto.edu

ABSTRACT

Machine learning models are often tuned by nesting optimization of model
weights inside the optimization of hyperparameters. We give a method to collapse
this nested optimization into joint stochastic optimization of weights and hyper-
parameters. Our process trains a neural network to output approximately optimal
weights as a function of hyperparameters. We show that our technique converges
to locally optimal weights and hyperparameters for sufficiently large hypernets.
We compare this method to standard hyperparameter optimization strategies.

1 INTRODUCTION

Hyperparameter λ

V
al

id
at

io
n 

Lo
ss

 L
V

a
li
d
.

Cross-validation
Optimized hypernet
Optimal hyperparameter λ ∗

Figure 1: The validation loss of a neu-
ral net, estimated by cross-validation
(crosses) or by a hypernet (line), which
outputs 7, 850-dimensional network
weights. Cross-validation requires op-
timizing from scratch each time. The
hypernet can be used to evaluate the
validation loss cheaply.

Model selection and hyperparameter tuning is a signifi-
cant bottleneck in designing predictive models. Hyper-
parameter optimization is a nested optimization: The
inner optimization finds model parameters w which
minimize the training loss LTrain given hyperparame-
ters λ. The outer optimization chooses λ to reduce a
validation loss LValid.:

argmin
λ

L
Valid.

(
argmin

w
L

Train
(w, λ)

)
(1)

Usually, we estimate parameters with stochastic opti-
mization, but the most likely parameters are a determin-
istic function of the hyperparameters λ:

w∗(λ) = argmin
w

L
Train

(w, λ) (2)

We propose to learn this function. Specifically, we train
a neural network that takes hyperparameters as input,
and outputs of an approximately optimal set of weights
given the hyperparameters.

This formulation provides two major benefits: First, we
can train the hypernet to convergence using stochastic
gradient descent (SGD) without training any particular
model to completion. Second, differentiating through the hypernet allows us to optimize hyperpa-
rameters with stochastic gradient-based optimization.

2 TRAINING A NETWORK TO OUTPUT OPTIMAL WEIGHTS

How can we teach a hypernet (Ha et al., 2016) to output approximately optimal weights to another
neural network? The basic idea is that at each iteration, we ask a hypernet to output a set of weights
given some hyperparameters: w = wφ(λ). Instead of updating the weights w using the training loss
gradient ∂L(w)/∂w, we update the hypernet weights φ using the chain rule: ∂L(wφ)

∂wφ

∂wφ

∂φ . This expan-

sion allows us to optimize the hyperparameters λ with the validation loss gradient ∂L(wφ(λ))
∂wφ(λ)

∂wφ(λ)
∂λ .

We call this method hyper-training and contrast it with standard training methods.

1



Workshop track - ICLR 2018

Algorithm 1 Optimization of hypernet, then
hyperparameters

initialize φ, initialize λ̂
loop

x ∼ Training data, λ ∼ p (λ)
φ = φ− α∇φ LTrain(x,wφ(λ), λ)

loop
x ∼ Validation data
λ̂ = λ̂− β∇λ̂ LValid.(x,wφ(λ̂))

Return λ̂,wφ(λ̂)

Algorithm 2 Joint optimization of hypernet
and hyperparameters

initialize φ, λ̂
loop

x ∼ Training data, λ ∼ p(λ|λ̂)
φ = φ− α∇φ LTrain(x,wφ(λ), λ)

x ∼ Validation data
λ̂ = λ̂− β∇λ̂ LValid.(x,wφ(λ̂))

Return λ̂,wφ(λ̂)

A comparison of standard hyperparameter optimization, our first algorithm, and our joint algorithm.

Our method is closely related to the concurrent work of Brock et al. (2017), whose
SMASH algorithm also approximates the optimal weights as a function of model ar-
chitectures, to perform a gradient-free search over discrete model structures. Their
work focuses on efficiently estimating the performance of a variety of model ar-
chitectures, while we focus on efficiently exploring continuous spaces of models.

Hyperparameter λ

Lo
ss

 L

Train loss of optimized weights
Train loss of hypernet weights
Valid. loss of optimized weights
Valid. loss of hypernet weights
Optimal hyperparameter λ

p(λ|λ̂)

Figure 2: Training and validation losses
of a neural network, estimated by cross-
validation (crosses) or a linear hypernet
(lines). The hypernet’s limited capacity
makes it only accurate where the hyper-
parameter distribution puts mass.

2.1 ASYMPTOTIC CONVERGENCE PROPERTIES

This section proves that Algorithm 1 converges to a lo-
cal best-response under mild assumptions.

Theorem 2.1. Sufficiently powerful hypernets can
learn continuous best-response functions, which mini-
mizes the expected loss for all hyperparameter distri-
butions with convex support.

There exists φ∗, such that for all λ ∈ support(p (λ)) ,

L
Train

(wφ∗ (λ) , λ) = min
w
L

Train
(w, λ) and

φ∗ = argmin
φ

E
p(λ′)

[
L

Train
(wφ(λ

′), λ′)

]

Proof. If wφ is a universal approximator (Hornik,
1991) and the best-response is continuous in λ (which
allows approximation by wφ), then there exists opti-
mal hypernet parameters φ∗ such that for all hyperpa-
rameters λ, wφ∗(λ) = argminw LTrain(w, λ). Thus,
LTrain(wφ∗ (λ) , λ) = minw LTrain(w, λ). In other
words, universal approximator hypernets can learn con-
tinuous best-responses.

Substituting φ∗ into
the training loss gives

Ep(λ)[LTrain(wφ∗(λ), λ)] = Ep(λ)[minφ LTrain(wφ(λ), λ)]. By Jensen’s inequality,
minφ Ep(λ)[LTrain(wφ(λ), λ)] ≥ Ep(λ)[minφ LTrain(wφ(λ), λ)]. To satisfy Jensen’s re-
quirements, we have minφ as our convex function on the convex vector space of functions
{LTrain(wφ(λ), λ) for λ ∈ support(p (λ))}. To guarantee convexity of the vector space we
require that support(p (λ)) is convex and LTrain(w, λ) = Ex∼Train[LPred(x,w)] + LReg(w, λ)
with LReg(w, λ) = λ · L(w). Thus, φ∗ = argminφ Ep(λ)[LTrain(wφ(λ), λ)]. In other words, if
the hypernet learns the best-response it will simultaneously minimize the loss for every point in
support(p (λ)).

Thus, having a universal approximator and a continuous best-response implies for all λ ∈
support(p (λ)), LValid.(wφ∗(λ)) = LValid.(w

∗(λ)) because wφ∗(λ) = w∗(λ).

2



Workshop track - ICLR 2018

2.2 JOINTLY TRAINING PARAMETERS AND HYPERPARAMETERS

We propose Algorithm 2, which only tries to match a best-response locally. We introduce a “cur-
rent” hyperparameter λ̂, which is updated each iteration. We define a conditional hyperparameter
distribution, p(λ|λ̂), which only puts mass close to λ̂. Algorithm 2 combines the two phases of
Algorithm 1 into one.

3 RELATED WORK

Model-free and Model-based approaches Simple model-free approaches applied to hyperpa-
rameter optimization include grid search and random search (Bergstra & Bengio, 2012). Hyper-
band (Li et al., 2016) combines bandit approaches with modeling the learning procedure.

Model-based approaches try to build a surrogate function, which can allow gradient-based optimiza-
tion or active learning. An example is Freeze-thaw Bayesian optimization (Swersky et al., 2014)
which can condition on partially-optimized model performance. Our work is complementary to the
model-based SMASH algorithm of Brock et al. (2017), with section 2 discussing our differences.

Optimization-based approaches Another line of related work attempts to directly approximate
gradients of the validation loss with respect to hyperparameters. Maclaurin et al. (2015) differentiate
through entire unrolled learning procedures. HOAG (Pedregosa, 2016) finds hyperparameter gradi-
ents with implicit differentiation by deriving an implicit equation for the gradient with optimality
conditions. Franceschi et al. (2017) study forward and reverse-mode differentiation for constructing
hyperparameter gradients.

4 EXPERIMENTS

In all experiments, Algorithms 1 or 2 are used to optimize weights with a mean squared error on
MNIST (LeCun et al., 1998) with LReg as an L2 weight decay penalty weighted by exp(λ). The
elementary model has 7, 850 weights. We used Adam for training the hypernet and hyperparameters.

4.1 LEARNING A GLOBAL BEST-RESPONSE

Our first experiment, shown in Figure 1, demonstrates learning a global approximation to a best-
response function using Algorithm 1. We use 10 training data points to exacerbate overfitting.
When training the hypernetwork, hyperparameters were sampled from a broad Gaussian distribution:
p (λ) = N (0, 1.5). The minimum of the best-response in Figure 1 is close to the real minimum of
the validation loss, which shows a hypernet can satisfactorily approximate a global best-response
function in small problems.

4.2 LEARNING A LOCAL BEST-RESPONSE

Figure 2 shows the same experiment, but using the Algorithm 2. The fused updates result in finding
a best-response approximation whose minimum is the actual minimum faster than the prior exper-
iment. The conditional hyperparameter distribution is given by p(λ|λ̂) = N (λ̂, 0.00001). This
experiment shows that using only a locally-trained linear best-response function can give sufficient
gradient information to optimize hyperparameters on a small problem. Algorithm 2 is also less
computationally expensive than 1.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the question of tuning hyperparameters using gradient-based optimiza-
tion, by replacing the training optimization loop by a differentiable hypernetwork. We gave a theo-
retical justification that sufficiently large networks will learn the best-response for all hyperparame-
ters viewed in training. We also presented a simpler and more scalable method that jointly optimizes
both hyperparameters and hypernet weights, allowing our method to work with manageably-sized
hypernetworks.

3



Workshop track - ICLR 2018

REFERENCES

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305, 2012.

Andrew Brock, Theodore Lim, JM Ritchie, and Nick Weston. Smash: One-shot model architecture
search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1165–1173.
PMLR, 2017.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. arXiv preprint
arXiv:1603.06560, 2016.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International Conference on Machine Learning, pp. 2113–
2122, 2015.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International Con-
ference on Machine Learning, pp. 737–746, 2016.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv
preprint arXiv:1406.3896, 2014.

4


	Introduction
	Training a network to output optimal weights
	Asymptotic convergence properties
	Jointly training parameters and hyperparameters

	Related Work
	Experiments
	Learning a global best-response
	Learning a local best-response

	Conclusions and Future Work

