
A Neurosymbolic Approach to Adaptive Feature Extraction in SLAM

Yasra Chandio1, Momin A. Khan1, Khotso Selialia1, Luis Garcia2, Joseph DeGol3, and Fatima M. Anwar1

Abstract— Autonomous robots, autonomous vehicles, and
humans wearing mixed-reality headsets require accurate and
reliable tracking services for safety-critical applications in
dynamically changing real-world environments. However, the
existing tracking approaches, such as Simultaneous Localization
and Mapping (SLAM), do not adapt well to environmental
changes and boundary conditions despite extensive manual
tuning. On the other hand, while deep learning-based approaches
can better adapt to environmental changes, they typically
demand substantial data for training and often lack flexibility
in adapting to new domains. To solve this problem, we propose
leveraging the neurosymbolic program synthesis approach
to construct adaptable SLAM pipelines that integrate the
domain knowledge from traditional SLAM approaches while
leveraging data to learn complex relationships. While the
approach can synthesize end-to-end SLAM pipelines, we focus
on synthesizing the feature extraction module. We first devise a
domain-specific language (DSL) that can encapsulate domain
knowledge on the essential attributes for feature extraction and
the real-world performance of various feature extractors. Our
neurosymbolic architecture then undertakes adaptive feature
extraction, optimizing parameters via learning while employing
symbolic reasoning to select the most suitable feature extractor.
Our evaluations demonstrate that our approach, neurosymbolic
Feature EXtraction (nFEX), yields higher-quality features. It
also reduces the pose error observed for the state-of-the-art
baseline feature extractors ORB and SIFT by up to 90% and up
to 66%, respectively, thereby enhancing the system’s efficiency
and adaptability to novel environments.

I. INTRODUCTION

Accurate tracking is crucial to the wide-scale and practical
deployment of autonomous cars, autonomous robots, and
mixed-reality applications involving humans [1]. The different
agents (e.g., cars, robots, humans) navigate complex and
dynamic settings, from busy city streets to cluttered ware-
houses and ever-evolving homes. To ensure safe and effective
operation, the agents require robust tracking mechanisms that
can adapt to the constant changes they encounter.

Traditional Simultaneous Localization and Mapping
(SLAM) often struggle in such dynamic scenarios. They rely
on pre-defined physical models that may not generalize well
to unseen situations or environments with significant lighting
variations and scene transitions [2]. Recent advances in
artificial intelligence (AI) driven approaches learn non-trivial
relationships from data and perform better in dynamic envi-
ronments and edge cases [3]. However, they are data-hungry
and lack interpretability [4], hindering their deployment in
safety-critical applications. Hybrid approaches have aimed to

1Yasra Chandio, Momin A. Khan, Khotso Selialia, and Fatima M. Anwar
are affiliated with the University of Massachusetts Amherst, USA.

2Luis Garcia is affiliated with the University of Utah, USA.
3Joseph DeGol is affiliated with the Steg AI, USA.
Correspondence: ychandio@umass.edu

bridge the benefits of data-efficient, physics-based approaches
and deep-learning-based approaches, e.g., by preprocessing
the input to aid tracking [5] or placing guard rails around the
tracking output to limit the impact of erroneous outcomes [6],
[7]. While effective, the composition of these methods is
often ad-hoc and tuned to specific domains or environments
and not suited to adaptation [8].

In this work, we formalize these hybrid compositional
approaches as neurosymbolic programs [9], [11], which aim
to bridge the gap between data-driven learning approaches and
rule-based symbolic reasoning. In particular, formulating the
SLAM pipeline as a composition of modules–each potentially
represented as a neurosymbolic program–enables neurosym-
bolic program synthesis, where we aim to synthesize tracking
programs given a library of neural and symbolic components
that fit a dataset and generalize to unseen inputs [9]. While
neurosymbolic program synthesis can be employed at the
module level or the entire tracking pipeline, we focus on
the feature extraction module of the SLAM pipeline as a
proof of concept. The feature extraction module detects and
tracks feature maps over time. Significant prior work has
been on developing feature extraction approaches, such as
ORB [12] and SIFT [13]. These techniques are well-suited for
certain environmental conditions for specific applications [14],
[15]. Therefore, the feature extraction performance can be
improved by dynamically selecting the most appropriate
feature extractor and adapting its configuration parameters for
the given environmental scenario. However, the search space
across feature extractors, configurations, agent types, and
scenarios is large, with limited performance data available
for all combinations.

In this work, we consider finding the right feature extrac-
tor and its parameters a neurosymbolic program synthesis
task. The neural component of our neurosymbolic feature
extractor, nFEX, is a standard neural network that finds
the optimal parameters for the various feature extractors
we consider using a dataset of optimal configurations under
different environmental conditions. We empirically generate
this dataset by running exhaustive combinations of feature
extractors and their parameters through SLAM pipelines.
nFEX’s symbolic component captures the domain knowledge
on the attributes of essential features and the impact of
environmental conditions on the end-to-end performance of
a SLAM pipeline as well as the feature quality metrics, such
as texture, dissimilarity, and spatial density. Moreover, the
symbolic representation can incorporate prior knowledge on
the end-to-end performance of feature extractors; for example,
ORB gives the lowest pose error under bright conditions
with good textures. As with any neurosymbolic program

synthesis task, we specify the symbolic component using
the syntax of a domain-specific language (DSL) [16], and
we leverage knowledge graphs to represent any symbolic
expert knowledge. Given these components, we devise a
learning algorithm that uses symbolic reasoning to adapt the
outcomes of the neural learning component. The task for the
algorithm is to discover the program’s discrete architecture
α (i.e., a feature extractor) and its real-valued parameters Θ
(i.e., feature extractor’s configurations). The task specification
that directs this search includes a domain-specific quantitative
fitness function derived from labeled data or expert knowledge.
The algorithm aims to find a program that optimizes the loss
under constraints.

The task of neurosymbolic program synthesis is not trivial
and requires solving multiple challenges. First, there are no
existing SLAM pipelines or feature extraction module DSLs.
Therefore, we need to devise a DSL to represent various
agent types (car, drone, human), their motion types (fast,
slow), scene types (indoor, outdoor), light conditions (bright,
dark), the set of feature extractors (ORB, SIFT), and their
parameters (e.g., no. of features, density), details in §IV.
Second, we must populate a knowledge graph summarizing
how different feature extraction approaches perform under
various conditions. However, as such data is limited in the
existing literature [14], [15], we employed an experiment-
driven approach to populate the knowledge graph (details in
§III-A.1). We present our solution to those mentioned above
and other challenges in their respective sections.

We make the following contributions in devising a neu-
rosymbolic program synthesis approach to domain adaptive
feature extraction in SLAM pipelines.

1) We develop a DSL for the feature extraction module of a
SLAM pipeline that allows expressing the performance
of a feature extractor across various scene characteristics.
Since limited performance data is available on feature
extractors, we leverage an experiment-driven approach
to populate the knowledge graph required for the
neurosymbolic program synthesis.

2) We devise a neural network-based learning approach
for feature extractor synthesis that learns deep repre-
sentations over the set of feature extractors and their
parameters. We use a novel two-step fitness function
(details in §IV) to direct the search toward an optimal
feature extractor and its configuration parameters.

3) We extensively evaluate our proposed approach across
three datasets, representing various agent and envi-
ronmental characteristics and two underlying feature
extractors, ORB and SIFT. We demonstrate that our
approach dynamically adapts the feature extractor and
its parameters. We outperform ORB and SIFT by 90%
and 66%, using ATE as a metric (details in §V).

II. BACKGROUND & RELATED WORK

A. Feature Extraction in SLAM
Feature extraction acts as SLAM’s eyes, the first module

to encounter the raw environmental data. It encodes environ-
mental elements for processing, determining how well it can

detect and use landmarks to map and navigate surroundings,
influencing the quality of the entire pipeline. This process in-
volves operations such as scale-space representation, keypoint
detection, transform invariance, and descriptor generation,
enabling consistent landmark recognition across observations
through techniques such as SIFT and ORB.

First, scale-space representation, utilizing image down-
sampling and filtering—Gaussian blur for SIFT and image
pyramids [17] for ORB—creates a multi-resolution image
pyramid, ensuring feature detection across all sizes in the
visual field. Keypoint detection then identifies distinctive
locations, such as corners, edges, or blobs, by targeting
high-contrast areas using methods like the Harris Corner
Detector [18], Difference of Gaussians [19] and Hessian
matrix [20] to locate keypoints. Transformation invariance
enhances this process by normalizing the region around each
detected feature. SIFT, for example, determines orientation
from local image gradients, rendering descriptors rotation
invariant across views. On the other hand, ORB achieves
invariance through intensity centroid-based methods. For
each detected keypoint, a unique descriptor facilitates feature
matching across images, with SIFT employing gradient
histograms and a binary descriptor strategy for ORB [21].

B. Environmental Influences on Feature Extraction

Feature extraction is influenced by environmental changes
(light, motion, reflective surfaces, textures), the specific
agents navigating it (humans, cars, drones), and the scene’s
characteristics (indoors or outdoors). This causes several
challenges. Lighting is one of several challenges. Too much
light can hide image details, while too little makes features
hard to detect and match. Motion can blur and displace critical
features, complicating their tracking and matching across
frames. Reflective surfaces can create false features, affecting
map accuracy; well-textured scenes can confuse algorithms,
while low-textured environments may offer few features to
track, requiring careful selection of distinct features [22].

Furthermore, challenges of agent type and scene, whether
navigating high-speed scenarios with cars, adapting to altitude
and orientation changes in drones, or enhancing augmented
reality experiences in complex indoor settings [23]. This
customization extends to recognizing features like corners,
edges, and textural patterns in indoor environments, tailored to
the unique characteristics of man-made structures [24], while
also being adaptable to handle the varying lighting, weather,
and natural textures encountered outdoors. Both indoor and
outdoor scenes require adjusting to dynamic environmental
conditions and the specific demands of more complex environ-
ments, such as navigating through low visibility underwater
or areas with repetitive manmade patterns. This highlights the
need for SLAM systems to adapt to environmental changes
and the inherent scene characteristics across different contexts.

Traditional methods struggle with these challenges, affect-
ing feature quality and downstream applications (pose and
maps). Adaptive techniques like thresholding and dynamic
range adjustment [25], [26], optical flow, gyroscopic inte-
gration [27], polarization [28] and consistency checks [22],

Visual Odometry

Loop Closure

Neurosymbolic
Feature Extraction Local

& GlobalMotion Estimation
Map

Pose

Input
Image
Data

Preprocessing
Initial Pose
Estimation/

Map Creation

State Estimation
Correction

Fig. 1: Our contribution (blue box) within SLAM pipeline.

attempt to mitigate these issues but often fall short in rapidly
changing conditions. However, these methods often fail in
rapidly changing conditions primarily because they tend to be
ad-hoc solutions or overly specialized to certain environments.
Each technique is tailored to address particular issues, such
as lighting variations or motion blur, without a holistic
understanding of the environment’s complexity.

C. Neurosymbolic Architectures

Recent studies [11], [29], [10] have highlighted the
effectiveness of neurosymbolic program synthesis [30] in
advancing the capabilities of machines to understand [31],
[10], navigate [32], and interact with their environments [33],
demonstrating a practical approach to enhancing feature
extraction through the integration of learning and reasoning
processes. Neurosymbolic architectures can address the main
issues of usual SLAM feature extractors, which can not
easily adjust to various environmental changes, affecting
their accuracy and reliability. This approach uses the strength
of neural networks to process complex data and symbolic
systems to apply specific knowledge and rules [9], making it
better suited for different conditions.

Integrating knowledge graphs, DSL, and grammar into
SLAM presents a practical realization of neurosymbolic
architecture. Knowledge graphs can organize unstructured
environmental data and sensor interpretations into a structured
format as a dynamic reference point. Using this graph, a DSL
can provide a framework for expressing operations and con-
figurations of feature extraction that align with the domain’s
specific requirements. To ensure coherence and semantic
integrity, the grammar of a DSL can dictate the rules that
structure the language, defining how symbols, keywords, and
operators combine to form valid and meaningful expressions.
This approach can fine-tune feature extraction parameters for
challenges like low-light visibility and navigating reflective
surfaces and select the best extractor for the situation. For
instance, by symbolically analyzing motion and texture, it
can learn to adjust motion compensation and feature quantity,
steering towards extractors ideal for varied textures.

III. DSL CONSTRUCTION FOR NEUROSYMBOLIC SLAM

This section details nFEX approach, leveraging neurosym-
bolic programming to adapt feature extraction dynamically.

A. Neurosymbolic Program

In traditional SLAM, images are processed by a pre-
selected feature extractor with fixed parameters, producing a
feature vector fed to the remaining SLAM pipeline (odometry
and other optimizations) for pose generation. To this end, our

θ1

θ2

θN ✘

✘

✔

Fitness Function

SLAM Feature Library

Image
Scene
Info.

SLAM Feature Extractor

Data

Spec (DSL)

Parameter
Adjustment

Program SynthesisFeature
Init

Scene
Info+ Feature

Selector θ2
Remaining

SLAM pose

synthesized program

Fig. 2: A high-level overview of our approach.

proposed approach nFEX illustrated in Figure 2, synthesizes
a neurosymbolic program designed to dynamically select and
configure feature extractors based on real-time environmental
inputs by replacing the traditionally manually-tuned feature
extraction module with our neurosymbolic feature extraction,
highlighted in blue color in Figure 1.

1) DSL Framework: This process begins with establishing
a DSL framework, which outlines the structure for:
Feature Extractor Selection (α) identifies the optimal feature
extractor architecture for the given scene conditions.
Parameter Configuration (Θ) determines the best parameter
settings to enhance feature extractor performance.

It encapsulates domain insights into the feature extraction
module with a knowledge graph that acts as a database
of domain information that helps understand and navigate
the module’s operation and parameters, as illustrated in
Figure 3; we generate this graph as one of our contribu-
tions. It encompasses nodes representing various feature
extraction operations, such as scale space representation,
keypoint detection, and descriptor. Edges within the graph
delineate the relationships and compatibilities between these
operations, informed by performance metrics, computational
considerations, and adaptability to environmental factors. This
graph enriches both our synthesis and the DSL’s capacity to
incorporate novel feature extraction methods in the future.

Next, grammar, outlined in Figure 5, provides a blueprint
for creating the DSL program that can interpret and act upon
input conditions (environmental context). Using the graph,
the grammar parses the structure for input conditions (such
as indoor/outdoor scene, agent types, lighting conditions, and
so on), and each rule describes a part of the program for
selecting the suitable α and their Θ. Our DSL’s grammar
enhances adaptability and streamlines each recalibration for
new applications, making it straightforward for users to add
new input conditions and parameters.

This DSL ensures the synthesized programs are logically
coherent and actionable, allowing for automated parsing and
execution of feature extraction. An example of one such
program is illustrated in Figure 4. Once the DSL is established,

Scene Information
& Image

(agent, scene, light, motion)

point

corner

line

Feature
Type

edge

Feature
Vector

Scale-Space
Representation

Keypoint
Detection

Transform
Invariance

Intensity
Centroid

Hessian
Matrix

Harris
Corner

Local Image
Gradient

X, Y Haar
Wavelet

Rotated
BRIEF

Descriptor

Haar
Wavelet

Local Image
Descriptor

ORB
Image

Downsampling
Difference of

Gaussian
blob

Filter
Up-Sampling

SIFT(car, outdoor, bright, fast)

(drone, indoor, dark, slow)

Fig. 3: Illustration of feature extraction knowledge graph.

we operationalize it through a two-phase process:

[24] S.-Y. An, J.-G. Kang, L.-K. Lee, and S.-Y. Oh, “Slam with salient
line feature extraction in indoor environments,” in 11th International
Conference on Control Automation Robotics & Vision, 2010.

[25] K.-F. Yang, H. Li, H. Kuang, C.-Y. Li, and Y.-J. Li, “An adaptive
method for image dynamic range adjustment,” IEEE Transactions on
Circuits and systems for video technology, vol. 29, no. 3, 2018.

[26] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive log-
arithmic mapping for displaying high contrast scenes,” in Computer
graphics forum, vol. 22, pp. 419–426, Wiley Online Library, 2003.

[27] M. Hwangbo, J.-S. Kim, and T. Kanade, “Inertial-aided klt feature
tracking for a moving camera,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2009.

[28] Z. Zhu, P. Xiang, and F. Zhang, “Polarization-based method of
highlight removal of high-reflectivity surface,” Optik, vol. 221, 2020.

[29] E. Marconato, S. Teso, A. Vergari, and A. Passerini, “Not all neuro-
symbolic concepts are created equal: Analysis and mitigation of
reasoning shortcuts,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[30] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, and
P. Kohli, “Neuro-symbolic program synthesis,” arXiv preprint
arXiv:1611.01855, 2016.

[31] S. Kelly, D. S. Park, X. Song, M. McIntire, P. Nashikkar, R. Guha,
W. Banzhaf, K. Deb, V. N. Boddeti, J. Tan, et al., “Discovering
adaptable symbolic algorithms from scratch,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 3889–3896, IEEE, 2023.

[32] A. Siyaev and G.-S. Jo, “Neuro-symbolic speech understanding in
aircraft maintenance metaverse,” Ieee Access, vol. 9, pp. 154484–
154499, 2021.

[33] T. Chen, Q. Wang, Z. Dong, L. Shen, and X. Peng, “Enhancing
robot program synthesis through environmental context,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[34] S. Chaudhuri and A. Solar-Lezama, “Smooth interpretation,” in Pro-
ceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’10, (New York, NY,
USA), p. 279–291, Association for Computing Machinery, 2010.

[35] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1,
pp. 1997–2017, 2019.

[36] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual-inertial and multi-map SLAM,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[37] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[38] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The euroc micro aerial vehicle
datasets,” The International Journal of Robotics Research, vol. 35,
no. 10, pp. 1157–1163, 2016.

[39] Y. Chandio, N. Bashir, and F. M. Anwar, “Holoset-a dataset for visual-
inertial pose estimation in extended reality: Dataset,” in Proceedings
of the 20th ACM Conference on Embedded Networked Sensor Systems,
pp. 1014–1019, 2022.

[40] I. Ali and H. Zhang, “Are we ready for robust and resilient slam? a
framework for quantitative characterization of slam datasets,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2810–2816, IEEE, 2022.

[41] S. Guo, Z. Rong, S. Wang, and Y. Wu, “A lidar slam with pca-
based feature extraction and two-stage matching,” IEEE Transactions
on Instrumentation and Measurement, vol. 71, 2022.

[42] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum,
“Neural-symbolic vqa: Disentangling reasoning from vision and lan-
guage understanding,” in Advances in Neural Information Processing
Systems (NeurIPS), vol. 31, Curran Associates, Inc., 2018.

[43] S. S. Saha, S. S. Sandha, M. Aggarwal, B. Wang, L. Han, J. d. G.
Briseno, and M. Srivastava, “Tinyns: Platform-aware neurosymbolic
auto tiny machine learning,” ACM Transactions on Embedded Com-
puting Systems, 2023.

APPENDIX

<DSLProgram> ::= <InputConditions><
,! FeatureExtractionParameters><ParameterAdjustment>
,! <FeatureExtractorSelection>

<InputConditions> ::= <Condition>*
<Condition> ::= <ConditionKey>":"<ConditionValue> ";"

<ConditionKey> ::= "Scene"| .. |"Texture"
<ConditionValue> ::= "Indoor"|"Outdoor"| .. |"High"|"Low"

<FeatureExtractionParameters> ::= <Parameter>*
<Parameter> ::= <ParamKey>":"<ParamValue> ";"
<ParamKey> ::= "NF" | "NL" | "SF" | "ST"
<ParamValue> ::= <Number>

<ParameterAdjustment> ::= "If " <Expression> "{" <
,! ConditionKey>":"<ConditionValue>";" "}"

<Expression>::=<ParamKey>"=="<Number>

<FeatureExtractorSelection>::= Extractor":"<Extractor>";"
<Extractor> ::= "SIFT" | "ORB"

Fig. 5: Grammar to parse the DSL for nFEX.

1 InputConditions {

2 Scene: "Indoor" | "Outdoor";

3 Agent: "Car" | "Human" | "Drone";

4 LightType: "Bright" | "Dark";

5 MotionType: "Fast" | "Slow";

6 reflectiveSurface: "Yes" | "No";

7 texture: "High" | "Low";

8 }

9 FeatureExtractionParameters {

10 NF: Int = 1000;

11 NL: Int = 4;

12 SF: Float = 0.8;

13 ST: Float = 6.0;

14 }

15 ParameterAdjustment {

16 If LightType=="Bright" && MotionType=="Fast":

17 If reflectiveSurface=="Yes" && texture=="High":

18 NF: 338;

19 ElseIf reflectiveSurface=="No" &&

texture=="Low":,!
20 NF: 1200;

21 Else:

22 NF: default;

23 ElseIf LightType=="Dark" && MotionType=="Slow":

24 NF: 800;

25 Else:

26 NF: default;

27 }

28 FeatureFeatureExtractorSelectionMetrics {

29 Metrics:["texturedness", "stability", "motion",

"dissimilarity", "spatialDensity",

"distinctiveness"];

,!
,!

30 }

31 ComputeFeatureExtractorScore {

32 InputImage: Image;

33 Method: "SomeMethod";

34 }

35 FeatureExtractorSelection {

36 If ComputeFeatureExtractorScore["SIFT"] >

ComputeFeatureExtractorScore["ORB"]:,!
37 Extractor: "SIFT";

38 Else:

39 Extractor: "ORB"; // default extractor

40 }

Fig. 6: Example DSL Program.

8

Fig. 4: Example DSL program

This DSL ensures the synthesized programs are logically
coherent and actionable, allowing for automated parsing and

execution of feature extraction. An example of one such
program is illustrated in Figure 4. Once the DSL is established,
we operationalize it through a two-phase process:

2) Program Synthesis (Training): We first optimize feature
extractor parameters (Θ) using neural networks (details
in § IV) to generalize the extractor’s performance across
different contexts. To handle the inherent uncertainties and
partial unstructured information in real-world scenarios,
we employ smooth interpretation [34] techniques, allowing
for a nuanced adaptation. Then, with this optimized Θ,
the program evaluates to make informed decisions about
the most suitable α and its configuration for the given
context. This selection process is akin to neural architecture
search [35], where various architectures (feature extractors
in this context) are evaluated for contextual performance.
Finally, we employ the feedback mechanism integral to this
phase, allowing continuous program refinement based on
downstream performance (e.g., pose). This iterative process
ensures the program remains optimally configured to adapt
to new challenges and environments.

[24] S.-Y. An, J.-G. Kang, L.-K. Lee, and S.-Y. Oh, “Slam with salient
line feature extraction in indoor environments,” in 11th International
Conference on Control Automation Robotics & Vision, 2010.

[25] K.-F. Yang, H. Li, H. Kuang, C.-Y. Li, and Y.-J. Li, “An adaptive
method for image dynamic range adjustment,” IEEE Transactions on
Circuits and systems for video technology, vol. 29, no. 3, 2018.

[26] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive log-
arithmic mapping for displaying high contrast scenes,” in Computer
graphics forum, vol. 22, pp. 419–426, Wiley Online Library, 2003.

[27] M. Hwangbo, J.-S. Kim, and T. Kanade, “Inertial-aided klt feature
tracking for a moving camera,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2009.

[28] Z. Zhu, P. Xiang, and F. Zhang, “Polarization-based method of
highlight removal of high-reflectivity surface,” Optik, vol. 221, 2020.

[29] E. Marconato, S. Teso, A. Vergari, and A. Passerini, “Not all neuro-
symbolic concepts are created equal: Analysis and mitigation of
reasoning shortcuts,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[30] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, and
P. Kohli, “Neuro-symbolic program synthesis,” arXiv preprint
arXiv:1611.01855, 2016.

[31] S. Kelly, D. S. Park, X. Song, M. McIntire, P. Nashikkar, R. Guha,
W. Banzhaf, K. Deb, V. N. Boddeti, J. Tan, et al., “Discovering
adaptable symbolic algorithms from scratch,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 3889–3896, IEEE, 2023.

[32] A. Siyaev and G.-S. Jo, “Neuro-symbolic speech understanding in
aircraft maintenance metaverse,” Ieee Access, vol. 9, pp. 154484–
154499, 2021.

[33] T. Chen, Q. Wang, Z. Dong, L. Shen, and X. Peng, “Enhancing
robot program synthesis through environmental context,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[34] S. Chaudhuri and A. Solar-Lezama, “Smooth interpretation,” in Pro-
ceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’10, (New York, NY,
USA), p. 279–291, Association for Computing Machinery, 2010.

[35] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1,
pp. 1997–2017, 2019.

[36] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual-inertial and multi-map SLAM,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[37] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[38] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The euroc micro aerial vehicle
datasets,” The International Journal of Robotics Research, vol. 35,
no. 10, pp. 1157–1163, 2016.

[39] Y. Chandio, N. Bashir, and F. M. Anwar, “Holoset-a dataset for visual-
inertial pose estimation in extended reality: Dataset,” in Proceedings
of the 20th ACM Conference on Embedded Networked Sensor Systems,
pp. 1014–1019, 2022.

[40] I. Ali and H. Zhang, “Are we ready for robust and resilient slam? a
framework for quantitative characterization of slam datasets,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2810–2816, IEEE, 2022.

[41] S. Guo, Z. Rong, S. Wang, and Y. Wu, “A lidar slam with pca-
based feature extraction and two-stage matching,” IEEE Transactions
on Instrumentation and Measurement, vol. 71, 2022.

[42] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum,
“Neural-symbolic vqa: Disentangling reasoning from vision and lan-
guage understanding,” in Advances in Neural Information Processing
Systems (NeurIPS), vol. 31, Curran Associates, Inc., 2018.

[43] S. S. Saha, S. S. Sandha, M. Aggarwal, B. Wang, L. Han, J. d. G.
Briseno, and M. Srivastava, “Tinyns: Platform-aware neurosymbolic
auto tiny machine learning,” ACM Transactions on Embedded Com-
puting Systems, 2023.

APPENDIX

<DSLProgram> ::= <InputConditions><
,! FeatureExtractionParameters><ParameterAdjustment>
,! <FeatureExtractorSelection>

<InputConditions> ::= <Condition>*
<Condition> ::= <ConditionKey>":"<ConditionValue> ";"

<ConditionKey> ::= "Scene"| .. |"Texture"
<ConditionValue> ::= "Indoor"|"Outdoor"| .. |"High"|"Low"

<FeatureExtractionParameters> ::= <Parameter>*
<Parameter> ::= <ParamKey>":"<ParamValue> ";"
<ParamKey> ::= "NF" | "NL" | "SF" | "ST"
<ParamValue> ::= <Number>

<ParameterAdjustment> ::= "If " <Expression> "{" <
,! ConditionKey>":"<ConditionValue>";" "}"

<Expression>::=<ParamKey>"=="<Number>

<FeatureExtractorSelection>::= Extractor":"<Extractor>";"
<Extractor> ::= "SIFT" | "ORB"

Fig. 5: Grammar to parse the DSL for nFEX.

1 InputConditions {

2 Scene: "Indoor" | "Outdoor";

3 Agent: "Car" | "Human" | "Drone";

4 LightType: "Bright" | "Dark";

5 MotionType: "Fast" | "Slow";

6 reflectiveSurface: "Yes" | "No";

7 texture: "High" | "Low";

8 }

9 FeatureExtractionParameters {

10 NF: Int = 1000;

11 NL: Int = 4;

12 SF: Float = 0.8;

13 ST: Float = 6.0;

14 }

15 ParameterAdjustment {

16 If LightType=="Bright" && MotionType=="Fast":

17 If reflectiveSurface=="Yes" && texture=="High":

18 NF: 338;

19 ElseIf reflectiveSurface=="No" &&

texture=="Low":,!
20 NF: 1200;

21 Else:

22 NF: default;

23 ElseIf LightType=="Dark" && MotionType=="Slow":

24 NF: 800;

25 Else:

26 NF: default;

27 }

28 FeatureFeatureExtractorSelectionMetrics {

29 Metrics:["texturedness", "stability", "motion",

"dissimilarity", "spatialDensity",

"distinctiveness"];

,!
,!

30 }

31 ComputeFeatureExtractorScore {

32 InputImage: Image;

33 Method: "SomeMethod";

34 }

35 FeatureExtractorSelection {

36 If ComputeFeatureExtractorScore["SIFT"] >

ComputeFeatureExtractorScore["ORB"]:,!
37 Extractor: "SIFT";

38 Else:

39 Extractor: "ORB"; // default extractor

40 }

Fig. 6: Example DSL Program.

8

Fig. 5: Grammar to parse the DSL for nFEX.

3) Program Use (Inference): During inference, our syn-
thesized program dynamically applies optimized Θ) and α
in real-time scenarios. It dynamically adjusts to changing
environments, analyzing scene data for accurate feature
extraction and integration into the SLAM pipeline. This phase

emphasizes real-time adaptation and continuous learning from
new data, enabling ongoing system performance refinement
and boosting adaptability across diverse scenarios.

IV. IMPLEMENTATION

A. Fitness Function for DSL formulation

We implement a DSL program through a two-step fitness
function to materialize our approach.

1) Parameter Tuning (Θ): Given a set of feature extractors
α = {α1, α2, . . . , αy}, initial parameters Θ = {θ1,θ2, . . . ,θn}
for each feature extractor and a set of symbolic environmental
conditions E = {e1, e2, . . . , ec} the optimization process is de-
fined by a transformation function g(θ, E), which dynamically
adjusts Θ based on E, resulting in an optimized parameter set
Θ

′ = {θ′1,θ′2, . . . ,θ′n} with wk, the weight for each parameter
k:

Θ
′ = g(Θ, E), wk =

c∏
j=1

fkj(ej)

θ
′
k = wk · θk =

 c∏
j=1

fkj(ej)

 · θk for each k ∈ {1, 2, . . . n}

The term
∏c

j=1 fkj(ej) is the cumulative product of adjustments
from all the environmental conditions for a given parameter
k. Finally, the fitness of the optimized parameters θ′ in the
context of environmental conditions E is then evaluated by
the fitness function F:

F(Θ′|E) = f(Θ′|E)

This formulation demonstrates how scene conditions directly
influence parameter optimization, allowing for adaptable
feature extraction based on the environment.

2) Feature Extractor Selection (α): Once we obtain Θ′ for
each feature extractor αi, given set of symbolic metrics M =
m1, m2 . . .mp with dynamically adjusted weights ρx = hx(E)
for each x ∈ {1, 2, . . . , p}. hx(E) is a function that computes
the weight of the xth metric based on the environmental
conditions E. We assess the quality of detected features for
each feature extractor αi with its parameters optimized as Θ′

i :

Fmetrics(αi|Θ
′
i , E) =

p∑
x=1

ρx · mx(α′i) =
p∑

x=1

hx(E) · mx(α′i)

The final selection of the feature extractor α∗ that maximizes
Fmetrics:

α
∗ = arg max
αi∈{α1,α2,...,αy}

Fmetrics(αi|Θ
′
i , E)

This ensures that the feature extractor’s selection and perfor-
mance evaluation are adapted to the environmental context.

B. Experimental Setup

1) Feature Parameters (Θ): Our approach prioritizes opti-
mizing parameters that influence feature extraction operations
and are responsive to our defined environmental inputs. To
this end, we choose the following parameters:
Number of Features (NF) affects the system’s ability to
recognize and track environmental landmarks. Optimizing NF

is crucial for balancing detail capture with computational load,
ensuring enough features are detected to represent the scene
accurately without overwhelming the processing capacity,
particularly in complex or sparse environments.
Scale Factor (SF) determines the interval between successive
scales in the image pyramid, influencing the system’s capacity
for scale-invariant feature detection. A properly tuned SF
allows the feature extractor to consistently identify features
regardless of their size in the image, enabling the system to
remain robust to changes in the size or distance of objects
affected by lighting conditions and motion.
Number of Pyramid Levels (NL) adjusts for features across
object sizes. It expands the system’s capability to discern
features of various sizes across the entire scene, directly
impacting the system’s versatility in handling scenes with
diverse spatial characteristics.
Keypoint Selectivity Thresholds (ST), ensure distinct, reliable
keypoints for matching across images, crucial for dealing
with reflective surfaces or inconsistent textures by promoting
uniform feature distribution.

2) Feature Extractors (α): We integrated our neurosym-
bolic feature extraction module into ORBSLAM3 [36] due
to its advanced adaptability and modular design, enabling
effective evaluation of our nFEX approach within its frame-
work. By selecting both ORB for its computational efficiency
in corner detection and SIFT for its precision in blob
detection, we aim to assess the distinct advantages each
feature extractor brings to the SLAM. This approach allows
for a comprehensive comparison of corner-based and blob-
based feature extraction methods, leveraging our fitness
functions to optimize and evaluate their performance.

3) Feature quality metrics (M): Our choice of M focuses
on metrics intrinsic to feature extraction, allowing our
neurosymbolic optimization to influence them without relying
on downstream SLAM data.
Texturedness (m1 =

√∑
(I(a, b) – Ī)2) integrates texture

variance within the image with I(a, b) being pixel intensity
and Ī the average intensity.
Dissimilarity (m2 =

∑
|Ifeature–Isurrounding|) measures feature

uniqueness against its surroundings.
Motion (m3 = ∥at+1 – at∥) quantifies feature movement
between frames.
Stability (m4 = Number of stable features

Total number of features) evaluates detection
consistency over time.
Spatial density (m5 = Number of Features

Area of Region) examines evenness
of feature distribution.
Distinctiveness (m6 = 1∑

similarity(feature, other features)) gauges
how features stand out from each other.
Repeatability (m7 = Number of Re-detected Features

Total Number of Features) measures
consistent feature detection.

4) Datasets: We use three datasets to evaluate adaptability
across various agents, scenes, and motion types: KITTI [37],
for urban outdoor scenes with fast-moving cars; EuRoC [38],
focusing on diverse indoor environments navigated by drones
with dynamic motions; and HoloSet [39], covering both indoor
and outdoor settings from a human perspective, capturing
natural human motions.

TABLE I: Performance comparison of different feature extractors using Mean ATE in meters (averaged over 10 runs).

EuRoC KITTI HoloSet
MH01 MH05 KITTI-1 KITTI-6 Campus-Center-1 Suburb-Jog-2

ORB Default 0.855 0.952 2.955 1.173 11.789 11.604
Dynamic 0.792 0.815 0.565 0.126 5.903 5.845

SIFT Default 0.860 1.038 fail fail 13.789 12.825
Dynamic 0.859 0.882 6.426 5.875 7.049 6.984

nFEX 0.704 0.761 0.565 0.115 4.729 5.800

Our approach requires scene attributes to adapt dynamically
to diverse environments. Because they significantly impact
feature extraction, we selected specific scene condition
labels, such as indoor/outdoor settings, agent types, lighting
conditions, motion speeds, reflective surfaces, and texture
levels. We derived these labels through methods proposed in
[40] and corroborated with scene information from [41], [38],
and [39]. However, we acknowledge that creating exhaustive
verification mechanisms for dataset characterization against
real-world scenarios is an open problem and beyond the scope
of this paper.

5) Fitness Function Training: We use a two-step neural
network to optimize feature extraction parameters F(Θ′|E)
and feature extractor selection α∗. F(Θ′|E) training uses a
Multi-Layer Perceptron (MLP) fully connected layers (×3)
and ReLU activations (×2), minimizing the loss as:

L(Θ) =
1
N

N∑
i=1

(yi – ŷi(Θ))2

where N is the batch size, yi the true label, and ŷi(Θ) the
predicted value. Next, α∗ training uses a hybrid neural network
combining Convolutional Neural Network (CNN) layers for
image analysis and fully connected layers (×3) for numerical
data, refining feature quality by minimizing the cross-entropy
loss, which quantifies the discrepancy between predicted
probabilities l̂i(α∗) and true labels li as:

L(α∗) = –
1
N

N∑
i=1

[
li log l̂i(α

∗) + (1 – li) log(1 – l̂i(α
∗))

]
Feature scaling is applied using a standard scaler to ensure
features have a mean of zero and a standard deviation of one,
making them more suitable for neural network training.

V. EVALUATION

We evaluate the integration of nFEX with ORBSLAM3
by comparing performance using the Absolute Trajectory
Error (ATE). It calculates the deviation between aligned
estimated Test and ground truth trajectories Tgt as: ATE =√

1
N
∑N

i=1 ||Tgt(i) – Test(i)||2. Here N represents the total
number of trajectory points being compared between the Test
and Tgt. Though precise trajectories do not guarantee flawless
maps, they are widely used to gauge SLAM performance. We
use ORB and SIFT with default (parameters from OpenCV)
and dynamically optimized parameters (Θ) as baselines, and
we trained our models on sequences EuroC-MH_02, KITTI-
00, and Holoset-Suburb-seq-1. Lastly, we ran all our tests on

TABLE II: Generalization performance of nFEX when trained
on the first (or part of a) sequence and tested on the second
sequence in the column heading.

MH01–MH01 MH01–MH05 MH01 – KITTI-6
nFEX 0.792 m 1.329 m 2.476 m

NVIDIA GeForce RTX 2070 GPU, with a batch size of 8,
Adam optimizer, and a learning rate of 1e–4.

A. End-to-End Performance

Table I showcases the Mean ATE for ORB and SIFT
feature extractors with default and dynamically optimized
parameters alongside our nFEX approach across sequences
from all three datasets. We can see that dynamic optimization
significantly enhances ORB’s performance, notably in the
KITTI sequences, where it drastically lowers Mean ATE,
underscoring the importance of parameter tuning. However,
SIFT fails in its default mode for KITTI and shows limited
improvement even when dynamically optimized.

In challenging indoor scenarios of EuRoC and mixed
environments of HoloSet, nFEX achieves the lowest Mean
ATE, highlighting its effectiveness in complex settings.
Even after optimization, SIFT’s failure in KITTI’s default
configuration and its lagging performance also highlights
nFEX’s edge in achieving a balance between robust feature
extraction and computational efficiency. Overall, nFEX shows
its potential to significantly enhance SLAM by adapting to the
operational environment, choosing the best feature extractor,
and optimizing parameters dynamically.

B. Generalization

Table II highlights the generalization capability of nFEX.
In the first case, MH01 – MH01, the training on the first
70% of the sequence and testing on the remaining 30% of
the sequence yielded a mean ATE of 0.792m, demonstrating
nFEX’s effectiveness within familiar environments. When
tested on MH05 (difficult sequence) after training on MH01
(easy sequence), the ATE increased to 1.329m, indicating a
reasonable generalization to a different sequence within the
same dataset despite new environmental and motion dynamics.
The more significant jump to 2.476m when transitioning from
training on MH01 to testing on KITTI-6 reflects the challenge
of adapting to entirely different environmental conditions,
such as outdoor versus indoor settings and drone versus car
motion dynamics. These results underscore nFEX’s potential
for cross-environment generalization.

ORB-Dyn
(NF=500)

ORB-Dyn
(SF=1.2)

ORB-Dyn
(NL=8)

ORB-Dyn
(ST=20)

0.76

0.80

0.84

0.88
M

ea
n

AT
E

(m
)

ORB-Dyn ORB-Def

Fig. 6: Mean ATE in meters for ORB-Dyn where one
parameter is fixed at a time.

TABLE III: Average number of feature matches for different
feature extractors for MH01 sequence.

ORB-Def ORB-Dyn SIFT-Def SIFT-Dyn nFEX
of features 500 418 no limit 518 529
of matches 389 602 1101 328 772

C. Ablation Study

1) Impact of Parameter Optimization: In Figure
6, we examine the effect of individual parameters—
NF, SF, NL, ST—on the ATE for the ORB feature extractor.
We fixed one parameter and kept the other dynamic. ORB
with all dynamic or all default parameters are highlighted
by black and red lines, respectively. This comparison
shows the potential of dynamic parameter configurations,
particularly in complex and varied environments. Further
analysis shows nFEX and dynamically optimized ORB
(ORB-Dyn) significantly increase feature matches over
default settings (Table III). nFEX notably outperforms
default ORB (ORB-Def) and SIFT with dynamic parameters
(SIFT-Dyn), showcasing its ability to optimize feature
extraction for superior match quality adaptively.

2) Impact of Feature Extractor Selection: Table IV il-
lustrates nFEX’s feature extractor selection on the MH01
sequence, which dynamically switches between ORB and
SIFT extractors. The selection process results in a diverse
distribution: ORB-Dyn is selected for 1366 out of 3638
frames, demonstrating its preference under specific condi-
tions, followed by SIFT-Dyn with 1124 frames. In contrast,
ORB-Def and SIFT-Def (SIFT with default parameters) are
chosen less frequently, indicating that dynamic parameter
optimization generally outperforms default settings.

D. Computation

In Table V, we show the computational efficiency of nFEX
averaged over 10 runs. Model loading takes 1800 milliseconds
(ms), a one-time overhead. Parameter and feature extractor
selection are executed swiftly, ensuring rapid adaptability.
At 112 ms, frame processing remains within acceptable
bounds for real-time application, positioning nFEX as a viable
solution for enhancing SLAM performance with negligible
impact on processing speed.

VI. LIMITATIONS AND FUTURE WORK

Data efficiency. Demonstrating significant data efficiency,
nFEX aligns with prior work [42], suggesting a minimal

TABLE IV: Selection of different feature extractors by nFEX
for different frames within MH01 sequence.

ORB-Def ORB-Dyn SIFT-Def SIFT-Dyn
of frames 613 / 3638 1366 / 3638 535 / 3638 1124 / 3638

TABLE V: Timing for tasks in nFEX
Parameter Selection Frame Processing Extractor Selection

Time 5.49 μs 112 ms 4.37 μs

data subset can yield substantial system efficiency. Enhancing
this efficiency further will make nFEX adaptable to diverse
applications, particularly where data collection is challenging.
Interpretability. nFEX’s dynamic extractor selection for
varying scenes enhances model transparency to a certain
degree. By analyzing time series data, we can illustrate how
and why certain extractors are chosen, offering insights based
on logical reasoning derived from the context. This is crucial
for critical applications where understanding the model’s
decision-making process is as important as its performance.
Moreover, incorporating physical models to offer performance
guarantees akin to control systems will enhance nFEX’s
reliability and predictability in safety-critical applications
such as autonomous driving.
Improved cross-environment generalization. While promis-
ing within similar datasets, nFEX faces some challenges
across different environments, necessitating dataset-specific
tuning for optimal performance. Addressing this will further
our goal of universal SLAM adaptability.
Resource Optimization Tailoring nFEX to operate within
the constraints of specific resources, as informed by the
agent type (e.g., computational power available on a drone
versus a car), is an area for improvement. Optimizing the
program to utilize available resources efficiently can enhance
deployment flexibility and operational efficiency, ensuring
nFEX is effective across a wide range of use cases. nFEX’s
neurosymbolic architecture is well-suited for platform-aware
neurosymbolic architecture search approaches, e.g., [43].

This work is the first step toward leveraging neurosymbolic
programming for domain-adaptive SLAM. It guides the
community toward tackling the outlined challenges and
exploring open problems. By continuing to refine and build
upon these concepts, we aim to steer future research toward
developing more adaptable, efficient, and explainable SLAM.

VII. CONCLUSION

Accurate and adaptive tracking remains a key challenge
for achieving agents’ safe and robust operation in dynamic
environments. Our approach leverages the strengths of both
symbolic reasoning and data-driven learning to dynamically
select and configure the most appropriate feature extractor
based on the encountered environment. We demonstrated
how nFEX’s dynamicity significantly improves performance
across three representative benchmark datasets in different
domains compared to traditional approaches. While this work
focuses on adaptive SLAM feature extraction, the modular
nature of the SLAM pipeline paves the way for extending
neurosymbolic program synthesis to other modules as well.

ACKNOWLEDGMENTS

The research reported in this paper was sponsored in part
by the National Science Foundation (NSF) under awards
2435642 and 2237485. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the funding agencies.

REFERENCES

[1] G. Klein and D. Murray, “Parallel tracking and mapping for small
AR workspaces,” in 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality, 2007.

[2] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, 2016.

[3] E. Jeong, J. Lee, and P. Kim, “A comparison of deep learning-based
monocular visual odometry algorithms,” in Asia-Pacific International
Symposium on Aerospace Technology, pp. 923–934, Springer, 2021.

[4] Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang, “A survey on neural
network interpretability,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 5, no. 5, pp. 726–742, 2021.

[5] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers, “D3vo: Deep
depth, deep pose and deep uncertainty for monocular visual odometry,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020.

[6] C. Chen, C. X. Lu, B. Wang, N. Trigoni, and A. Markham, “Dynanet:
Neural Kalman dynamical model for motion estimation and prediction,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 32,
no. 12, pp. 5479–5491, 2021.

[7] Z. Xing, X. Zhu, and D. Dong, “DE-SLAM: Slam for highly dynamic
environment,” Journal of Field Robotics, vol. 39, pp. 528–542, 2022.

[8] C. Chen, B. Wang, C. X. Lu, N. Trigoni, and A. Markham, “A survey
on deep learning for localization and mapping: Towards the age of
spatial machine intelligence,” arXiv preprint arXiv:2006.12567, 2020.

[9] S. Chaudhuri, K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, Y. Yue,
et al., “Neurosymbolic programming,” Foundations and Trends® in
Programming Languages, vol. 7, no. 3, pp. 158–243, 2021.

[10] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu, “The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences
from natural supervision,” arXiv preprint arXiv:1904.12584, 2019.

[11] D. Ritchie, P. Guerrero, R. K. Jones, N. J. Mitra, A. Schulz, K. D.
Willis, and J. Wu, “Neurosymbolic models for computer graphics,” in
Computer Graphics Forum, vol. 42, pp. 545–568, Wiley, 2023.

[12] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An Efficient
Alternative to SIFT or SURF,” in International Conference on Computer
Vision, 2011.

[13] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[14] E. Karami, S. Prasad, and M. S. Shehata, “Image Matching Using
SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted
Images,” CoRR, vol. abs/1710.02726, 2017.

[15] M. Bansal, M. Kumar, and M. Kumar, “2D Object Recognition: A
Comparative Analysis of SIFT, SURF and ORB Feature Descriptors,”
Multimedia Tools and Applications, vol. 80, pp. 18839–18857, 2021.

[16] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316–344, 2005.

[17] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M.
Ogden, “Pyramid methods in image processing,” RCA Engineer, vol. 29,
no. 6, pp. 33–41, 1984.

[18] K. G. Derpanis, “The harris corner detector,” York University, vol. 2,
pp. 1–2, 2004.

[19] B. Blair and C. Murphy, “Difference of Gaussian scale-space pyramids
for sift feature detection,” Complex Digital Systems Design, Final
report, 2007.

[20] A. Sasson, F. Viloria, and F. Aboytes, “Optimal load flow solution
using the hessian matrix,” IEEE Transactions on Power Apparatus and
Systems, no. 1, pp. 31–41, 1973.

[21] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust
independent elementary features,” in 11th European Conference on
Computer Vision, pp. 778–792, Springer, 2010.

[22] L. Yan, X. Hu, L. Zhao, Y. Chen, P. Wei, and H. Xie, “DGS-SLAM:
A fast and robust RGBD slam in dynamic environments combined by
geometric and semantic information,” Remote Sensing, vol. 14, no. 3,
p. 795, 2022.

[23] M. Billinghurst, A. Clark, G. Lee, et al., “A survey of augmented
reality,” Foundations and Trends® in Human–Computer Interaction,
vol. 8, no. 2-3, pp. 73–272, 2015.

[24] S.-Y. An, J.-G. Kang, L.-K. Lee, and S.-Y. Oh, “Slam with salient
line feature extraction in indoor environments,” in 11th International
Conference on Control Automation Robotics & Vision, 2010.

[25] K.-F. Yang, H. Li, H. Kuang, C.-Y. Li, and Y.-J. Li, “An adaptive
method for image dynamic range adjustment,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 29, no. 3, 2018.

[26] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive
logarithmic mapping for displaying high contrast scenes,” in Computer
Graphics Forum, vol. 22, pp. 419–426, Wiley, 2003.

[27] M. Hwangbo, J.-S. Kim, and T. Kanade, “Inertial-aided klt feature
tracking for a moving camera,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2009.

[28] Z. Zhu, P. Xiang, and F. Zhang, “Polarization-based method of highlight
removal of high-reflectivity surface,” Optik, vol. 221, 2020.

[29] E. Marconato, S. Teso, A. Vergari, and A. Passerini, “Not all neuro-
symbolic concepts are created equal: Analysis and mitigation of
reasoning shortcuts,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[30] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli,
“Neuro-symbolic program synthesis,” arXiv preprint arXiv:1611.01855,
2016.

[31] S. Kelly, D. S. Park, X. Song, M. McIntire, P. Nashikkar, R. Guha,
W. Banzhaf, K. Deb, V. N. Boddeti, J. Tan, et al., “Discovering
adaptable symbolic algorithms from scratch,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3889–
3896, IEEE, 2023.

[32] A. Siyaev and G.-S. Jo, “Neuro-symbolic speech understanding in
aircraft maintenance metaverse,” IEEE Access, vol. 9, pp. 154484–
154499, 2021.

[33] T. Chen, Q. Wang, Z. Dong, L. Shen, and X. Peng, “Enhancing robot
program synthesis through environmental context,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[34] S. Chaudhuri and A. Solar-Lezama, “Smooth interpretation,” in
Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2010.

[35] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search:
A Survey,” The Journal of Machine Learning Research, vol. 20, no. 1,
pp. 1997–2017, 2019.

[36] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D.
Tardós, “ORB-SLAM3: An Accurate Oen-source Library for Visual,
Visual-Inertial and Multi-map SLAM,” IEEE Transactions on Robotics,
vol. 37, no. 6, 2021.

[37] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision Meets Robotics:
The Kitti Dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, 2013.

[38] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EUROC Micro Aerial Vehicle Datasets,”
The International Journal of Robotics Research, vol. 35, no. 10, 2016.

[39] Y. Chandio, N. Bashir, and F. M. Anwar, “Holoset-a dataset for visual-
inertial pose estimation in extended reality: Dataset,” in Proceedings
of the 20th ACM Conference on Embedded Networked Sensor Systems,
2022.

[40] I. Ali and H. Zhang, “Are we ready for robust and resilient slam?
A framework for quantitative characterization of slam datasets,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2022.

[41] S. Guo, Z. Rong, S. Wang, and Y. Wu, “A lidar slam with PCA-based
feature extraction and two-stage matching,” IEEE Transactions on
Instrumentation and Measurement, vol. 71, 2022.

[42] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum, “Neural-
symbolic vqa: Disentangling reasoning from vision and language
understanding,” in Advances in Neural Information Processing Systems
(NeurIPS), vol. 31, 2018.

[43] S. S. Saha, S. S. Sandha, M. Aggarwal, B. Wang, L. Han, J. d. G.
Briseno, and M. Srivastava, “Tinyns: Platform-aware neurosymbolic
auto tiny machine learning,” ACM Transactions on Embedded Com-
puting Systems, 2023.

