
Published as a conference paper at ICLR 2017

TIGHTER BOUNDS LEAD TO IMPROVED CLASSIFIERS

Nicolas Le Roux
Criteo Research
nicolas@le-roux.name

ABSTRACT

The standard approach to supervised classification involves the minimization of a
log-loss as an upper bound to the classification error. While this is a tight bound
early on in the optimization, it overemphasizes the influence of incorrectly clas-
sified examples far from the decision boundary. Updating the upper bound dur-
ing the optimization leads to improved classification rates while transforming the
learning into a sequence of minimization problems. In addition, in the context
where the classifier is part of a larger system, this modification makes it possible
to link the performance of the classifier to that of the whole system, allowing the
seamless introduction of external constraints.

1 INTRODUCTION

Classification aims at mapping inputs X ∈ X to one or several classes y ∈ Y . For instance, in
object categorization, X will be the set of images depicting an object, usually represented by the
RGB values of each of their pixels, and Y will be a set of object classes, such as “car” or “dog”.

We shall assume we are given a training set comprised of N independent and identically distributed
labeled pairs (Xi, yi). The standard approach to solve the problem is to define a parameterized class
of functions p(y|X, θ) indexed by θ and to find the parameter θ∗ which minimizes the log-loss, i.e.

θ∗ = arg min
θ
− 1

N

∑
i

log p(yi|Xi, θ) (1.1)

= arg min
θ

Llog(θ) ,

with

Llog(θ) = − 1

N

∑
i

log p(yi|Xi, θ) . (1.2)

One justification for minimizing Llog(θ) is that θ∗ is the maximum likelihood estimator, i.e. the
parameter which maximizes

θ∗ = arg max
θ

p(D|θ)

= arg max
θ

∏
i

p(yi|Xi, θ) .

There is another reason to use Eq. 1.1. Indeed, the goal we are interested in is minimizing the
classification error. If we assume that our classifiers are stochastic and outputs a class according to
p(yi|Xi, θ), then the expected classification error is the probability of choosing the incorrect classa.
This translates to

L(θ) =
1

N

∑
i

(1− p(yi|Xi, θ))

= 1− 1

N

∑
i

p(yi|Xi, θ) . (1.3)

aIn practice, we choose the class deterministically and output argmaxy p(y|Xi, θ).

1



Published as a conference paper at ICLR 2017

This is a highly nonconvex function of θ, which makes its minimization difficult. However, we have

L(θ) = 1− 1

N

∑
i

p(yi|Xi, θ)

≤ 1− 1

N

∑
i

1

K
(1 + log p(yi|Xi, θ) + logK)

=
(K − 1− logK)

K
+
Llog(θ)

K
,

where K = |Y| is the number of classes (assumed finite), using the fact that, for every nonnegative
t, we have t ≥ 1 + log t. Thus, minimizing Llog(θ) is equivalent to minimizing an upper bound
of L(θ). Further, this bound is tight when p(yi|Xi, θ) = 1

K for all yi. As a model with randomly
initialized parameters will assign probabilities close to 1/K to each class, it makes sense to minimize
Llog(θ) rather than L(θ) early on in the optimization.

However, this bound becomes looser as θ moves away from its initial value. In particular, poorly
classified examples, for which p(yi|Xi, θ) is close to 0, have a strong influence on the gradient of
Llog(θ) despite having very little influence on the gradient of L(θ). The model will thus waste
capacity trying to bring these examples closer to the decision boundary rather than correctly clas-
sifying those already close to the boundary. This will be especially noticeable when the model has
limited capacity, i.e. in the underfitting setting.

Section 2 proposes a tighter bound of the classification error as well as an iterative scheme to easily
optimize it. Section 3 experiments this iterative scheme using generalized linear models over a vari-
ety of datasets to estimate its impact. Section 4 then proposes a link between supervised learning and
reinforcement learning, revisiting common techniques in a new light. Finally, Section 5 concludes
and proposes future directions.

2 TIGHTER BOUNDS ON THE CLASSIFICATION ERROR

We now present a general class of upper bounds of the classification error which will prove useful
when the model is far from its initialization.

Lemma 1. Let

pν(y|X, θ) = p(y|X, ν)

(
1 + log

p(y|X, θ)
p(y|X, ν)

)
(2.1)

with ν any value of the parameters. Then we have

pν(y|X, θ) ≤ p(y|X, θ) . (2.2)

Further, if ν = θ, we have

pθ(y|X, θ) = p(y|X, θ) , (2.3)
∂pν(y|X, θ)

∂θ

∣∣∣∣
ν=θ

=
∂p(y|X, θ)

∂θ
. (2.4)

Proof.

p(y|X, θ) = p(y|X, ν)
p(y|X, θ)
p(y|X, ν)

≥ p(y|X, ν)

(
1 + log

p(y|X, θ)
p(y|X, ν)

)
= pν(y|X, θ) .

The second line stems from the inequality t ≥ 1 + log t.

2



Published as a conference paper at ICLR 2017

pν(y|X, θ) = p(y|X, θ) is immediate when setting θ = ν in Eq. 2.1. Deriving pν(y|X, θ) with
respect to θ yields

∂pν(y|X, θ)
∂θ

= p(y|X, ν)
∂ log p(y|X, θ)

∂θ

=
p(y|X, ν)

p(y|X, θ)
∂p(y|X, θ)

∂θ
.

Taking θ = ν on both sides yields ∂pν(y|X,θ)
∂θ

∣∣∣∣
ν=θ

= ∂p(y|X,θ)
∂θ .

Lemma 1 suggests that, if the current set of parameters is θt, an appropriate upper bound on the
probability that an example will be correctly classified is

L(θ) = 1− 1

N

∑
i

p(yi|Xi, θ)

≤ 1− 1

N

∑
i

p(yi|Xi, θt)

(
1 + log

p(yi|Xi, θ)

p(yi|Xi, θt)

)
= C − 1

N

∑
i

p(yi|Xi, θt) log p(yi|Xi, θ) ,

where C is a constant independent of θ. We shall denote

Lθt(θ) = − 1

N

∑
i

p(yi|Xi, θt) log p(yi|Xi, θ) . (2.5)

One possibility is to recompute the bound after every gradient step. This is exactly equivalent to
directly minimizing L. Such a procedure is brittle. In particular, Eq. 2.5 indicates that, if an example
is poorly classified early on, its gradient will be close to 0 and it will difficult to recover from this
situation. Thus, we propose using Algorithm 1 for supervised learning: In regularly recomputing

The data: A dataset D comprising of (Xi, yi) pairs, initial parameters θ0
The result: Final parameters θT
for t = 0 to T-1 do

θt+1 = arg minθ Lθt = −
∑
i p(yi|Xi, θt) log p(yi|Xi, θ)

end
Algorithm 1: Iterative supervised learning

the bound, we ensure that it remains close to the quantity we are interested in and that we do not
waste time optimizing a loose bound.

The idea of computing tighter bounds during optimization is not new. In particular, several authors
used a CCCP-based (Yuille & Rangarajan, 2003) procedure to achieve tighter bounds for SVMs (Xu
et al., 2006; Collobert et al., 2006; Ertekin et al., 2011). Though Collobert et al. (2006) show a
small improvement of the test error, the primary goal was to reduce the number of support vectors
to keep the testing time manageable. Also, the algorithm proposed by Ertekin et al. (2011) required
the setting of an hyperparameter, s, which has a strong influence on the final solution (see Fig. 5 in
their paper). Finally, we are not aware of similar ideas in the context of the logistic loss.

Additionally, our idea extends naturally to the case where p is a complicated function of θ and not
easily written as a sum of a convex and a concave function. This might lead to nonconvex inner
optimizations but we believe that this can still yield lower classification error. A longer study in the
case of deep networks is planned.

3



Published as a conference paper at ICLR 2017

REGULARIZATION

As this model further optimizes the training classification accuracy, regularization is often needed.
The standard optimization procedure minimizes the following regularized objective:

θ∗ = arg min
θ
−
∑
i

log p(yi|Xi, θ) + λΩ(θ)

= arg min
θ
−
∑
i

1

K
log p(yi|Xi, θ) +

λ

K
Ω(θ) .

Thus, we can view this as an upper bound of the following “true” objective:

θ∗ = arg min
θ
−
∑
i

p(yi|Xi, θ) +
λ

K
Ω(θ) ,

which can then be optimized using Algorithm 1.

ONLINE LEARNING

Because of its iterative nature, Algorithm 1 is adapted to a batch setting. However, in many cases,
we have access to a stream of data and we cannot recompute the importance weights on all the
points. A natural way around this problem is to select a parameter vector θ and to use ν = θ for
the subsequent examples. One can see this as “crystallizing” the current solution as the value of ν
chosen will affect all subsequent gradients.

3 EXPERIMENTS

We experimented the impact of using tighter bounds to the expected misclassification rate on several
datasets, which will each be described in their own section. The experimental setup for all datasets
was as follows. We first set aside part of the dataset to compose the test set. We then performed
k-fold cross-validation, using a generalized linear model, on the remaining datapoints for different
values of T , the number of times the importance weights were recomputed, and the `2-regularizer
λ. For each value of T , we then selected the set of hyperparameters (λ and the number of iterations)
which achieved the lowest validation classification error. We computed the test error for each of the
k models (one per fold) with these hyperparameters. This allowed us to get a confidence intervals
on the test error, where the random variable is the training set but not the test set.

For a fair comparison, each internal optimization was run for Z updates so that ZT was constant.
Each update was computed on a randomly chosen minibatch of 50 datapoints using the SAG algo-
rithm (Le Roux et al., 2012). Since we used a generalized linear model, each internal optimization
was convex and thus had no optimization hyperparameter.

Fig. 1 presents the training classification errors on all the datasets.

3.1 COVERTYPE BINARY DATASET

The Covertype binary dataset (Collobert et al., 2002) has 581012 datapoints in dimension 54 and
2 classes. We used the first 90% for the cross-validation and the last 10% for testing. Due to the
small dimension of the input, linear models strongly underfit, a regime in which tighter bounds are
most beneficial. We see in Fig. 2 that using T > 1 leads to much lower training and validation
classification errors. Training and validation curves are presented in Fig. 2 and the test classification
error is listed in Table 1.

3.2 ALPHA DATASET

The Alpha dataset is a binary classification dataset used in the Pascal Large-Scale challenge and con-
tains 500000 samples in dimension 500. We used the first 400000 examples for the cross-validation
and the last 100000 for testing. A logistic regression trained on this dataset overfits quickly and, as
a result, the results for all values of T are equivalent. Training and validation curves are presented
in Fig. 3 and the test classification error is listed in Table 2.

4



Published as a conference paper at ICLR 2017

Figure 1: Training classification errors for covertype (top left), alpha (top right), MNist (bottom
left) and IJCNN (bottom right). We can immediately see that all values of T > 1 yield significant
lower errors than the standard log-loss (the confidence intervals represent ± 3 standard deviations).

Figure 2: Training (top) and validation (bottom) negative log-likelihood (left) and classification
error (right) for the covertype dataset. We only display the result for the value of λ yielding the
lowest validation error. As soon as the importance weights are recomputed, the NLL increases and
the classification error decreases (the confidence intervals represent ± 3 standard deviations).

T Z Test error ±3σ (%)
1000 1e5 32.88± 0.07
100 1e6 32.96± 0.06
10 1e7 32.85± 0.06
1 1e8 36.32± 0.06

Table 1: Test error for the models reaching the best valida-
tion error for various values of T on the covertype dataset.
We can see that any value of T greater than 1 leads to a sig-
nificant improvement over the standard log-loss (the confi-
dence intervals represent ± 3 standard deviations).

5



Published as a conference paper at ICLR 2017

Figure 3: Training (top) and validation (bottom) negative log-likelihood (left) and classification
error (right) for the alpha dataset. We only display the result for the value of λ yielding the lowest
validation error. As soon as the importance weights are recomputed, the NLL increases. Overfitting
occurs very quickly and the best validation error is the same for all values of T (the confidence
intervals represent ± 3 standard deviations).

T Z Test error ±3σ (%)
1000 1e5 21.83± 0.03
100 1e6 21.83± 0.03
10 1e7 21.82± 0.03
1 1e8 21.82± 0.03

Table 2: Test error for the models reaching the best valida-
tion error for various values of T on the alpha dataset. We
can see that overfitting occurs very quickly and, as a result,
all values of T lead to the same result as the standard log-
loss.

3.3 MNIST DATASET

The MNist dataset is a digit recognition dataset with 70000 samples. The first 60000 were used for
the cross-validation and the last 10000 for testing. Inputs have dimension 784 but 67 of them are
always equal to 0. Despite overfitting occurring quickly, values of T greater than 1 yield significant
improvements over the log-loss. Training and validation curves are presented in Fig. 4 and the test
classification error is listed in Table 3.

T Z Test error ±3σ (%)
1000 1e5 7.00± 0.08
100 1e6 7.01± 0.05
10 1e7 6.97± 0.08
1 1e8 7.46± 0.11

Table 3: Test error for the models reaching the best valida-
tion error for various values of T on the MNist dataset. The
results for all values of T strictly greater than 1 are compa-
rable and significantly better than for T = 1.

3.4 IJCNN DATASET

The IJCNN dataset is a dataset with 191681 samples. The first 80% of the dataset were used for
training and validation (70% for training, 10% for validation, using random splits), and the last 20%
were used for testing samples. Inputs have dimension 23, which means we are likely to be in the
underfitting regime. Indeed, larger values of T lead to significant improvements over the log-loss.
Training and validation curves are presented in Fig. 5 and the test classification error is listed in
Table 4.

6



Published as a conference paper at ICLR 2017

Figure 4: Training (top) and validation (bottom) negative log-likelihood (left) and classification
error (right) for the MNist dataset. We only display the result for the value of λ yielding the lowest
validation error. As soon as the importance weights are recomputed, the NLL increases. Overfitting
occurs quickly but higher values of T still lead to lower validation error. The best training error was
2.52% with T = 10.

Figure 5: Training (top) and validation (bottom) negative log-likelihood (left) and classification
error (right) for the IJCNN dataset. We only display the result for the value of λ yielding the lowest
validation error. As soon as the importance weights are recomputed, the NLL increases. Since the
number of training samples is large compared to the dimension of the input, the standard logistic
regression is underfitting and higher values of T lead to better validation errors.

T Z Test error ±3σ (%)
1000 1e5 4.62± 0.12
100 1e6 5.26± 0.33
10 1e7 5.87± 0.13
1 1e8 6.19± 0.12

Table 4: Test error for the models reaching the best vali-
dation error for various values of T on the IJCNN dataset.
Larger values of T lead significantly lower test errors.

7



Published as a conference paper at ICLR 2017

4 SUPERVISED LEARNING AS POLICY OPTIMIZATION

We now propose an interpretation of supervised learning which closely matches that of direct policy
optimization in reinforcement learning. This allows us to naturally address common issues in the
literature, such as optimizing ROC curves or allowing a classifier to withhold taking a decision.

A machine learning algorithm is often only one component of a larger system whose role is to make
decisions, whether it is choosing which ad to display or deciding if a patient needs a specific treat-
ment. Some of these systems also involve humans. Such systems are complex to optimize and it is
often appealing to split them into smaller components which are optimized independently. However,
such splits might lead to poor decisions, even when each component is carefully optimized (Bottou).
This issue can be alleviated by making each component optimize the full system with respect to its
own parameters. Doing so requires taking into account the reaction of the other components in the
system to the changes made, which cannot in general be modeled. However, one may cast it as a
reinforcement learning problem where the environment is represented by everything outside of our
component, including the other components of the system (Bottou et al., 2013).

Pushing the analogy further, we see that in one-step policy learning, we try to find a policy p(y|X, θ)
over actions y given the state X b to minimize the expected loss defined as

L̄(θ) = −
∑
i

∑
y

R(y,Xi)p(y|Xi, θ) . (4.1)

L̄(θ) is equivalent to L(θ) from Eq. 1.3 where all actions have a reward of 0 except for the action
choosing the correct class yi yielding R(yi, Xi) = 1. One major difference between policy learning
and supervised learning is that, in policy learning, we only observe the reward for the actions we
have taken, while in supervised learning, the reward for all the actions is known.

Casting the classification problem as a specific policy learning problem yields a loss function com-
mensurate with a reward. In particular, it allows us to explicit the rewards associated with each
decision, which was difficult with Eq. 1.1. We will now review several possibilities opened by this
formulation.

OPTIMIZING THE ROC CURVE

In some scenarios, we might be interested in other performance metrics than the average classifica-
tion error. In search advertising, for instance, we are often interested in maximizing the precision
at a given recall. Mozer et al. (2001) address the problem by emphasizing the training points whose
output is within a certain interval. Gasso et al. (2011); Parambath et al. (2014), on the other hand,
assign a different cost to type I and type II errors, learning which values lead to the desired false
positive rate. Finally, Bach et al. (2006) propose a procedure to find the optimal solution for all costs
efficiently in the context of SVMs and showed that the resulting models are not the optimal models
in the class.

To test the impact of optimizing the probabilities rather than a surrogate loss, we reproduced the
binary problem of Bach et al. (2006). We computed the average training and testing performance
over 10 splits. An example of the training set and the results are presented in Fig. 6.

Even though working directly with probabilities solved the non-concavity issue, we still had to
explore all possible cost asymmetries to draw this curve. In particular, if we had been asked to
maximize the true positive rate for a given false positive rate, we would have needed to draw the
whole curve then find the appropriate point.

However, expressing the loss directly as a function of the probabilities of choosing each class allows
us to cast this requirement as a constraint and solve the following constrained optimization problem:

θ∗ = arg min
θ
− 1

N1

∑
i/yi=1

p(1|xi, θ) such that
1

N0

∑
i/yi=0

p(1|xi, θ) ≤ cFP ,

bIn standard policy learning, we actually consider full rollouts which include not only actions but also state
changes due to these actions.

8



Published as a conference paper at ICLR 2017

Figure 6: Training data (left) and test ROC curve (right) for the binary classification problem
from Bach et al. (2006). The black dots are obtained when minimizing the log-loss for various
values of the cost asymmetry. The red stars correspond to the ROC curve obtained when directly
optimizing the probabilities. While the former is not concave, a problem already mentioned by Bach
et al. (2006), the latter is.

with N0 (resp. N1) the number of examples belonging to class 0 (resp. class 1). Since p(1|xi, θ) =
1− p(0|xi, θ) , we can solve the following Lagrangian problem

min
θ

max
λ≥0

L(θ, λ) = min
θ

max
λ≥0
− 1

N1

∑
i/yi=1

p(1|xi, θ) + λ

1− 1

N0

∑
i/yi=0

p(0|xi, θ)− cFP

 .

This is an approach proposed by Mozer et al. (2001) who then minimize this function directly. We
can however replace L(θ, λ) with the following upper bound:

L(θ, λ) ≤ − 1

N1

∑
i/yi=1

p(1|xi, ν)

(
1 + log

p(1|xi, θ)
p(1|xi, ν)

)

+ λ

1− 1

N0

∑
i/yi=0

p(0|xi, ν)

(
1 + log

p(0|xi, θ)
p(0|xi, ν)

)
− cFP


and jointly optimize over θ and λ. Even though the constraint is on the upper bound and thus
will not be exactly satisfied during the optimization, the increasing tightness of the bound with the
convergence will lead to a satisfied constraint at the end of the optimization. We show in Fig. 7 the
obtained false positive rate as a function of the required false positive rate and see that the constraint
is close to being perfectly satisfied. One must note, however, that the ROC curve obtained using
the constrained optimization problems matches that of T = 1, i.e. is not concave. We do not have
an explanation as to why the behaviour is not the same when solving the constrained optimization
problem and when optimizing an asymmetric cost for all values of the asymmetry.

ALLOWING UNCERTAINTY IN THE DECISION

Let us consider a cancer detection algorithm which would automatically classify patients in two
categories: healthy or ill. In practice, this algorithm will not be completely accurate and, given the
high price of a misclassification, we would like to include the possibility for the algorithm to hand
over the decision to the practitioner. In other words, it needs to include the possibility of being
“Undecided”.

The standard way of handling this situation is to manually set a threshold on the output of the clas-
sifier and, should the maximum score across all classes be below that threshold, deem the example
too hard to classify. However, it is generally not obvious how to set the value of that threshold nor
how it relates to the quantity we care about, even though some authors provided guidelines (?). The
difficulty is heightened when the prior probabilities of each class are very different.

9



Published as a conference paper at ICLR 2017

Figure 7: Test false positive rate as a function of
the desired false positive rate cFP . The dotted
line representing the optimal behaviour, we can
see that the constraint is close to being satisfied.
T = 10 was used.

Eq. 4.1 allows us to naturally include an extra “action”, the “Undecided” action, which has its own
reward. This reward should be equal to the reward of choosing the correct class (i.e., 1) minus the
cost ch of resorting to external intervention c, which is less than 1 since we would otherwise rather
have an error than be undecided. Let us denote by rh = 1− ch the reward obtained when the model
chooses the “Undecided” class. Then, the reward obtained when the input is Xi is:

R(yi|Xi) = 1

R(“Undecided′′|Xi) = rh ,

and the average under the policy is p(yi|Xi, θ) + rhp(“Undecided
′′|Xi, θ).

Learning this model on a training set is equivalent to minimizing the following quantity:

θ∗ = arg min
θ
− 1

N

∑
i

(p(yi|Xi, θ) + rhp(“Undecided”|Xi, θ)) . (4.2)

For each training example, we have added another example with importance weight rh and class
“Undecided”. If we were to solve this problem through a minimization of the log-loss, it is well-
known that the optimal solution would be, for each example Xi, to predict yi with probability
1/(1 + rh) and “Undecided” with probability rh/(1 + rh). However, when optimizing the weighted
sum of probabilities, the optimal solution is still to predict yi with probability 1. In other words,
adding the “Undecided” class does not change the model if it has enough capacity to learn the
training set accurately.

5 DISCUSSION AND CONCLUSION

Using a general class of upper bounds of the expected classification error, we showed how a sequence
of minimizations could lead to reduced classification error rates. However, there are still a lot of
questions to be answered. As using T > 1 increases overfitting, one might wonder whether the
standard regularizers are still adapted. Also, current state-of-the-art models, especially in image
classification, already use strong regularizers such as dropout. The question remains whether using
T > 1 with these models would lead to an improvement.

Additionally, it makes less and less sense to think of machine learning models in isolation. They are
increasingly often part of large systems and one must think of the proper way of optimizing them in
this setting. The modification proposed here led to an explicit formulation for the true impact of a
classifier. This facilitates the optimization of such a classifier in the context of a larger production
system where additional costs and constraints may be readily incorporated. We believe this is a
critical venue of research to be explored further.

cThis is assuming that the external intervention always leads to the correct decision. Any other setting can
easily be used.

10



Published as a conference paper at ICLR 2017

ACKNOWLEDGMENTS

We thank Francis Bach, Léon Bottou, Guillaume Obozinski, and Vianney Perchet for helpful dis-
cussions.

REFERENCES

Francis R Bach, David Heckerman, and Eric Horvitz. Considering cost asymmetry in learning
classifiers. The Journal of Machine Learning Research, 7:1713–1741, 2006.

Léon Bottou. Two high stakes challenges in machine learning. http://videolectures.
net/icml2015_bottou_machine_learning/.

Léon Bottou, Jonas Peters, Joaquin Quinonero-Candela, Denis X Charles, D Max Chickering, Elon
Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning
systems: The example of computational advertising. Journal of Machine Learning Research, 14
(1):3207–3260, 2013.

Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of svms for very large scale
problems. Neural computation, 14(5):1105–1114, 2002.

Ronan Collobert, Fabian Sinz, Jason Weston, and Léon Bottou. Trading convexity for scalability.
In Proceedings of the 23rd international conference on Machine learning, pp. 201–208. ACM,
2006.

Şeyda Ertekin, Léon Bottou, and C Lee Giles. Nonconvex online support vector machines. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 33(2):368–381, 2011.

Gilles Gasso, Aristidis Pappaioannou, Marina Spivak, and Léon Bottou. Batch and online learn-
ing algorithms for nonconvex neyman-pearson classification. ACM Transactions on Intelligent
Systems and Technology, 2(3):28, 2011.

Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an expo-
nential convergence rate for finite training sets. In Advances in Neural Information Processing
Systems, pp. 2663–2671, 2012.

Michael C Mozer, Robert H Dodier, Michael D Colagrosso, César Guerra-Salcedo, and Richard H
Wolniewicz. Prodding the roc curve: Constrained optimization of classifier performance. In
NIPS, pp. 1409–1415, 2001.

Shameem Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. Optimizing f-measures by
cost-sensitive classification. In Advances in Neural Information Processing Systems, pp. 2123–
2131, 2014.

Linli Xu, Koby Crammer, and Dale Schuurmans. Robust support vector machine training via convex
outlier ablation. In AAAI, volume 6, pp. 536–542, 2006.

Alan L Yuille and Anand Rangarajan. The concave-convex procedure. Neural computation, 15(4):
915–936, 2003.

11

http://videolectures.net/icml2015_bottou_machine_learning/
http://videolectures.net/icml2015_bottou_machine_learning/

	Introduction
	Tighter bounds on the classification error
	Experiments
	Covertype binary dataset
	Alpha dataset
	MNist dataset
	IJCNN dataset

	Supervised learning as policy optimization
	Discussion and conclusion

