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ABSTRACT

Prepositions are among the most frequent words. Good prepositional representa-
tion is of great syntactic and semantic interest in computational linguistics. Ex-
isting methods on preposition representation either treat prepositions as content
words (e.g., word2vec and GloVe) or depend heavily on external linguistic re-
sources including syntactic parsing, training task and dataset-specific representa-
tions. In this paper we use word-triple counts (one of the words is a preposition) to
capture the preposition’s interaction with its head and children. Prepositional em-
beddings are derived via tensor decompositions on a large unlabeled corpus. We
reveal a new geometry involving Hadamard products and empirically demonstrate
its utility in paraphrasing of phrasal verbs. Furthermore, our prepositional embed-
dings are used as simple features to two challenging downstream tasks: preposi-
tion selection and prepositional attachment disambiguation. We achieve compa-
rable to or better results than state of the art on multiple standardized datasets.

1 INTRODUCTION

Prepositions are a linguistically closed class comprising some of the most frequent words; they play
an important role in the English language since they encode rich syntactic and semantic informa-
tion. Many preposition-related tasks still remain unsolved in computational linguistics because of
their polysemous nature and flexible usage patterns. An accurate understanding and representation
of prepositions’ linguistic role is key to several important NLP tasks such as grammatical error
correction and prepositional phrase attachment. A first-order approach is to represent prepositions
as real-valued vectors via word embeddings such as word2vec Mikolov et al. (2013) and GloVe
Pennington et al. (2014).

Word embeddings have brought a renaissance in NLP research; they have been very successful in
capturing word similarities as well as analogies (both syntactic and semantic) and are now main-
stream in nearly all downstream NLP tasks (such as question-answering). Despite this success,
no specific properties of word embeddings of prepositions have been highlighted in the literature.
Indeed, many of the common prepositions have very similar vector representations as shown in
Table 1 for preposition vectors trained using word2vec and GloVe.While this suggests that using
available representations for prepositions diminishes the distinguishing feature between preposi-
tions, one could hypothesize that this is primarily because standard word embedding algorithms
treat prepositions no different from other content words such as verbs and nouns, i.e., embeddings
are created based on co-occurrences with other words. However, prepositions are very frequent and
co-occur with nearly all words, which means that their co-occurrence ought to be treated differently.

Table 1: Cosine Similarity of Centered Prepositions
prepositions word2vec GloVe tensor

(above, below) 0.85 0.78 0.22
(above, beneath) 0.40 0.45 0.15

(after, before) 0.83 0.70 0.44
(after, during) 0.56 0.42 0.16
(amid, despite) 0.47 0.37 0.12

(amongst, besides) 0.46 0.37 0.21
(beneath, inside) 0.55 0.47 0.29

Modern descriptive linguistic theory
proposes to understand a preposition
via its interactions with both the head
(attachment) and child (complement)
Huddleston (1984); DeCarrico (2000).
This theory naturally suggests that one
should count co-occurrences of a given
preposition with pairs of neighboring
words. One way of achieving this would
be by considering a tensor of triples
(word1, word2, preposition), where we
do not restrict word1 and word2 to be head- and child- words; instead we model a preposition’s
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interaction with all pairs of neighboring words via a slice of a tensor X – the slice is populated by
word co-occurrences restricted to a context window of the specific preposition. Thus, the tensor
dimension is V × V × K where V is the vocabulary and K is the number of prepositions; since
K ≈ 50, we note that V � K.

Using such a representation, we find that the resulting tensor is low rank and extract embeddings
for both preposition and non-preposition words using a combination of standard ideas from word
representations (such as weighted spectral decomposition as in GloVe Pennington et al. (2014)) and
tensor decompositions (alternating least squares (ALS) methods Sharan & Valiant (2017)). The
preposition embeddings are discriminative, see preposition similarity of the tensor embedding in
Table 1. We demonstrate that the resulting representation for prepositions captures the core linguistic
property of prepositions. We do this using both intrinsic evaluations and downstream tasks, where
we provide new state-of-the-art results on well-known NLP tasks involving prepositions.

Intrinsic evaluations: We show that the Hadamard product of the embeddings of a verb and a
preposition closely approximates the representation of this phrasal verb’s paraphrase. Example:
vmade�vfrom ≈ vproduced where� represents the Hadamard product (i.e., pointwise multiplication)
of two vectors; this approximation does not hold for the standard word embeddings of prepositions
(word2vec or GloVe). We provide a mathematical interpretation for this new geometry as well as
empirically demonstrate the generalization on a new data set of compositional phrasal verbs.

Extrinsic evaluations: Our preposition embeddings are used as features for a simple classifier
in two well-known challenging downstream NLP classification tasks. In both tasks, we perform
comparable to or strictly better than the state-of-the-art on multiple standardized datasets.

Preposition selection: The choice of prepositions significantly influences (and is governed by) the
semantics of the context they occur in. Furthermore, the prepositional choice is usually very subtle
(and consequently is one of the most frequent error types made by second language English speakers
Leacock et al. (2010)). This task tests the choice of a preposition in a large set of contexts (7, 000
instances of both CoNLL-2013 and SE datasets Prokofyev et al. (2014)). Our approach achieves 6%
and 2% absolute improvement over the previous state-of-the-art on the respective datasets.

Prepositional attachment disambiguation: Prepositional phrase attachment is a common cause of
structural ambiguity in natural language. In the sentence “Pierre Vinken joined the board as a
voting member”, the prepositional phrase “as a voting member” can attach to either “joined” (the
VP) or “the board” (the NP); in this case the VP attachment is correct. Despite extensive study over
decades of research, prepositional attachment continues to be a major source of syntactic parsing
errors Brill & Resnik (1994); Kummerfeld et al. (2012); de Kok & Hinrichs (2016). We use our
prepositional representations as simple features to a standard classifier on this task. Our approach
tested on a widely studied standard dataset Belinkov et al. (2014) achieves 89% accuracy, essentially
the same performance as state-of-the-art (90% accuracy). It is noteworthy that while the state-
of-the-art results are obtained with significant linguistic resources, including syntactic parsers and
WordNet, our approach does not rely on these resources to achieve a comparable performance.

We emphasize two aspects of our contributions:
(1) It is folklore within the NLP community that representations via pairwise word counts capture
much of the benefits of the unlabeled sentence-data; example: Sharan & Valiant (2017) reports that
their word representations via word-triple counts are better than others, but still significantly worse
than regular word2vec representations. One of our main observations is that considering word-triple
counts makes most (linguistic) sense when one of the words is a preposition. Furthermore, the
sparsity of the corresponding tensor is no worse than the sparsity of the regular word co-occurrence
matrix (since prepositions are so frequent and co-occur with essentially every word). Taken together,
these two points strongly suggest the benefits of tensor representations in the context of prepositions.
(2) The word and preposition representations via tensor decomposition are simple features leading to
a standard classifier. In particular, we do not use syntactic parsing (which many prior methods have
relied on) or handcrafted features Prokofyev et al. (2014) or train task-specific representations on the
annotated training dataset Belinkov et al. (2014). The simplicity combined with our strong empirical
results (new state-of-the-art results on long standing datasets) lends credence to the strength of the
prepositional representations found via tensor decompositions.
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2 METHOD

We begin with a description of how the tensor with triples (word,word,preposition) is formed
and empirically show that its slices are low-rank. Next, we derive low dimensional vec-
tor representations for words and prepositions via appropriate tensor decomposition methods.

Figure 1: Decaying normalized singular values of slices.

Tensor creation: Suppose that K
prepositions are in the preposition set
P = {p1, . . . , pK}; here K is 49 in our
preposition selection task, and 76 in the
attachment disambiguation task. The
vocabulary, the set of all words except
prepositions, contains N words V =
{w1, . . . , wN}, and N ≈ 1M . We gen-
erate a third order tensor XN×N×(K+1)

from WikiCorpus Al-Rfou et al. (2013)
in the following way. We say two words
co-occur if they appear within distance t
of each other in a sentence. For k ≤ K,
the entry Xijk is the number of occur-
rences where word wi co-occurs with
preposition pk, and wj also co-occurs
with preposition pk in the same sen-
tence, and this is counted across all sen-
tences in a large WikiCorpus. Here we
use a window of size t = 3. There are also a number of words which do not occur in the context
of any preposition. To make full use of the data, we add an extra slice X[:, :,K + 1]: the entry
Xij(K+1) is the number of occurrences where wi co-occurs with wj (within distance 2t = 6) but at
least one of them is not within a distance of t of any preposition.

Note that the preposition window of 3 is smaller than the word window of 6, since it is known that
the interaction between prepositions and neighboring words usually weakens more sharply with the
distance as compared to content words Hassani & Lee (2017).

Empirical properties of X: We find that the tensor X is very sparse – only 1% of tensor elements
are non-zeros. Furthermore, every slice log(1 +X[:, :, k]) is low rank (here the logarithm is applied
componentwise to every entry of the tensor slice). We choose slices corresponding to prepositions
“about”, “before”,“for”, “in” and “of”, and plot their normalized singular values in Figure 1. We see
that the singular values decay dramatically, suggesting the low rank structure in each slice.

Tensor decomposition: We combine standard ideas from word embedding algorithms and tensor
decomposition algorithms to arrive at the low rank approximation to the tensor log(1 + X). In
particular, we consider two separate methods:

1. Alternating Least Squares (ALS). A generic method to decompose the tensor into its modes is via
the CANDECOMP/PARAFAC (CP) decomposition Kolda & Bader (2009). The tensor log(1 +X)
is decomposed into three modes: Ud×N , Wd×N and Qd×(K+1), based on the solutions to the
optimization problem (1). Here ui, wi and qi are the i-th column of U , W and Q, respectively.

L = min
U,W,Q

N∑
i=1

N∑
j=1

K+1∑
k=1

(〈ui,wj ,qk〉 − log(1 +Xijk))
2
, (1)

where 〈a,b, c〉 = 1t(a � b � c) is the inner product of three vectors a,b and c. Here 1 is the
column vector of all ones and � refers to the Hadamard product. We can interpret the columns
of U as the word representations and the columns of Q as the preposition representations, each of
dimension d (equal to 200 in this paper). There are several algorithmic solutions to this optimization
problem in the literature, most of which are based on alternating least squares methods Kolda &
Bader (2009); Comon et al. (2009); Anandkumar et al. (2014) and we employ a recent one named
Orth-ALS Sharan & Valiant (2017) in this paper. Orth-ALS periodically orthogonalizes decomposed
components while fixing two modes and updating the remaining one. It is supported by theoretical
guarantees and empirically outperforms standard ALS method in different applications.
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Table 2: Paraphrasing of Prepositional Phrases
Phrase involved in made from approved of dreamed of blocked off sparked off

Paraphrase included produced issued wants intercepted prompted

2. Weighted Decomposition (WD): Based on ideas from the literature on word embedding algo-
rithms, we also consider weighting different elements of the tensors differently in order to reduce
the effect of the large dynamic range of the tensor values. Specifically, we employ the GloVe objec-
tive function to our tensor model and minimize the objective function (2):

Lweighted = min
U,W,Q

N∑
i=1

N∑
j=1

K+1∑
k=1

ωijk (〈ui,wj ,qk〉+ bUi + bWj + bQk − log(Xijk + 1))
2
, (2)

where bUi is the scalar bias for word i in matrix U . Similarly, bWj is the bias for word j in matrix
W , and bQk is for preposition k in matrix Q. Bias terms are learned to minimize the loss function.
Here ωijk is the weight assigned to each tensor elementXijk, and we use the weighting proposed by

GloVe: ωijk = min
((

Xijk

xmax

)α
, 1
)

. We set hyperparameters xmax = 10, and α = 0.75 in this work.
We solve this optimization problem via standard gradient descent, arriving at word representations
U and tensor representations Q.

3 GEOMETRY OF PHRASAL VERBS

Representation Interpretation Suppose that we have a phrase (h, pi, c) where h, pi and c are head
word, preposition i(1 ≤ i ≤ K) and child respectively. A phrase example is split off something. The
inner product of word vectors of h, pi and c reflects how frequently h and c cooccur in the context
of p. It also reflects how cohesive the triple is.

Recall that there is an extra (K + 1)−th slice that describes the word co-occurrences outside the
preposition window, which considers cases such as the phrasal verb (v, c) where v and c are the verb
and the child. The verb phrase divide something is equivalent to the phrase split off something. For
any word c that fits in this phrase semantically, we can expect that

〈uh,qi,wc〉 ≈ 〈uv,qK+1,wc〉.

In other words uh�qi ≈ uv�qK+1, where a�b denotes the pointwise multiplication (Hadamard
product) of vectors a and b. This suggests that we could paraphrase the verb phrase (h, pi) by
finding the verb v such that uv � q(K+1) is closest to u(h) � qi.

paraphrase = argmin
v
‖uv � qK+1 − uh � qi‖. (3)

Well-trained embeddings should be able to capture the relation between the prepositional phrases
and their equivalent phrasal verbs. In Table 2, we list seven paraphrases of verb phrases, as generated
from the weighted tensor decomposition. A detailed list of paraphrases on a new dataset of compo-
sitional verb phrases is available in Table 10 in Appendix B, where we also compare paraphrasing
results using regular word embeddings and via both addition and Hadamard product operations. The
combination of tensor representations and Hadamard product results in vastly superior paraphrasing.

In the next two sections, we evaluate tensor-based preposition embeddings in the context of two
important NLP downstream tasks: preposition selection and preposition attachment disambiguation.
In this work, we use WikiCorpus as the training corpus for different sets of embeddings. We train
tensor embeddings with both Orth-ALS and weighted decomposition. The implementation of Orth-
ALS is built upon he SPLATT toolkit Smith & Karypis (2016). We perform orthogonalization in the
first 5 iterations in Orth-ALS decomposition, and the training is completed when its performance
stabilizes. As for the weighted decomposition, we train for 20 iterations, and its hyperparameters
are set as xmax = 10, and α = 0.75.

We also include two baselines, word2vec’s CBOW model and GloVe, for comparison. We set 20
training iterations to both models. Hyperparameters in word2vec are set as: window size=6, negative
sampling=25 and down sampling=1e-4. Hyperparameters in GloVe are set as: window size=6,
xmax=10, α=0.75 and minimum word count=5. We note that all the representations in this study –
word2vec, GloVe and our tensor embedding – are of dimension 200.
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4 DOWNSTREAM APPLICATION: PREPOSITION SELECTION

The detection and correction of grammatical errors is an important task in NLP. Second language
learners tend to make more mistakes and in particular, prepositional errors make up about 13% of all
errors, ranking the second among most common error types Leacock et al. (2010). This is due to the
fact that prepositions are highly polysemous and have flexible usage. Accurate preposition selection
needs to well capture the interaction between preposition and its context. This task is natural to
evaluate how well the lexical interactions are captured by different methods.

Task. Given a sentence in English with a preposition, we either replace the preposition (to the
correct one) or retain it. For example, “to” should be corrected as “of” in the sentence “It
can save the effort to carrying a lot of cards”. Formally, there is a closed set of preposition
candidates P = {p1, . . . , pm}. A preposition p is used in a sentence s consisting of words
s = {. . . , w−2, w−1, p, w1, w2, . . .}. If used incorrectly, we need to replace p by another prepo-
sition p̂ ∈ P based on the context.

Table 3: Dataset Statistics

FEC
# of sent 27119
# of prep 60279
error ratio 4.8

CoNLL
# of sent 1375
# of prep 3241
error ratio 4.7

SE
# of sent 5917
# of prep 15814
error ratio 38.2

Table 4: Performance on Preposition Selection
Dataset Method Precision Recall F1 score

CoNLL

state-of-the-art 0.2592 0.3611 0.3017
word2vec 0.1558 0.1579 0.1569

GloVe 0.1538 0.1578 0.1558
Our method (ALS) 0.3355 0.3355 0.3355
Our method (WD) 0.3590 0.3684 0.3636

SE

state-of-the-art 0.2704 0.2961 0.2824
word2vec 0.2450 0.2585 0.2516

GloVe 0.2454 0.2589 0.2520
Our method (ALS) 0.2958 0.3146 0.3049
Our method (WD) 0.2899 0.3055 0.2975

Dataset. We use training data from Cambridge First Certificate in English (FCE) exam, the same
data used by state-of-the-art on preposition error correction Prokofyev et al. (2014). As for test data,
we use two datasets: CoNLL-2013 and Stack Exchange (SE) dataset. CoNLL dataset on preposition
error correction is published by CoNLL 2013 shared task Ng et al. (2014), collected from 50 essays
written by 25 non-native English learners at a university. SE dataset consists of texts generated by
non-native speakers on Stack Exchange website. Detailed statistics are shown in Table 3. We focus
on the most frequent 49 prepositions listed in Appendix A.

Evaluation metric. Three metrics, precision, recall and F1 score (harmonic mean of precision and
recall) are used to evaluate preposition selection performance.

Our algorithm. We first preprocess the dataset by removing articles, determiners and pronouns,
and take a context window of 3. We divide the task into two steps: error identification and error
correction. Firstly, we decide whether a preposition is used correctly in the context. If not, we
suggest another preposition as replacement in the second step. Identification step uses only three
features: cosine similarity between the current preposition embedding and the average context em-
bedding, rank of the preposition in terms of cosine similarity, and probability that this preposition is
not changed in training corpus. We build a decision tree classifier with these three features and find
that we can identify errors with 98% F1 score in the CoNLL dataset and 96% in the SE dataset.

When it comes to error correction, we only focus on identified errors in the first stage. Suppose
that the original preposition is q, and the candidate preposition is p. Word vectors in the left context
window are averaged as left context embedding v`, and right vectors are averaged as right context
embedding vr. We have following features:
(1) embedding features: v`,vp and vr;
(2) pair similarity: maximum of the similarity of the preposition between left and right context, i.e.,
pair sim = max

(
vT
` vp

‖v`‖·‖vr‖ ,
vT
r vp

‖vr‖·‖vr‖

)
;

(3) triple similarity: triple sim =
〈v`,vp,vr〉

‖v`‖3·‖vp‖3·‖vr‖3 ;
(4) Confusion probability: the probability that q is replaced by p in the training data.

A two-layer feedforward neural network (FNN) with hidden sizes of 500 and 10 is trained with these
features to score prepositions in each sentence. The one with the highest score is the suggested edit.
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Baseline. State-of-the-art on preposition selection uses n-gram statistics from a large corpus Proko-
fyev et al. (2014). Features such as pointwise mutual information (PMI) and part-of-speech tags are
fed into a supervised scoring system. Prepositions with highest score are chosen as suggested ones.

The performance is affected by both the system architecture and features. To evaluate the benefits
brought by our tensor embedding-based features, we also consider other baselines which have the
same two-step architecture whereas features are generated from word2vec and GloVe embeddings.
These baselines allow us to compare the representation power independent of the classifier.

Table 5: Ablation Analysis in Preposition Selection
removed
feature

left context
embedding

prep
embedding

right context
embedding

pair
similarity

triple
similarity

confusion
score

CoNLL
Precision 0.1558 0.2662 0.3117 0.3247 0.3247 0.3506

Recall 0.1579 0.2697 0.3158 0.3289 0.3289 0.3553
F1 score 0.1569 0.2680 0.3137 0.3268 0.3268 0.3529

SE
Precision 0.2587 0.2796 0.2649 0.2658 0.2647 0.1993

Recall 0.2743 0.2964 0.2801 0.2818 0.2807 0.2114
F1 score 0.2663 0.2877 0.2726 0.2735 0.2725 0.2052

Result. We compare our methods against baselines mentioned above in Table 4. As is seen, tensor
embeddings achieve the best performance among all approaches. In particular, tensor with weighted
decomposition has the highest F1 score on CoNLL dataset, 6% improvement over the state of the art.
The tensor with ALS decomposition performs the best on SE dataset, achieving 2% improvement.
We also note that with the same architecture, tensor embeddings perform much better than word2vec
and GloVe embeddings on both datasets. It validates the representation power of tensor embeddings.

To have a deeper insight into feature importance in the preposition selection task, we also perform an
ablation analysis of the tensor method with weighted decomposition as shown in Table 5. We remove
one feature each time, and report the performance achieved by remaining features. It is found that
left context is the most important feature in CoNLL dataset, whereas confusion score is the most
important in SE dataset. Pair similarity and triple similarity are less important compared with other
features. This is because the neural network could learn lexical similarity from embedding features,
and diminishes the importance of similarity features.

Discussion. Now we analyze the reasons why our approach selects wrong prepositions in some
sentences. (1) Limited context window. We focus on the local context within preposition’s window.
In some cases, we find that head words might be out of the context window. In the sentence “prevent
more of this kind of tragedy to happening” where to should be corrected as from. Given the context
window of 3, we cannot get the lexical clues provided by prevent, which leads to the selection error
in our approach. (2) Preposition selection requires more context. Even when the context window
contains all words on which the preposition depends, it still may not be sufficient to select the right
preposition. For example, in the sentence “it is controlled by bad men in a not good purpose” where
our approach replaces the preposition in with the preposition on given the high frequency of the
phrase “on purpose”. The correct preposition should be for based on the whole sentence.

5 DOWNSTREAM APPLICATION: PREPOSITIONAL ATTACHMENT

In this section, we discuss prepositional phrase (PP) attachment disambiguation, a well-studied, but
still open, hard task in syntactic parsing. A prepositional phrase usually consists of head words, a
preposition and child words. An example is “he saw an elephant with long tusks”, where “with”
is attached to the noun “elephant”. In another example “he saw an elephant with his telescope”,
“with” is attached to the verb “saw”. Head words can be different when only child word is changed.
PP attachment disambiguation inherently requires accurate description of interactions among head,
preposition and child, which becomes an ideal task to evaluate our tensor-based embeddings.

Task. The English dataset used in our work is collected from a linguistic treebank by Belinkov et al.
(2014). Table 6 enumerates statistics associated with this dataset. Each instance consists of several
head candidates, a preposition and a child word. We need to pick the head to which the preposition
is attached. In the examples above, words “saw” and “elephant” are head candidates.

Our algorithm. Let vh,vp and vc be embeddings for the head candidate h, preposition p and child
c respectively. Features we use for the attachment disambiguation are:
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Table 6: Prepositional Attachment Disambiguation Dataset

instances avg head
candidates head set size prep set size child set size

Train 35,359 3.7 10,395 72 5,504
Test 1,951 3.6 2,133 46 983

Table 7: Accuracy in Prepositional Attachment Disambiguation

classifier HPCD
(enriching) LRFR OntoLSTM FNN FNN FNN FNN

embedding
method GloVe word2vec Glove-

extended word2vec GloVe Our method
(ALS)

Our method
(WD)

resources

pos tag,
WordNet,
VerbNet,
syntactic
parsing

pos tag,
WordNet,
VerbNet

pos tag,
WordNet pos tag pos tag pos tag pos tag

accuracy 0.887 0.903 0.897 0.866 0.858 0.883 0.892

(1) embedding feature: candidate, preposition and child embedding;
(2) triple similarity: triple sim(h, p, c) =

〈vh,vp,vc〉
‖vh‖3·‖vp‖3·‖vc‖3 ;

(3) head-preposition similarity: sim(h, p) =
vT
h vp

‖vh‖2·‖vp‖2· ;

(4) head-child similarity: sim(h, c) =
vT
h vc

‖vh‖2·‖vc‖2· ;
(5) part-of-speech (pos) tag of the candidate and its next word;
(b) distance between h and p.

We use a basic neural network, a two-layer feedforward network (FNN) with hidden sizes of 1000
and 20 to take input features and predict the probability that a candidate is the head. The candidate
with the highest likelihood is chosen as the head.

Baseline. We include following state-of-the-art approaches in preposition attachment disambigua-
tion. The linguistic resources they used to enrich features are listed in Table 7.
(1) Head-Prep-Child-Dist (HPCD) Model Belinkov et al. (2014): this compositional neural network
is used to train task-specific word representations.
(2) Low-Rank Feature Representation (LRFR) Yu et al. (2016): this method incorporates word parts,
contexts and labels into a tensor, and uses decomposed vectors as features for disambiguation.
(3) Ontology LSTM (OntoLSTM) Dasigi et al. (2017): Word vectors are initialized with GloVe-
extended from AutoExtend Rothe & Schütze (2015), and then trained via LSTMs for head selection.

Similar to the experiments in preposition selection, we also include baselines which have the same
feedforward network architecture but generate features with vectors trained by word2vec and GloVe.
They are denoted as FNN with different initializations in Table 7. Since the attachment disambigua-
tion is a selection task, accuracy is a natural evaluation metric.

Table 8: Ablation Analysis in Preposition Attachment Disambiguation
removed
feature

head
vector

prep
vector

child
vector

head-prep
similarity

head-child
similarity

triple
similarity POS distance

accuracy 0.843 0.871 0.880 0.877 0.885 0.873 0.850 0.872

Result. We compare results and linguistic resources of different approaches in Table 7, where we
see that our simple classifier built on the tensor representations is within 1% of the state of the art;
prior state of the art results have used significant linguistic resources enumerated in Table 7. With
the same feedforward neural network as the classifier, our tensor-based approaches (both ALS and
WD) achieve better performance than word2vec and GloVe.

Ablation analysis in Table 8 shows that head vector feature affects the performance most (indicating
that heads interact more closely with prepositions), and POS tag comes second. Similarity features
appear less important since the classifier has access to lexical relatedness via the embedding fea-
tures. Distance feature is reported to be important in previous works since 81.7% sentences take the
word closest to the preposition as their head. In our experiments, distance becomes less important
compared with embedding features.

Discussion. We find that one source of attachment disambiguation error is the lack of broader
context in our features.Broader context is critical in examples such as “worked” and “system” which
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are head candidates of “for trades” in a sentence. They are reasonable heads in expressions “worked
for trades” and “system for trades”. It requires more context to decide that “system” rather than
“worked” is the head in the given sentence.

We further explore the difference in identifying head verbs and head nouns. We have found that
tensor’s geometry could aid in paraphrasing verb phrases, and thus it well captures the interaction
between verbs and prepositions. In this task, we want to see whether our approach could do better in
identifying head verbs than head nouns. There are 883 instances with head verbs on which we could
achieve an accuracy of 0.897, and 1068 instances with head nouns where the accuracy is 0.887. We
do better in selecting head verbs, but performance does not differ too much across verbs and nouns.

6 RELATED WORK

Tensor Decomposition. Tensors embed higher order interaction among different modes, and the
tensor decomposition captures the relations via lower dimensional representations. There are sev-
eral decomposition methods such as Alternating Least Square (ALS) Kolda & Bader (2009), Si-
multaneous Diagonalization (SD) Kuleshov et al. (2015) and optimization-based methods Liu &
Nocedal (1989); Moré (1978). Orthogonalized Alternating Least Square (Orth-ALS) adds the step
of component orthogonalization to each update step in the ALS method Sharan & Valiant (2017).
Orth-ALS, supported by theoretical guarantees and, more relevantly, good empirical performance,
is the algorithm of choice in this paper.

Preposition Selection. Preposition selection, a major area of study in both syntactic and semantic
computational linguistics, is also a very practical topic in the context of grammar correction and
second language learning. Prior works typically use hand-crafted heuristic rules in preposition cor-
rection Xiang et al. (2013); lexical n-gram features are also known to be very useful Prokofyev et al.
(2014); Rozovskaya et al. (2013). Syntactic information such as POS tags and dependency parsing
can further enrich features Kao et al. (2013), and are standard in generic tasks involving prepositions.

Prepositional Attachment Disambiguation. There is a storied literature on prepositional attach-
ment disambiguation, long recognized as an important part of syntactic parsing Kiperwasser &
Goldberg (2016). Recent works, based on word embeddings have pushed the boundary of state
of the art empirical results. A seminal work in this direction is the Head-Prep-Child-Dist (HPCD)
Model, which trained word embeddings in a compositional network designed to maximize the ac-
curacy of head prediction Belinkov et al. (2014). A very recent work has proposed an initializa-
tion with semantics-enriched GloVe embeddings, and retrained representations with LSTM-RNNs
Dasigi et al. (2017). Another recent work has used tensor decompositions to capture the relation
between word representations and their labels Yu et al. (2016).

7 CONCLUSION

Co-occurrence counts of word pairs in sentences and the resulting word vector representations (em-
beddings) have revolutionalized NLP research. A natural generalization is to consider co-occurrence
counts of word triples, resulting in a third order tensor. Partly due to the size of the tensor (a vo-
cabulary of 1M, leads to a tensor with 1018 entries!) and partly due to the extreme dynamic range
of entries (including sparsity), word vector representations via tensor decompositions have largely
been inferior to their lower order cousins (i.e., regular word embeddings).

In this work, we trek this well-trodden terrain but restricting word triples to the scenario when one
of the words is a preposition. This is linguistically justified, since prepositions are understood to
model interactions between pairs of words. Numerically, this is also very well justified since the
sparsity and dynamic range of the resulting tensor is no worse than the original matrix of pairwise
co-occurrence counts; this is because prepositions are very frequent and co-occur with essentially
every word in the vocabulary.

Our intrinsic evaluations and new state of the art results in downstream evaluations lend strong
credence to the tensor-based approach to prepositional representation. We expect our vector rep-
resentations of prepositions to be widely used in more complicated downstream NLP tasks where
prepositional role is crucial, including “text to programs” Guu et al. (2017).
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A ROSTER OF PREPOSITIONS

The list of most frequent 49 Prepositions in the task of preposition selection is shown below:

about, above, absent, across, after, against, along, alongside, amid, among, amongst, around, at,
before, behind, below, beneath, beside, besides, between, beyond, but, by, despite, during, except,
for, from, in, inside, into, of, off, on, onto, opposite, outside, over, since, than, through, to, toward,
towards, under, underneath, until, upon, with.

B PARAPHRASING OF PHRASAL VERBS

In Section 3 we have provided a simple linear algebraic method to generate paraphrases to compo-
sitional phrasal verbs. We approximate the paraphrase representation uv via Eq. 3, and get a list
of words which have similar representations as candidate paraphrases. These candidates do not in-
clude words that are the same as component words in the phrase. We also require that a reasonable
paraphrase should be a verb. Therefore we choose the verb which is most similar to uv among
candidates. We filter verbs with Python NLTK tools Bird et al. (2009) and Linguistics library of
NodeBoxSmedt (2016).

Sample examples of the top paraphrases are provided in Table 2. Here we provide a detailed enu-
meration of the results of our linear algebraic method on a new dataset of 60 compositional phrases.
In the paraphrasing task, we consider three sets of embeddings, word2vec, GloVe and tensor em-
beddings from weighted decomposition. We also have two composition methods: addition and
Hadamard product to approximate the paraphrase representation from verb and preposition vectors.
Addition is included here because it has been widely used to approximate phrasal embedding in pre-
vious works Mitchell & Lapata (2010); Gershman & Tenenbaum (2015). We enumerate paraphrases
generated by six combinations of embeddings and composition methods, validating the representa-
tion power of tensor embeddings and the multiplication (Hadamard product) composition method.

As we can see from Table 9 and 10, tensor embedding works better with multiplicative composition,
whereas word2vec and GloVe work better with additive composition. Overall, tensor embedding
together with multiplication gives better paraphrases than other approaches.

Table 9: Paraphrasing of Phrasal Verbs
word2vec GloVe Tensor (WD)

addition multiplication addition multiplication addition multiplication
sparked off ignited strip came beginning led prompted
involved in interested spoof having came featured included
accuse of criticize consists involved scrapped posted convicted

approved of mandated entering given followed recommended issued
stuck with dragging romanize having came posted stalled

derived from originates modeled based came reading generated
resign from withdraw assaulted leaving came march retire
attached to desired erect take followed assigned subordinate

passed down lifted captained put beginning voted delivered
adjust to modify decorate help took lose adapt

regarded as considered depicts known last considered perceived
differ from vary diet derived took vary vary
treated as tolerated co-founded known starting employed regarded
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Table 10: Paraphrasing of Phrasal Verbs
word2vec GloVe Tensor (WD)

addition multiplication addition multiplication addition multiplication
conform to modify coloured make set comply comply

correspond to specify nominate give last represent correlate
replied to said intercept give lost posted answered
blend in mix sort place starting feature mix

switched over dropped witness having beginning kent transferred
carried on laid shortlisted taken came employed kept

switched on shifted briefing moved came kent tapped
carried in laid alternated came came featured created
handed in taken awarded taken came aged passed
kicked in knocked fencing went last scored intercepted
locked in sealed vending having came last placed

put in brought highlights came came took place
smashed in shattered offers came came dated crashing
handed over stripped disadvantaged took came posted tried
blocked off stopped attire cut came posted intercepted
scraped off trap stripe turn inspire aged ripped
shook off smashed lease struck followed aged shattered
split off crashing posing turn came starting broken
tailed off trap traps put manufactures aged masked
wiped off crushed kent leaving followed remaining knocked

slapped down forward inspire put stripe totaled stabbed
fit in adjust singled set came feature conform

brought in came conditioned came came following received
invest in acquire trailing did came spend market

convinced of assured resurfaced take came march revealed
dreamed of imagined encompassed making starting aged wants
despair of utter leach taken followed aged recall
pray for bless slide seeking came dated hope

prepared for required truncated used came delivered sponsored
dealt with coupled tide having came covering experimented

emerged from persisted stealing brought came saw occurred
made from followed co-authored came came following produced

distract from avoid distinguishing taken starting mark weaken
recover from reclaim exited return came hunt retrieve
knocked over smashed tailored lost came injured blown

fell down collapsed fool put came lost surrendered
leave behind hide transit rest followed return fall

come into disappear styled take followed get go
asked for requested curate take came wrote requested
fight for defeat incorporated return came challenge battle

fight against defeat reprinted defeat last last battle
acted as functioned argued known came appeared disguised

stripped off smashed fictionalized taken came giving lowered
melt down explode commemorate turn put wade overcome
looked at seemed archived came having got corresponded
lived in resided attained came came died located

asking about told opened stated starting win requests
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