Under review as a conference paper at ICLR 2018

OPEN LOOP HYPERPARAMETER OPTIMIZATION
AND DETERMINANTAL POINT PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Driven by the need for parallelizable hyperparameter optimization methods, this
paper studies open loop search methods in the sense that the sequence is prede-
termined and can be generated before a single configuration is evaluated. Exam-
ples include grid search, uniform random search, low discrepancy sequences, and
other sampling distributions. In particular, we propose the use of k-determinantal
point processes in hyperparameter optimization via random search. Compared to
conventional uniform random search where hyperparameter settings are sampled
independently, a k-DPP promotes diversity. We describe an approach that trans-
forms hyperparameter search spaces for efficient use with a k-DPP. In addition,
we introduce a novel Metropolis-Hastings algorithm which can sample from k-
DPPs defined over spaces with a mixture of discrete and continuous dimensions.
Our experiments show significant benefits over uniform random search in realistic
scenarios with a limited budget for training supervised learners, whether in serial
or parallel.

1 INTRODUCTION

Hyperparameter values—regularization strength, model family choices like depth of a neural net-
work or which nonlinear functions to use, procedural elements like dropout rates, stochastic gradient
descent step sizes, and data preprocessing choices—can make the difference between a successful
application of machine learning and a wasted effort. To search among many hyperparameter values
requires repeated execution of often-expensive learning algorithms, creating a major obstacle for
practitioners and researchers alike.

In general, on request/iteration k, a hyperparameter searcher suggests a hyperparameter configura-
tion zy, a worker trains a model using zj, and returns a validation loss of y;, computed on a hold

out set. In this work we say a hyperparameter searcher is open loop if x;, depends only on {z; f;ll;
examples include choosing x; uniformly at random (Bergstra et al.| [2011a)), or x; coming from a
low-discrepancy sequence (c.f., laco| (2015)). We say a searcher is closed loop if x; depends on
both the past configurations and validation losses {(z;, yi)}f:ll; examples include Bayesian opti-
mization (Snoek et al., 2012) and recent reinforcement learning methods (Zoph & Lel 2016). Note
that open loop methods can draw an infinite sequence of configurations before training a single

model, whereas closed loop methods rely on validation loss feedback in order to make suggestions.

While sophisticated closed loop selection methods have been shown to empirically identify good
hyperparameter configurations faster (i.e., with fewer iterations) than open loop methods like ran-
dom search, two trends have rekindled interest in embarrassingly parallel open loop methods:
1) modern deep learning models can take days or weeks to train with no signs of efficiency break-
throughs, and 2) the rise of cloud resources available to anyone that charge not by the number of
machines, but by the number of CPU-hours used so that 10 machines for 100 hours costs the same
as 1000 machines for 1 hour.

This paper explores the landscape of open loop methods, identifying tradeoffs that are rarely consid-
ered, if at all acknowledged. While random search is arguably the most popular open loop method
and chooses each zj, independently of {mi}f:]l, it is by no means the only choice. In many ways
uniform random search is the least interesting of the methods we will discuss because we will advo-

cate for methods where x;, depends on {xi}f:_f to promote diversity. In particular, we will focus on

Under review as a conference paper at ICLR 2018

drawing {xi}i?:l from a k-determinantal point process (DPP) (Kulesza et al., [2012). DPPs sup-
port real, integer, and categorical dimensions—any of which may have a tree structure—and have
computationally efficient methods of drawing samples.

Experimentally, we explore the use of our diversity-promoting open-loop hyperparameter optimiza-
tion method based on k-DPP random search. We find that it significantly outperforms uniform
random search in cases where the hyperparameter values have a large effect on performance.

Open source implementations of both our hyperparameter optimization algorithm (as an extension
to the hyperopt package (Bergstra et al.,[2013)) and the MCMC algorithm introduced in Algorithm 2]
will be released upon publication.

2 RELATED WORK

While this work focuses on open loop methods, the vast majority of recent work on hyperparameter
tuning has been on closed loop methods, which we briefly review.

2.1 CLOSED LOOP METHODS

Much attention has been paid to sequential model-based optimization techniques such as Bayesian
optimization (Snoek et al., 2012; |Bergstra et al., 201 1b)), which sample hyperparameter spaces adap-
tively. These techniques first choose a point in the space of hyperparameters, then train and eval-
uate a model with the hyperparameter values represented by that point, then sample another point
based on how well previous point(s) performed. These methods can become complicated, and while
they can lead to improved performance, the differences are frequently small. In addition, it has
recently been observed that many Bayesian optimization methods, when run for k iterations, are
outperformed by sampling 2k points uniformly at random (Li et al.l 2017). Parallelizing Bayesian
optimization methods has proven to be nontrivial, and while a number of algorithms exist which
sample more than one point at each iteration (Contal et al., [2013; |Desautels et al., 2014; Gonzalez
et al.l 2016)), none can achieve the parallelization that grid search, sampling uniformly, or sampling
according to a DPP allow.

One recent line of research has examined the use of DPPs for optimizing hyperparameters, in the
context of parallelizing Bayesian optimization (Kathuria et al., 2016; Wang et al.| |2017). At each
iteration within one trial of Bayesian optimization, instead of drawing a single new point to evaluate
from the posterior, they define a DPP over a small region of the space and sample a set of diverse
points. While this can lead to easy parallelization within one iteration of Bayesian optimization,
the overall algorithms are still sequential. Additionally, their approach requires discretizing the
hyperparameter space, a drawback which we circumvent.

So-called configuration evaluation methods have been shown to perform well by adaptively allo-
cating resources to different hyperparameter settings (Swersky et al., [2014; |Li et al.| |2017). They
initially choose a set of hyperparameters to evaluate (often uniformly), then partially train a set of
models for these hyperparameters. After some fixed training budget (e.g. time, or number of train-
ing examples observed), they compare the partially trained models against one another and allocate
more resources to those which perform best. Eventually, these algorithms produce one (or a small
number) of fully trained, high-quality models. In some sense, these approaches are orthogonal to
open vs. closed loop methods since both can be applied with these methods.

2.2 OPEN LOOP METHODS

As discussed above, recent trends have renewed interest in open loop methods. And recently, random
search was shown to be competitive with sophisticated closed loop methods for modern hyperpa-
rameter optimization tasks like deep networks (Li et al.,|[2017), inspiring other works to explain the
phenomenon (Ahmed et al.| [2016). Bergstra & Bengio| (2012) offer one of the most comprehensive
studies of open loop methods to date, and focus attention on comparing random search and grid
search. A main takeaway of the paper is that uniform random sampling is generally preferred to

Under review as a conference paper at ICLR 2018

grid searclﬂ due to the frequent observation that some hyperparameters have little impact on per-
formance, and random search promotes more diversity in the dimensions that matter. Essentially,
if points are drawn uniformly at random in d dimensions but only d’ < d dimensions are relevant,
those same points are uniformly distributed (and just as diverse) in d’ dimensions. Grid search, on
the other hand, distributes configurations aligned with the axes so if only d’ < d dimensions are
relevant, many configurations are essentially duplicates.

However, grid search does have one favorable property that is clear in just one dimension. If k£ points
are distributed on [0, 1] on a grid, the maximum spacing between points is equal to ﬁ But if points

are uniformly at random drawn on [0, 1], the expected largest gap between points scales as ik If

you are unlucky enough to have your minimum located in this largest gap, this difference could be
considerable. The phenomenon generalizes to higher dimensions but grid search’s advantage does
not for the reasons above. This is an important concept in numerical integration and one way to
quantify this property of a sequence x = (1,2, . .., x) is known as star discrepancy:

d
Dy(x) = sup %Zl{xt € HJ 110, u; } H (D

U, ,ug €[0,1] i=1

One can interpret the star discrepancy as a multidimensional version of the Kolmogorov-Smirnov
statistic between the sequence x and the uniform measure. It is well-known that a sequence chosen

uniformly at random from [0, 1]¢ has an expected star discrepancy of at least \/I (and is no greater

dlog(d

than) (Devroye et al., 2013} Corollary 12.5) whereas sequences are known to exist with

star discrepancy less than % Sobol’| (1967), where both bounds depend on absolute constants.
These low-discrepancy sequences, as they are known, include the Sobol sequence, which was also
given brief mention in (Bergstra & Bengio, [2012) and shown to outperform random search and grid
search. We also note that the Sobol sequence is also used as an initialization procedure for some
Bayesian Optimization schemes [Snoek et al.| (2012). However, the Sobol sequence is only defined
for continuous spaces, so for hyperparameter search which involves discrete dimensions it is not
appropriate.

The final open loop method we study is the DPP, which has been given considerably less attention
in the hyperparameter optimization literature. Comparing the star discrepancy of uniform at random
and Sobol, one observes that as d grows large relative to k, Sobol starts to suffer. Indeed, [Bardenet
& Hardy|(2016) notes that the Sobol rate is not even valid until k¥ = Q(2d) which motivates them to
study a formulation of a DPP that has a star discrepancy between Sobol and random and holds for
all k£, small and large. They primarily approached this problem from a theoretical perspective, and
didn’t include experimental results. Their work, in part, motivates us to look at DPPs as a solution
for hyperparameter optimization.

3 COMPARISON OF OPEN LOOP METHODS

Optimization performance—how close a point in our sequence is to the true, fixed minimum-is our
goal, not a sequence with low discrepancy. However, as Bergstra & Bengio| (2012) observed, the
rare “large gap” that can occur in random sequences without the low discrepancy property can af-
fect optimization performance, on average. One natural surrogate of average optimization perfor-
mance is to define a hyperparameter space on [0, 1]¢ and measure the distance from a fixed point,
say 5 1= (2 ey 2) to the nearest point in the length & sequence in the Euclidean norm squared:
. nlrnn . ||o;— 31 |3. The Euclidean norm (squared) is motivated by a quadratic Taylor series approx-
1=1,...,
imation around the minimum of the hypothetical function we wish to minimize. The first question
we wish to answer is: is low discrepancy a surrogate for optimization performance? In the first
and second columns of Figure [I] we plot the star discrepancy and smallest distance from the center
11, respectively, as a function of the length of the sequence, with each row representing dimensions
d=2,3,4, for the Sobol sequence, uniform at random, and a DPP (see the next section for details). We

'Grid search uniformly grids [0,1]% such that zx = (2,2 ..., Ed) is a point on the grid for i; =
0,1,...,m forall j, with a total number of grid points equal to (m +)d

Under review as a conference paper at ICLR 2018

Figure 1: Comparison of the Sobol sequence (with uniform noise), samples a from k-DPP, and

star discrepancy

distance from center

distance from origin

0]
10744 o Kk-DPP-rbf) o kDPPbf | 1074 o Kk-DPP-rbf
e Uniform 10-1 4 s e Uniform] e Uniform
T, « Sobol e, « Sobol s+ sobal
*e Helj 10-1 4 Lsie
. s ., ': : ® 9
IRTEN it 5.
N A5 10724 LERY $ie.
10714 Shasr bt ot 1072 4 feta
AR A P
i e bl
3 1073 1073 4
10° 10t 102 10° 10t 102 100 10t 10?2
0 J
10° 1 e k-DPP-rbf e k-DPP-rbf 100 4 e k-DPP-rbf
e Uniform) e Uniform L s e Uniform
. + Sobol : ' » Sobol s e Sobol
0 e 10714 4 8 .
0 ® i 3
. :. A LA : L
. > L] 9) . : : :' ‘
. LNl o 1071 4]
1074 s CHLvS] 0
3 : o ",
3 <8,]
% e 10-2 4 ®
.
10° 10t 107 10° 10! 107 10° 10! 102
(O
107 1e o k-DPP-rbf o k-DPP-rbf e k-DPP-rbf
e Uniform 1 e Uniform $ e Uniform
[100 0
X e Sobol ° e Sobol ° 3 e Sobol
H °
L LI e
o ® *ee 1 .'
. :- 10714 : [t H
e H) . * H : Se
. i, ; ',
1 °
10 A mR [nlg
IYNSEEC) HP °
-]
t N 10714
10° 10t 10? 10° 10! 10? 10° 10! 102

k, between 1 and 150

k, between 1 and 150

uniform random for three metrics of interest.

observe that the Sobol sequence is clearly superior in terms of star discrepancy, with the DPP having
a slight edge over Uniform. However, all methods appear comparable when it comes to distance to

the center.

Acknowledging the fact that practitioners define the search space themselves more often than not,
we realize that if the search space bounds are too small, the optimal solution often is found on the
edge, or in a corner of the hypercube. Thus, in some situations it makes sense to bias the sequence
towards the edges and the corners, the very opposite of what low discrepancy sequences attempt to
do. While Sobol and uniformly random sequences will not bias themselves towards the corners, a
DPP does. This happens because points from a DPP are sampled according to how distant they are
from the existing points; this tends to favor points in the corners. This same behavior of sampling
in the corners is also very common for Bayesian optimization schemes, which is not surprise due

k, between 1 and 150

to the known connections between sampling from a DPP and gaussian process (see Section[4.5)). In
the third column of Figure [I| we plot the distance to the origin which is just an arbitrarily chosen

corner of hypercube. As expected, we observe that the DPP tends to outperform uniform at random
and Sobol in this metric. In what follows, we study the DPP in more depth and how it performs on

real-world hyperparameter tuning problems.

Under review as a conference paper at ICLR 2018

4 METHOD

We begin by reviewing determinantal point processes (DPPs) and k-DPPs.

Let B be a domain of values from which we would like to sample a finite subset. (In our use of
DPPs, this is the set of hyperparameter settings.) In general, 3 could be discrete or continuous; here
we assume it is discrete with N values, and we define) = {1,..., N} to be a a set which indexes
B (this will be particularly useful in Algorithm[T). In Sectionwe address when B has continuous
dimensions. A DPP defines a probability distribution over 2% (all subsets of)) with the property
that two elements of)} are more (less) likely to both be chosen the more dissimilar (similar) they
are. Let random variable Y range over finite subsets of).

There are several ways to define the parameters of a DPP. We focus on L-ensembles, which define
the probability that a specific subset is drawn (i.e., P(Y = A) for some A C) as:

. . det(LA)
PY =A) = m. 2)

As shown in|Kulesza et al.| (2012), this definition of L admits a decomposition to terms representing
the quality and diversity of the elements of Y. For any y;,y; € V, let:

Li,j = qu]K(¢z7 ¢j)v (3)

where ¢; > 0 is the quality of y;, ¢, € R? is a featurized representation of y;, and C : R? x R —
[0,1] is a similarity kernel (e.g. cosine distance). (We will discuss how to featurize hyperparameter
settings in Section[4.3])

Here, we fix all g; = 1; in future work, closed loop methods might make use of ¢; to encode evidence
about the quality of particular hyperparameter settings to adapt the DPP’s distribution over time.

4.1 SAMPLING FROM A k-DPP

DPPs have support over all subsets of Y, including () and) itself. In many practical settings, one
may have a fixed budget that allows running the training algorithm % times, so we require precisely
k elements of) for evaluation. k-DPPs are distributions over subsets of) of size k. Thus,

det(LA)
ZA'C)},|A’|:/€ det(LA/) '

PY =Al|Y|=k) =)

4.2 NEW MCMC ALGORITHM

Kulesza et al.|(2012) give an algorithm for sampling exactly from k-DPPs, though it runs in O(N?3);
a Metropolis-Hastings algorithm presented by |Anari et al.| (2016) is a simple and fast alternative
(included here as Algorithm [I). Both of these sampling algorithms assume the DPP is defined over
a finite number of items; they are restricted to discrete domains. We propose a generalization of the
MCMC algorithm which preserves relevant computations while allowing sampling from base sets
with discrete dimensions, continuous dimensions, or some continuous and some discrete dimensions
(Algorithm [2)). To the best of our knowledge, this is the first algorithm which allows for sampling
from a k-DPP defined over mixed discrete and continuous spaces.

Algorithm [I] proceeds as follows: First, initialize a set Y with k indices of L, drawn uniformly.
Then, at each iteration, sample two indices of L (one within and one outside of the set Y), and with
some probability replace the item in Y with the other.

When we have continuous dimensions in the base set, however, we can’t define the matrix L, so
sampling indices from it is not possible. We propose Algorithm [2] which samples points directly
from the base set BB instead (assuming continuous dimensions are bounded), and computes only the
principal minors of L needed for the relevant computations on the fly.

Even in the case where the dimensions of B are discrete, Algorithm 2] requires less computation and
space than Algorithm [I] (assuming the quality and similarity scores are stored once computed, and
retrieved when needed). Previous analyses claimed that Algorithm should be run for O(N log(N))

Under review as a conference paper at ICLR 2018

Algorithm 1 Drawing a sample from a discrete k-DPP

Input: L, a symmetric, N x N matrix where L; ; = ¢;¢,;K(¢;, (bj) which defines a DPP over a
finite base set of items B, and) = {1,..., N}, where); indexes a row or column of L

Output: By (the points in 13 indexed by Y)

1: Initialize Y to k elements sampled from) uniformly

2: while not mixed do

3 uniformly sample u € Y,v € Y\'Y

4: setY' =Y U{v}\ {u}

5

6

7:

) det(Ly/
p %mm(l7 d‘:t((L‘;)))

with probability p: Y =Y’
Return By

Algorithm 2 Drawing a sample from a k-DPP defined over a space with continuous and discrete
dimensions
Input: A base set B with some continuous and some discrete dimensions, a quality function ¥ :
Y,; — qi, a feature function ® : Y,; — ¢,
Output: 3, a set of k points in B
1: Initialize 3 to k points sampled from 5 uniformly
2: while not mixed do
3: uniformly sample v € 3,v € B\ 3

4 setB =pBU{v}\{u}

5: compute the quality score for each item, ¢; = ¥(83;), Vi, and ¢ = ¥(3;), Vi
6: construct Lg = [q:q; K(®(8;), ®(8;))], Vi, j

7: construct Lgr = [ngg-lC(i’(,B,’i), @(ﬁ;))],w,j

8: D %min(l7 7?2{(&‘:)))

9: with probability p: 3 = 8

10: Return 3

steps. There are O(IN?) computations required to compute the full matrix L, and at each iteration
we will compute at most O(k) new elements of L, so even in the worst case we will save space and
computation whenever & log(IN) < N. In expectation, we will save significantly more.

4.3 CONSTRUCTING L. FOR HYPERPARAMETER OPTIMIZATION

The vector ¢, will encode y; (an element of V), which in its most general form is an attribute-value
mapping assigning values to different hyperparameters.

Let ¢, be a feature vector for y; €), a modular encoding of the attribute-value mapping, in which
fixed segments of the vector are assigned to each hyperparameter attribute (e.g., the dropout rate, the
choice of nonlinearity, etc.). For a hyperparameter that takes a numerical value in range [Amin, Pmax]
we encode value h using one dimension (j) of ¢ and project into the range [0, 1]:

h — hmin
olj] =)

max — hmin

This rescaling prevents hyperparameters with greater dynamic range from dominating the simi-
larity calculations. A categorical-valued hyperparameter attribute that takes m values is given
m elements of r and a one-hot encoding. We then compute similarity using an RBF kernel,

K = exp (7%) and hence label our approach k-DPP-RBF. Values for o2 lead to mod-
2

els with different properties; when ¢~ is small, points that are spread out have little impact, and
when o2 is large, the increased repulsion between the points encourages them to be as far apart as
possible. This tradeoff is represented in Figure I}

Under review as a conference paper at ICLR 2018

4.4 TREE-STRUCTURED HYPERPARAMETERS

Many real-world hyperparameter search spaces are tree-structured. For example, the number of lay-
ers in a neural network is a hyperparameter, and each additional layer adds at least one new hyper-
parameter which ought to be tuned (the number of nodes in that layer). For a binary hyperparameter
like whether or not to use regularization, we use a one-hot encoding. When this hyperparameter is
“on,” we set the associated regularization strength as above, and when it is “off”” we set it to zero.
Intuitively, with all other hyperparameter settings equal, this causes the off-setting to be closest to
the least strong regularization. One can also treat higher-level design decisions as hyperparameters
(Komer et al., [2014)), such as whether to train a logistic regression classifier, a convolutional neural
network, or a recurrent neural network. In this construction, the type of model would be a categor-
ical variable (and thus get a one-hot encoding), and all child hyperparameters for an “off” model
setting (such as the convergence tolerance for logistic regression, when training a recurrent neural
network) would be set to zero.

4.5 CONNECTION TO GAUSSIAN PROCESSES

Gaussian processes are used widely in hyperparameter optimization algorithms. [Hennig & Garnett
(2016)) claim that sampling from a DPP with kernel K is equivalent to sequentially sampling pro-
portional to the posterior variance of a GP defined with covariance kernel K. Since the entropy of a
Gaussian is proportional to the log determinant of the covariance matrix, points drawn from a DPP
have probability proportional to exp(information gain), and the most probable set from the DPP is
the set which maximizes the information gain.

5 HYPERPARAMETER OPTIMIZATION EXPERIMENTS

In this section we present our hyperparameter optimization experiments. We compare k-DPP-RBF,
uniform sampling, and a Bayesian optimization algorithm in Section We compare samples
drawn using Algorithm [I|(which necessitates discretizing the hyperparameter space) and Algorithm
against samples drawn uniformly at random in Section[5.2] It is worth noting that as k increases,
all sampling methods approach the true optimum.

5.1 CONVOLUTIONAL NEURAL NETWORKS FOR TEXT CLASSIFICATION

Our experiments consider a setting where hyperparameters have a large effect on performance: a
convolutional neural network for text classification (Kim, |2014). The task is binary sentiment
analysis on the Stanford sentiment treebank (Socher et al., [2013). On this balanced dataset, ran-
dom guessing leads to 50% accuracy. We use the CNN-non-static model from |Kim! (2014), with
word2vec (Mikolov et al.l 2013) vectors. The model architecture consists of a convolutional layer, a
max-over-time pooling layer, then a fully connected layer leading to a softmax.

We begin with a search over three hyperparameters, assuming a budget of k& = 20 repetitions of
training the convolutional neural net. L regularization strengths in the range [e~®,e~!] (or no
regularization) and dropout rates in [0.0, 0.7] are considered. We consider three increasingly “easy”
ranges for the learning rate:

e Hard: [e~%, %], where the majority of the range leads to accuracy no better than chance.
e Medium: [e~%, e~1], where half of the range leads to accuracy no better than chance.

e Easy: [e7!0 e~3], where the entire range leads to models that beat chance.

Figure[2]shows the accuracy (averaged over 50 runs) of the best model found after exploring 1,2, ...,
k hyperparameter settings. We see that k-DPP-RBF finds better models with fewer iterations neces-
sary than the other approaches, especially in the most difficult case. Figure[2]compares the sampling
methods against a Bayesian optimization technique using a tree-structured Parzen estimator (BO-
TPE; Bergstra et al., [2011b). This technique evaluates points sequentially, allowing the model to
choose the next point based on how well previous points performed (a closed loop approach). It is
state-of-the-art on tree-structured search spaces (though its sequential nature limits parallelization).
Surprisingly, we find it performs the worst, even though it takes advantage of additional information.

Under review as a conference paper at ICLR 2018

Hard learning rate Medium learning rate Easy learning rate

0.80 ,

0.75

0.80 - 0.80 -

0.75 0.75

0.70 0.70 0.70 1

0.65 - 0.65 - 0.65 -

o

)

)
1

0.60 - 0.60 -

Average best-found model accuracy

--- k-DPP-RBF --- k-DPP-RBF --- k-DPP-RBF
BO-TPE BO-TPE BO-TPE
i —— Uniform —— Uniform —— Uniform
0.55 1 0.55 1 0.55 1
T T T T T T T T T T T T T T T T T T
0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21
Iteration Iteration Iteration

Figure 2: Average best-found model accuracy by iteration when training a convolutional neural
network on three hyperparameter search spaces (defined in Section[5.1)), averaged across 50 trials of
hyperparameter optimization, with k = 20.

We hypothesize that the exploration/exploitation tradeoff in BO-TPE causes it to commit to more
local search before exploring the space fully, thus not finding hard-to-reach global optima.

Note that when considering points sampled uniformly or from a DPP, the order of the k hyperpa-
rameter settings in one trial is arbitrary (though this is not the case with BO-TPE as it is an iterative
algorithm). The variance of the k-DPP methods (not shown for clarity) tends to be high in early
iterations, simply because the & samples from a k-DPP are likely to be more diverse than those sam-
pled uniformly, but in all cases the variance of the best of the & points is lower than when sampled
uniformly.

5.2 OPTIMIZING WITHIN RANGES KNOWN TO BE GOOD

Zhang & Wallace| (2015)) analyzed the stability of convolutional neural networks for sentence clas-
sification with respect to a large set of hyperparameters, and found a set of six which they claimed
had the largest impact: the number of kernels, the difference in size between the kernels, the size
of each kernel, dropout, regularization strength, and the number of filters. We optimized over their
prescribed “Stable” ranges; average accuracies across 50 trials of hyperparameter optimization are
shown in Figure |3 across k = 20 iterations, with each dimension discretized to five values (for
the discretized experiments). For both uniform sampling and sampling using k£-DPP-RBEF, discretiz-
ing the search space hurts performance, thus motivating the use of Algorithm [2] Additionally, we
find that even in this case where every value gives reasonable performance, k-DPP-RBF sampling
outperforms uniform sampling.

Our experiments reveal that, while the hyperparameters proposed by [Zhang & Wallace| (2015), can
have an effect, the learning rate, which they don’t analyze, is at least as impactful.

6 CONCLUSIONS

We have explored open loop hyperparameter optimization built on sampling from k-DPPs. We de-
scribed how to construct k-DPPs over hyperparameter search spaces, and showed that sampling from
these retains the attractive parallelization capabilities of random search. Our experiments demon-
strate that, under a limited computation budget, on a number of realistic hyperparameter optimiza-
tion problems, these approaches perform better than sampling uniformly at random. As we increase
the difficulty of our hyperparameter optimization problem (i.e., as values which lead to good model

Under review as a conference paper at ICLR 2018

0.822 1

Figure 3: Average best-found
model accuracy by iteration when
training a convolutional neural
network on the “Stable” search
space (defined in Section @, av-
eraged across 50 trials of hyper-
parameter optimization, with k =
0.816 1 Uniform 20. Discretizing the space reduces
Uniform Discretized the accuracy found for both uni-

— k-DPP-RBF)) form sampling and k-DPP-RBF,
o841 - k-DPP-RBF Discretized but in both cases k-DPP-RBF
3 6 9 12 15 18 finds better optima than uniform

Iteration Sampling_

0.820

0.818

Average best-found model accuracy

evaluations become more scarce) the improvement over sampling uniformly at random increases.
An open-source implementation of our method is available

REFERENCES

Mohamed Osama Ahmed, Bobak Shahriari, and Mark Schmidt. Do we need harmless bayesian optimization
and first-order bayesian optimization? NIPS BayesOpt, 2016.

Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte carlo markov chain algorithms for sampling
strongly rayleigh distributions and determinantal point processes. In Proceedings of the 29th Conference
on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pp. 103-115, 2016. URL http:
//jmlr.org/proceedings/papers/v49/anaril6.html.

Rmi Bardenet and Adrien Hardy. Monte carlo with determinantal point processes. In arXiv preprint
arXiv:arXiv:1605.00361, 2016.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13:281-305, 2012.

James Bergstra, Remi Bardenet, Yoshua Bengio, and Balazs Kegl. Algorithms for hyper-parameter optimiza-
tion. In Proc. of NIPS, 201 1a.

James Bergstra, Daniel Yamins, and David D Cox. Making a science of model search: Hyperparameter op-
timization in hundreds of dimensions for vision architectures. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pp. 115-123, 2013.

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-parameter optimiza-
tion. In Advances in Neural Information Processing Systems, pp. 2546-2554, 2011b.

Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel gaussian process optimization
with upper confidence bound and pure exploration. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pp. 225-240. Springer, 2013.

Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing exploration-exploitation tradeoffs in
gaussian process bandit optimization. Journal of Machine Learning Research, 15(1):3873-3923, 2014.

Luc Devroye, Léaszl6 Gyorfi, and Gabor Lugosi. A probabilistic theory of pattern recognition, volume 31.
Springer Science & Business Media, 2013.

Javier Gonzélez, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch bayesian optimization via local
penalization. In Artificial Intelligence and Statistics, pp. 648—657, 2016.

Philipp Hennig and Roman Garnett. Exact sampling from determinantal point processes. 2016.

2 Anonymized URL; will be provided on publication.

http://jmlr.org/proceedings/papers/v49/anari16.html
http://jmlr.org/proceedings/papers/v49/anari16.html

Under review as a conference paper at ICLR 2018

Maria Rita laco. Low discrepancy sequences: Theory and applications. arXiv preprint arXiv:1502.04897,
2015.

Tarun Kathuria, Amit Deshpande, and Pushmeet Kohli. Batched gaussian process bandit optimization via
determinantal point processes. In Advances in Neural Information Processing Systems, pp. 4206-4214,
2016.

Yoon Kim. Convolutional neural networks for sentence classification. EMNLP 2014, 2014.

Brent Komer, James Bergstra, and Chris Eliasmith. Hyperopt-sklearn: automatic hyperparameter configuration
for scikit-learn. In ICML workshop on AutoML. Citeseer, 2014.

Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. Foundations and Trends®)
in Machine Learning, 5(2-3):123-286, 2012.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: Bandit-
based configuration evaluation for hyperparameter optimization. Proc. of ICLR, 17,2017.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems, pp.
3111-3119, 2013.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. In Advances in neural information processing systems, pp. 2951-2959, 2012.

II’ya Meerovich Sobol’. On the distribution of points in a cube and the approximate evaluation of integrals.
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4):784-802, 1967.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, Christo-
pher Potts, et al. Recursive deep models for semantic compositionality over a sentiment treebank. In Pro-
ceedings of the conference on empirical methods in natural language processing (EMNLP), volume 1631,
pp. 1642. Citeseer, 2013.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv preprint
arXiv:1406.3896, 2014.

Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-dimensional bayesian optimization
via structural kernel learning. In International Conference on Machine Learning (ICML), 2017.

Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide to) convolutional neural
networks for sentence classification. arXiv preprint arXiv:1510.03820, 2015.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

10

	Introduction
	Related Work
	Closed Loop Methods
	Open Loop Methods

	Comparison of Open Loop Methods
	Method
	Sampling from a k-DPP
	New MCMC Algorithm
	Constructing L for hyperparameter optimization
	Tree-structured hyperparameters
	Connection to Gaussian processes

	Hyperparameter Optimization Experiments
	Convolutional neural networks for text classification
	Optimizing within ranges known to be good

	Conclusions

