
Under review as a conference paper at ICLR 2018

TIME LIMITS IN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning, it is common to let an agent interact with its environ-
ment for a fixed amount of time before resetting the environment and repeating
the process in a series of episodes. The task that the agent has to learn can either
be to maximize its performance over (i) that fixed amount of time, or (ii) an in-
definite period where the time limit is only used during training. In this paper, we
investigate theoretically how time limits could effectively be handled in each of
the two cases. In the first one, we argue that the terminations due to time limits are
in fact part of the environment, and propose to include a notion of the remaining
time as part of the agent’s input. In the second case, the time limits are not part
of the environment and are only used to facilitate learning. We argue that such
terminations should not be treated as environmental ones and propose a method,
specific to value-based algorithms, that incorporates this insight by continuing to
bootstrap at the end of each partial episode. To illustrate the significance of our
proposals, we perform several experiments on a range of environments from sim-
ple few-state transition graphs to complex control tasks, including novel and stan-
dard benchmark domains. Our results show that the proposed methods improve
the performance and stability of existing reinforcement learning algorithms.

1 INTRODUCTION

The reinforcement learning framework (Sutton & Barto, 1998; Bertsekas & Tsitsiklis, 1996; Szepes-
vari, 2010; Kaelbling et al., 1996) involves a sequential interaction between an agent and its envi-
ronment. At every time step t, the agent receives a representation St of the environment’s state,
selects an actionAt that is executed in the environment which in turn provides a representation St+1

of the successor state and a reward signal Rt+1. An individual reward received by the agent does
not directly indicate the quality of its latest action as some rewards may indeed be the consequence
of a series of actions taken far in advance. Thus, the goal of the agent is to learn a good policy by
maximizing the discounted sum of future rewards also known as return:

Gγt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1 = Rt+1 + γGγt+1 (1)

A discount factor 0 ≤ γ < 1 is necessary to exponentially decay the future rewards ensuring
bounded returns. While the series is infinite, it is common to use this expression even in the case
of possible terminations. Indeed, episode terminations can be considered to be the entering of an
absorbing state that transitions only to itself and generates zero rewards thereafter. However, when
the maximum length of an episode is predefined, it is easier to rewrite the expression above by
explicitly including the time limit T :

Gγt:T
.
= Rt+1 + γRt+2 + γ2Rt+3 + ...+ γT−t−1RT =

T−t−1∑
k=0

γkRt+k+1 = Rt+1 + γGγt+1:T (2)

Optimizing for the expectation of the return specified in Equation 2 is suitable for naturally time-
limited tasks where the agent has to maximize its expected return G0:T over a fixed episode length
only. In this case, since the return is bounded, a discount factor of γ = 1 can be used. However,
in practice it is still common to keep γ smaller than 1 in order to give more priority to short-term
rewards. Under this optimality model, the objective of the agent does not go beyond the time limit.
Therefore, an agent optimizing under this model should ideally learn to take more risky actions that

1

Under review as a conference paper at ICLR 2018

(a) Standard (b) Time-awareness (c) Partial-episode bootstrapping

Figure 1: Illustrations of color-coded state-values and policies overlaid on our Two-Goal Gridworld
problem with two rewarding terminal states (50 for reaching the top-right corner and 20 for the
bottom-left), a penalty of −1 for moving, and a time limit T = 3. (a) A standard agent without
time-awareness which cannot distinguish between timeout terminations and environmental ones.
(b) An agent with the proposed time-awareness that learns to stay in place when there is not enough
time to reach a goal. (c) An agent with the proposed partial-episode bootstrapping that continues to
bootstrap from any early terminations in order to maximize its return over an indefinite period.

reveal higher expected return than safer ones as approaching the end of the time limit. In Section 2,
we study this case and illustrate that due to the presence of the time limit, the remaining time is
present in the environment’s state and is essential to its Markov property (Sutton & Barto, 1998).
Therefore, we propose to include a notion of the remaining time in the agent’s input, an approach
that we refer to as time-awareness. We describe various general scenarios where lacking a notion
of the remaining time can lead to suboptimal policies and instability, and demonstrate significant
performance improvements for time-aware agents.

Optimizing for the expectation of the return specified by Equation 1 is relevant for time-unlimited
tasks where the interaction is not limited in time by nature. In this case, the agent has to maximize
its expected return over an indefinite (e.g. infinite) period. However, it is desirable to use time limits
in order to diversify the agent’s experience. For example, starting from highly diverse states can
avoid converging to suboptimal policies that are limited to a fraction of the state space. In Section
3, we show that in order to learn good policies that continue beyond the time limit, it is important
to differentiate between the terminations that are due to time limits and those from the environment.
Specifically, for value-based algorithms, we propose to continue bootstrapping at states where termi-
nation is due to the time limit, or generally any other causes other than the environmental ones. We
refer to this method as partial-episode bootstrapping. We describe various scenarios where having a
time limit can facilitate learning, but where the aim is to learn optimal policies for indefinite periods,
and demonstrate that our method can significantly improve performance.

We evaluate the impact of the proposed methods on a range of novel and popular benchmark domains
using a deep reinforcement learning (Arulkumaran et al., 2017; Henderson et al., 2017) algorithm
called the Proximal Policy Optimization (PPO), one which has recently been used to achieve state-
of-the-art performance in many domains (Schulman et al., 2017; Heess et al., 2017). We use the
OpenAI Baselines1 implementation of the PPO algorithm with the hyperparameters reported by
Schulman et al. (2017), unless explicitly specified. All novel environments are implemented using
the OpenAI Gym framework (Brockman et al., 2016) and the standard benchmark domains are from
the MuJoCo (Todorov et al., 2012) Gym collection. We modified the TimeLimit wrapper to include
remaining time in the observations for the proposed time-aware agent and a flag to separate timeout
terminations from environmental ones for the proposed partial-episode bootstrapping agent. For
every task involving PPO, to have perfect reproducibility, we used the same 40 seeds from 0 to 39 to
initialize the pseudo-random number generators for the agents and environments. Every 5 training
cycles (i.e. 10240 time steps), we perform an evaluation on a complete episode and store the sums
of rewards, discounted returns, and estimated state-values. For generating the performance plots, we
average the values across all runs and then apply smoothing with a sliding window of size 10. The
performance graphs show these smoothed averages as well as their standard error.

We empirically show that time-awareness significantly improves the performance and stability of
PPO for the time-limited tasks and can sometimes result in quite interesting behaviors. For example,

1https://github.com/openai/baselines

2

https://github.com/openai/baselines

Under review as a conference paper at ICLR 2018

in the Hopper-v1 domain with T = 300, our agent learns to efficiently jump forward and fall towards
the end of its time in order to maximize its travelled distance and achieve a “photo finish”. For the
time-unlimited tasks, we show that bootstrapping at the end of partial episodes allows to significantly
outperform the standard PPO. In particular, on Hopper-v1, even if trained with episodes of only 200
steps, our agent manages to learn to hop for at least 106 time steps, resulting in more than two hours
of rendered video. Detailed results for all variants of the tasks using PPO with and without the
proposed methods are available in the Appendix. The source code will be made publicly available
shortly. A visual depiction of highlights of the learned behaviors can be viewed at the address
sites.google.com/view/time-limits-in-rl.

2 TIME-AWARENESS FOR TIME-LIMITED TASKS

In tasks that are time-limited by nature, the learning objective is to optimize the expectation of the
return Gγ0:T from Equation 2. Interactions are systematically terminated at a fixed predetermined
time step T if no environmental termination occurs earlier. This time-wise termination can be seen
as transitioning to a terminal state whenever the time limit is reached. The states of the agent’s
environment, formally a Markov decision process (MDP) (Puterman, 2014), thus must contain a
notion of the remaining time that is used by its transition function. This time-dependent MDP can
be thought of as a stack of T time-independent MDPs, one for each time step, followed by one that
only transitions to a terminal state. Thus, a decision-making agent in such an environment, at every
time step t ∈ {0, ..., T −1}, takes a decision that results in transitioning to a new state from the next
MDP in the stack and receiving a reward.

Thus, a time-unaware agent effectively has to act in a partially observable Markov decision process
(POMDP) (Lovejoy, 1991) where states that only differ by their remaining time appear identical.
This phenomenon is a form of state-aliasing (Whitehead & Ballard, 1991) that is known to lead to
suboptimal policies and instability due to the infeasibility of correct credit assignment. In this case,
the terminations due to time limits can only be interpreted as part of the environment’s stochasticity
where the time-unaware agent perceives a chance of transitioning to a terminal state from any given
state. In fact, this perceived stochasticity is dynamically changing with the agent’s behavioral policy.
For example, an agent could choose to stay in a fixed initial state during the entire course of an
episode and perceive the probability of termination from that state to be 1

T , whereas it could choose
to always move away from it in which case this probability would be perceived to be zero.

In the view of the above, we propose time-awareness for reinforcement learning agents in time-
limited domains by including directly the remaining time T − t in the agent’s representation of the
environment’s state or by providing a mean to infer it. The importance of the inclusion of a notion
of time in time-limited problems was first demonstrated by Harada (1997), but seems to have been
overlooked in the design of the benchmark domains and the evaluation of reinforcement learning
agents. A major difference between the approach of Harada (1997) and that of ours, however, is that
we consider a more general class of time-dependent MDPs where the reward distribution and the
transitions can also be time-dependent, preventing the possibility to consider multiple time instances
at once as it is the case for the QT-learning algorithm (Harada, 1997).

Here, we illustrate the issues faced by time-unaware agents by exemplifying the case for value-based
methods. The state-value function for a time-aware agent in an environment with time limit T is:

vπ(s,T − t)
.
= Eπ [Gγt:T |St = s] (3)

By denoting an estimate of the state-value function by v̂π , the temporal-difference (TD) update rule
(Sutton, 1988) after transitioning from a state s to a state s′ and receiving a reward r as a result of
an action a is given by either of the following expressions conditioned on the time step t:

v̂π(s,T − t)← (1− α)v̂π(s,T − t) + α (r + γv̂π(s
′,T − t+ 1)) for t < T − 1

v̂π(s,1) ← (1− α)v̂π(s,1) + αr for t = T − 1
(4)

The proposed added notion of the remaining time is indicated in bold and blue. A time-unaware
agent would be deprived of this information and thus would update v̂π(s) with or without bootstrap-
ping from the estimated value of s′ depending on whether the time limit is reached. Confused by the
conflicting updates for estimating the value of the same state, instead of learning an accurate value
function, this time-unaware agent learns an approximate average of these inconsistent updates.

3

https://sites.google.com/view/time-limits-in-rl

Under review as a conference paper at ICLR 2018

Figure 2: The color-coded learned action probabili-
ties overlaid on our Queue of Cars problem (black and
white indicate 0 and 1, respectively). For each block,
the top row represents the dangerous action and the
bottom row the safe one. The 9 non-terminal states
are represented horizontally. Left: a time-aware PPO
agent at various times: the agent learns to optimally se-
lect the dangerous action. Right: 5 different instances
of the time-unaware PPO agent.

If the time limit T is never varied, inclusion of the time t as a notion of the remaining time would be
sufficient. However, for more generality we choose to represent the remaining time T−t. In practice,
we used the remaining time normalized from 1 to 0, concatenated to the observations provided by
the Gym environments by modifying the TimeLimit wrapper.

2.1 THE LAST MOMENT PROBLEM

jump

stay

+1

0 -1

A B

stayTo give a simple example of the learning of an optimal time-dependent policy,
we consider an MDP containing two states A and B. The agent always starts in
A and has the possibility to choose an action to “stay” in place with no rewards
or a “jump” action that transitions it to state B with a reward of +1. However,
state B is considered a trap where the only possible action leads to a penalty of −1. The episodes
terminate after a fixed number of steps T . The goal of the game is thus to jump at the last moment.
For a time-unaware agent, the task is impossible to master for T > 1 and the best feasible policy
would be to stay in place, resulting in an overall return of 0. In contrast, a time-aware agent can
learn to stay in place for T − 1 steps and then jump, scoring an undiscounted sum of rewards of +1.

2.2 THE TWO-GOAL GRIDWORLD PROBLEM

50

20

To further illustrate the impact of state-aliasing for time-unaware agents, we
consider a deterministic gridworld environment (see Figure 1) consisting of
two possible goals rewarding 50 for reaching the top-right and 20 for the
bottom-left. The agent has 5 actions: to move in cardinal directions or to stay
in place. Any movement incurs a penalty of −1 while staying in place gen-
erates a reward of 0. Episodes terminate via a timer at T = 3 or if the agent
has reached a goal. The initial state is randomly selected for every episode,
excluding goal states. For training, we used a tabular Q-learning (Watkins &
Dayan, 1992) with completely random actions, trained until convergence with a decaying learning
rate and a discount factor of γ = 0.99.

The time-aware agent has a state-action value table for each time step and easily learns the optimal
policy which is to go for the closest goal when there is enough time, and to stay in place otherwise.
For the time-unaware agent, the greedy values of the cells adjacent to the goal with the terminal
reward of 50 converge to 49 and those adjacent to the goal with 20 converge to 19 because of the−1
penalty on every move. Then, since the time limit is T = 3, from each remaining cell, the agent may
have between 1 and 3 steps. For 2/3 of the times, the time-unaware agent receives−1 and bootstraps
from the successor cell and for 1/3 of the times it receives −1 and experiences termination. Thus,
for v(s) = argmaxa q(s, a) and N(s) denoting the neighbors of s, for states non adjacent to the
goals we have: v(s) = 2/3(−1+γmaxs′∈N(s) v(s

′))+1/3(−1). This learned value function leads
to a policy that always tries to go for the closest goal even if there is not enough time. While the
final optimal policy does not require time information, this example clearly shows that the confusion
during training due to state-aliasing can create a leakage of the values to states that are out of reach.

It is worth noting that, Monte Carlo methods such as REINFORCE (Williams, 1992; Sutton et al.,
2000) are not susceptible to this leakage as they use complete returns instead of bootstrapping.
However, without awareness of the remaining time, Monte Carlo methods would still not be able
to learn an optimal policy in many cases, such as the Last Moment problem or the Queue of Cars
problem in the subsequent section.

4

Under review as a conference paper at ICLR 2018

0.0 0.5 1.0
training timesteps 1e6

20

10

re
tu

rn
s

(
=

0
.9

9
)

PPO time

PPO

0.0 0.5 1.0
training timesteps 1e6

40

30

20

10

re
tu

rn
s

(
=

1
)

(a) Reacher-v1 (T = 50)

0.0 0.5 1.0
training timesteps 1e6

94

96

98

100

re
tu

rn
s

(
=

0
.9

9
)

episode timesteps

0

500

1000

tra
ining ti

m
este

ps

×10
60.0

0.5

1.0

v
a
lu

e
s

20
40
60
80
100

0.0 0.5 1.0
training timesteps 1e6

800

900

1000

re
tu

rn
s

(
=

1
)

episode timesteps

0

500

1000

tra
ining ti

m
este

ps

×10
60.0

0.5

1.0

v
a
lu

e
s

250
500
750
1000

(b) InvertedPendulum-v1 (T = 1000)

Figure 3: Comparison of PPO with and without the remaining time in input. (a) Performance on
the Reacher-v1. (b) Performance on the InvertedPendulum-v1 (Left) and the learned state-value
estimations against episodic time steps and training progress (Right). Top: The results for γ = 0.99.
Bottom: The result for γ = 1.

2.3 THE QUEUE OF CARS PROBLEM

?An interesting property of time-aware agents is the ability to
dynamically adapt to the remaining time that can, for example,
be correlated with the current progress of the agent. To illus-
trate this, we introduce an environment which we call Queue
of Cars where the agent controls a vehicle that is held up be-
hind an intermittently moving queue of cars. The agent’s goal is to reach an exit located 9 slots
away from its starting position. At any time, the agent can choose the “safe” action to stay in the
queue which may result in advancing to the next slot with 50% probability. Alternatively, it has the
possibility to attempt to overtake by a “dangerous” action that even though it has 80% probability to
advance, it poses a 10% chance of collision with the oncoming traffic and terminating the episode.
The agent receives no rewards unless it reaches its destination to receive a +1 reward. The episode
terminates by reaching the destination, running out of time, or colliding during an overtake.

In this task, an agent can have a lucky sequence of safe transitions and reach the destination within
the time limit without ever needing to attempt an overtake. However, the opposite can also happen in
which case the agent would need to overtake the cars to reach its destination in time. Time-unaware
agents cannot possibly gauge the necessity to rush and thus can only learn a statistically efficient
combination of dangerous and safe actions based on position only. Figure 2 shows this situation for
a time-unaware PPO over 5 different runs against a time-aware one that adapts to the remaining time
based on its distance to the goal to take more dangerous actions in the face of time insufficiency. A
discount factor of γ = 1 was used for both agents.

2.4 STANDARD CONTROL TASKS

In this section, we evaluate the performance
of PPO with and without the remaining time
as part of the agent’s input on a set of de-
terministic, continuous control tasks from the
OpenAI’s MuJoCo Gym benchmarks (Brock-
man et al., 2016; Todorov et al., 2012; Duan
et al., 2016). By default, these environments
use predefined time limits and are each reset to a random initial state after an episode termination.

Figure 3 shows the performance of a time-unaware PPO against a time-aware one, demonstrating
that time-awareness significantly improves the performance of PPO. The learned state-values shown
for the InvertedPendulum-v1 task (see Figure 3b) illustrate perfectly the difference between a time-

5

Under review as a conference paper at ICLR 2018

0 1 2
training timesteps 1e6

175

200

225

250

275

re
tu

rn
s

(
=

0
.9

9
)

PPO time

PPO

0 1 2
training timesteps 1e6

400

600

800

1000
re

tu
rn

s
(

=
1

)

Figure 4: Comparison of PPO with and without the remaining time in input on Hopper-v1
(T = 300). Left: Performance evaluations. Middle: The average last pose of the time-aware
PPO agent, reproduced with aligned x-axes. A green mark indicates the last measured y coordinate
of the agent used in the task with the termination threshold of 0.7 meters indicated with a red line.
Right: The average last pose of the time-unaware PPO. Top: Discount factor of 0.99. Bottom: Dis-
count factor of 1. The different instances of the time-aware agent learn to jump forward before the
time limit. A larger discount factor highly destabilizes the time-unaware PPO.

aware agent and a time-unaware one in terms of their estimated expected return as the episode
progresses. While time-awareness enables the agent to learn an accurate exponential or linear decay
of the expected return with time, the time-unaware agent only learns a constant estimate due to
state-aliasing.

Figure 4 (left) shows the performance comparisons of PPO with and without time-awareness in the
Hopper-v1 domain with time limit T = 300. With a discount rate of 0.99, the standard PPO is
initially on par with the time-aware PPO and later starts to plateau. As the agents become better,
they start to experience terminations due to the time limit more frequently, at which point the time-
unaware agent begins to perceive inconsistent returns for seemingly similar states. The advantage of
the time-aware PPO becomes even clearer in the case of a discount rate of 1 where the time-unaware
PPO diverges quite drastically. A possible reason is that the time-unaware PPO agent experiences
much more significant conflicts as the returns are now the sum of the undiscounted rewards. This is
while, the time-aware PPO still continues to perform well as it is able to assign credits appropriately
based on the knowledge of the remaining time.

Time-awareness does not only help agents by avoiding the conflicting updates. In fact, in naturally
time-limited tasks where the agents have to maximize their performance for a limited time, time-
aware agents can demonstrate quite interesting ways of ensuring to achieve this objective. Figure 4
show the average final pose of the time-aware (middle) and time-unaware (right) agents. We can see
that the time-aware agent learns to jump towards the end of its time in order to maximize its expected
return, resulting in a “photo finish”, something that a time-unaware agent cannot accurately achieve.
Finally, Figure 4 (bottom-right) shows an interesting behavior robustly demonstrated by the time-
unaware PPO in the case of γ = 1 that is to actively stay in place, accumulating at least the rewards
coming from the bonus for staying alive.

In this section, we explored the scenario where the aim is to learn a policy that maximizes the ex-
pected return over a limited time. We proposed to include a notion of the remaining time as part of
the agent’s observation to avoid state-aliasing which can cause suboptimal policies and instability.
However, this scenario is not always ideal as there are cases where, even though the agent expe-
riences time limits in its interaction with the environment, the objective is to learn a policy for a
time-unlimited task. For instance, as we saw in the Hopper environment, the learned policy that
maximizes the return over the T = 300 time steps generally results in a photo finish which would
lead to a fall and subsequent termination if the simulation was to be extended. Such a policy is not
viable if the goal is to learn to move forward for an indefinite period of time. One solution is to not
have time limits during training. However, it is often more efficient to instead have short snippets of

6

Under review as a conference paper at ICLR 2018

interactions to expose the agent to diverse experiences. In the next section, we explore this case and
propose a method that enables to effectively learn in such domains from partial episodes.

3 PARTIAL-EPISODE BOOTSTRAPPING FOR TIME-UNLIMITED TASKS

In tasks that are not time-limited by nature, the learning objective is to optimize the expectation
of the return Gγ0 from Equation 1. While the agent has to maximize its expected return over an
indefinite (possibly infinite) period, it is desirable to still use time limits in order to frequently reset
the environment and increase the diversity of the agent’s experiences. A common mistake, however,
is to then consider the terminations due to such time limits as environmental ones. This is equivalent
to optimizing for returnsGγ0:T (Equation 2), not accounting for the possible future rewards that could
have been experienced if no time limits were used.

In the case of value-based algorithms, we propose to continue bootstrapping at states where termina-
tion is due to the time limit. The state-value function of a policy (from Equation 3) can be rewritten
in terms of the time-limited return Gγt:T and the bootstrapped value from the last state vπ(ST):

vπ(s)
.
= Eπ

[
Gγt:T + γT−tvπ(ST)|St = s

]
(5)

By denoting an estimate of the state-value function by v̂π , the temporal-difference update rule after
transitioning from a state s to a state s′ and receiving a reward r as a result of an action a is given
by either of the following expressions conditioned on the time step t:

v̂π(s)← (1− α)v̂π(s) + α (r + γv̂π(s
′)) for t < T − 1

v̂π(s)← (1− α)v̂π(s) + α (r + γv̂π(s
′)) for t = T − 1

(6)

The proposed partial-episode bootstrap is indicated in bold and green. An agent without this modi-
fication would update v̂π(s) with or without bootstrapping from the estimated value of s′ depending
on whether there is some remaining time or not. Similarly to Equation 4, the conflicting updates for
estimating the value of the same state leads to an approximate average of these updates.

While this section is related to the previous one, it is somewhat orthogonal. In the previous section,
one of the issues was bootstrapping values from states that were out-of-reach, letting the agent
falsely believe that more rewards were available after. On the opposite, the problem presented here
is when systematic bootstrapping is not performed from states at the time limit and thus, forgetting
that more rewards would actually be available thereafter.

3.1 THE TWO-GOALS GRIDWORLD PROBLEM

We revisit the gridworld environment from Section 2.2. While previously the agent’s task was to
learn an optimal policy for a given time limit, we now consider how an agent can learn a good policy
for an indefinite period from partial-episode experiences. We use the same setup as in Section 2.2.
Again, we use a tabular Q-learning, but instead of considering terminations due to time limits as
environmental ones, we continue bootstrapping from the non-terminal states that are reached at the
time limits. This modification allows our agent to learn the time-unlimited optimal policy of always
going for the most rewarding goal (see Figure 1c). On the other hand, while the standard agent that
is not performing the final bootstrapping (see Figure 1a) had values from out-of-reach cells leaking
into its learned value function, these bootstraps did not occur in sufficient proportion with respect to
the terminations due to time limits in order to let the agent learn the time-unlimited optimal policy.

For the next experiments, we again use PPO but with two key modifications. We modify the Gym’s
TimeLimit wrapper to not include the remaining time (as needed for Section 2), but instead to
include a flag to differentiate the terminations due to the time limit from the environmental ones.
We also modify the PPO’s implementation to enable continuing to bootstrap when terminations are
due to time limits only. This involves modifying the implementation of the generalized advantage
estimation (GAE) (Schulman et al., 2016). While GAEs use an exponentially-weighted average
of n-step value estimations for bootstrapping that are more complex than the one-step lookahead
bootstrapping explained in Equation 6, continuing to bootstrap from the last non-terminal states (i.e.
at the end of the partial-episodes) is the only modification required for the proposed approach.

7

Under review as a conference paper at ICLR 2018

0 2 4
training timesteps 1e6

175

200

225

250

275

re
tu

rn
s

(
=

0
.9

9
)

PPO bootstrap

PPO

(a) Hopper-v1 (T = 200)

0 2 4
training timesteps 1e6

0.0

0.5

1.0

1.5

2.0

re
tu

rn
s

(
=

0
.9

9
)

(b) InfiniteCubePusher (T = 50)

Figure 5: Performance evaluations of PPO with and without partial-episode bootstrapping. (a) On
Hopper-v1 with T = 200 during the training and T = 106 during the evaluations. (b) On Infinite-
CubePusher with T = 50 during the training and T = 103 during the evaluations. The standard
PPO agent degrades drastically after some time.

3.2 HOPPER

Here, we consider the Hopper-v1 environment from Section 2.4, but instead aim to learn a policy that
maximizes the agent’s expected return over a time-unlimited horizon. We do not revisit the Reacher-
v1 and the InvertedPendulum-v1 environments as their extensions to time-unlimited domains is not
of particular value—that is, staying at the target position long after the target is reached (Reacher-v1)
or maintaining the pendulum’s vertical pose long after it is balanced (InvertedPendulum-v1). The
aim here is to show that by continuing to bootstrap from episode terminations that are due to time
limits only, we are able to learn good policies for time-unlimited domains. Figure 5a demonstrates
performance evaluations of the standard PPO against one with the proposed partial-episode boot-
strapping modification. The agents are trained on time-limited episodes of maximum T = 200 time
steps, and are evaluated in the same environment, but with T = 106 time steps. We show that the
proposed bootstrapping method significantly outperforms the standard PPO. During the evaluations,
the standard PPO agent managed to reach a maximum of 7238 time steps on only one of the 40 train-
ing seeds, while our agent managed to reach the evaluation time limit of T = 106 on 7 occasions.
This is quite impressive as this time limit corresponds to more than 2 hours of rendered hopping.

3.3 THE INFINITE CUBE PUSHER TASK

The proposed bootstrapping at time-limit terminations was shown to en-
able our agent to effectively learn a good long-term policy on Hopper-v1.
However, it could be argued that since the Hopper-v1 environment always
starts in quite similar configurations, the resultant policy is overfitted and
almost completely cyclic. To demonstrate the ability of our proposed
agent in learning non-cyclic policies for time-unlimited domains, we cre-
ate a novel MuJoCo environment consisting of a torque-controlled ball
that has to be used to push a cube to specified target positions. Once the
cube has touched the target, the agent is rewarded and the target is moved
away from the cube to a new random position. Because the task lacks
terminal states, it can continue indefinitely. The objects are surrounded by fixed bounding walls.
The inner edge of the walls stops the cube but not the ball in order to let the agent move the cube
even if it is in a corner. The movements of the ball are limited to the horizontal plane and to the
area defined by the outer edge of the walls. The environment’s state representation consists of the
objects’ coordinates and velocities, and the cube’s rotation. The agent receives no rewards unless
the cube reaches a target location, at which point the agent receives a reinforcement reward of 1.

Due to the absence of reward shaping, reinforcement learning agents are prone to being stuck, unable
to learn to solve problems. Thus it is often useful to introduce a time limit during training in order
to facilitate learning. We use a training time limit of 50, only sufficient to push the cube to one
target location in most cases. The evaluations, however, consisted of 103 steps, long enough to
allow successfully reaching several targets. Figure 5b shows the performance comparison of the
standard PPO against one with the proposed modification. An entropy coefficient of 0.03 is used to
encourage exploration and higher the chance of reaching a target and experiencing a reinforcement
reward. We found this value to yield best performance for both agents among those from the set
{0, 0.01, 0.02, 0.03, 0.04, 0.05}. While the performance of the standard PPO degrades significantly

8

Under review as a conference paper at ICLR 2018

after some time, it is clear that bootstrapping at the time limit helps our agent to perform significantly
better. The maximum number of targets reached by our agent in a single episode of evaluation
(T = 103) was 36 against 21 for the standard PPO.

4 DISCUSSION

We showed in Section 2 that time-awareness is required for correct credit assignment in domains
where the agent has to optimize its performance over a time-limited horizon. However, even without
the knowledge of the remaining time, reinforcement learning agents still often manage to perform
relatively well. This could be due to several reasons including: (1) If the time limit is sufficiently
long that terminations due to time limits are hardly ever experienced—for instance, in the Arcade
Learning Environment (ALE) (Bellemare et al., 2013; Machado et al., 2017) domains where T = 5
minutes of interaction time is perhaps sufficiently long in most cases. (2) If there are clues in the
environment that are correlated with the remaining time—for example, time-dependant attributes
such as the forward distance. (3) If the relationship among the state-dependent action-advantages
remains preserved. (4) If state-aliasing due to unawareness of the remaining time does not occur
because it is not likely to observe the same states at different remaining times. (5) If the discount
factor is sufficiently small to reduce the impact of the confusion. Furthermore, many methods exist
to handle POMDPs (Lovejoy, 1991). In deep learning (LeCun et al., 2015; Schmidhuber, 2015),
it is highly common to use a stack of previous observations or recurrent neural networks (RNNs)
(Goodfellow et al., 2016) to address scenarios with partial observations (Wierstra et al., 2009). These
solutions may to an extent help when the remaining time is not included as part of the agent’s
input. However, they are much more complex architectures and are only next-best solutions, while
including a notion of the remaining time is quite simple and allows better diagnosis of the learned
policies. The proposed approach is quite generic and can potentially be applied to domains with
varying time limits where the agent has to learn to generalize as the remaining time approaches
zero. In real-world applications such as robotics the proposed approach could easily be adapted by
using the real time instead of simulation time steps.

In order for the proposed partial-episode bootstrapping in Section 3 to work, as is the case for value-
based methods in general, the agent needs to bootstrap from reliable estimated predictions. This is
in general resolved by enabling sufficient exploration. However, when the interactions are limited
in time, exploration of the full state-space may not be feasible from some fixed starting states. Thus,
a good way to allow appropriate exploration in such domains is to sufficiently randomize the initial
states. It is worth noting that the proposed partial-episode bootstrapping is quite generic in that it is
not restricted to partial episodes caused only due to time limits. In fact, this approach is valid for
any early termination causes. For instance, it is common in the curriculum learning literature to start
from near the goal states (easier tasks), and gradually expand to further states (more difficult tasks)
(Florensa et al., 2017). In this case, it can be helpful to stitch the learned values by terminating the
episodes and bootstrapping as soon as the agent enters a state that is already well known.

Since the proposed methods were shown to enable to better optimize for the time-limited and time-
unlimited domains, we believe that they have the potential to improve the performance and stability
of a large number of existing reinforcement learning algorithms. We also propose that, since rein-
forcement learning agents are in fact optimizing for the expected returns, and not the undiscounted
sum of rewards, it is more appropriate to consider this measure for performance evaluation.

5 CONCLUSION

We considered the problem of learning optimal policies in time-limited and time-unlimited domains
using time-limited interactions. We showed that when learning policies for time-limited tasks, it is
important to include a notion of the remaining time as part of the agent’s input. Not doing so can
cause state-aliasing which in turn can result in suboptimal policies, instability, and slower conver-
gence. We then showed that, when learning policies that are optimal for time-unlimited tasks, it
is more appropriate to continue bootstrapping at the end of the partial episodes when termination
is due to time limits, or any other early termination causes other than environmental ones. In both
cases, we illustrated that our proposed methods can significantly improve the performance of PPO
and allow to optimize more directly, and accurately, for either of the optimality models.

9

Under review as a conference paper at ICLR 2018

REFERENCES

Kai Arulkumaran, Marc P Deisenroth, Miles Brundage, and Anil A Bharath. A brief survey of deep
reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research
(JAIR), 47:253–279, 2013.

Dimitri P. Bertsekas and John Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning
(ICML), pp. 1329–1338, 2016.

Carlos Florensa, David Held, Markus Wulfmeier, and Pieter Abbeel. Reverse curriculum generation
for reinforcement learning. arXiv preprint arXiv:1707.05300, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Daishi Harada. Reinforcement learning with time. In AAAI Conference on Artificial Intelligence
(AAAI), pp. 577–582. AAAI Press, 1997.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez,
Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. Emergence of locomotion behaviours in rich
environments. arXiv preprint arXiv:1707.02286, 2017.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research (JAIR), 4:237–285, 1996.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015. URL http://dx.doi.org/10.1038/nature14539.

William S Lovejoy. A survey of algorithmic methods for partially observed Markov decision pro-
cesses. Annals of Operations Research, 28(1):47–65, 1991. URL https://doi.org/10.
1007/BF02055574.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation protocols and open
problems for general agents. arXiv preprint arXiv:1709.06009, 2017.

Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117,
2015. URL https://doi.org/10.1016/j.neunet.2014.09.003.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International Con-
ference on Learning Representations (ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44, 1988. URL https://doi.org/10.1007/BF00115009.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

10

http://dx.doi.org/10.1038/nature14539
https://doi.org/10.1007/BF02055574
https://doi.org/10.1007/BF02055574
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1007/BF00115009

Under review as a conference paper at ICLR 2018

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 1057–1063, 2000.

Csaba Szepesvari. Algorithms for Reinforcement Learning. Morgan and Claypool, 2010.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on, pp. 5026–5033,
2012.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292, 1992.
URL http://dx.doi.org/10.1007/BF00992698.

Steven D. Whitehead and Dana H. Ballard. Learning to perceive and act by trial and error. Machine
Learning, 7(1):45–83, 1991. URL https://doi.org/10.1023/A:1022619109594.

Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. Recurrent policy gradients.
Logic Journal of IGPL, 18(5):620–634, 2009.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992. URL https://doi.org/10.1007/
BF00992696.

11

http://dx.doi.org/10.1007/BF00992698
https://doi.org/10.1023/A:1022619109594
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

Under review as a conference paper at ICLR 2018

SUPPLEMENTARY MATERIAL:
TIME LIMITS IN REINFORCEMENT LEARNING

A ALL RESULTS FOR TIME-AWARE PPO

A.1 QUEUE OF CARS

0.0 0.5 1.0
1e6

0.3

0.4

0.5

0.6

0.7
sums of rewards

0.0 0.5 1.0
1e6

0.3

0.4

0.5

0.6

returns

0.0 0.5 1.0
1e6

10

11

12

13
lengths of episodes

0 3 7
11

15 ×1060.0
0.5

1.0

0.6
0.8

estimated state values

0 3 7
11

15 ×1060.0
0.5

1.0
0.4
0.6
0.8

estimated state values

PPO time
PPO

QueueOfCars-v0, = 0.99, training limit = 15, evaluation limit = 15

0.0 0.5 1.0
1e6

0.3

0.4

0.5

0.6

0.7
returns

0.0 0.5 1.0
1e6

10

11

12

13
lengths of episodes

0 3 7
11

15 ×1060.0
0.5

1.0

0.6

0.8

estimated state values

0 3 7
11

15 ×1060.0
0.5

1.0
0.4

0.6

0.8

estimated state values

PPO time
PPO

QueueOfCars-v0, = 1.0, training limit = 15, evaluation limit = 15

A.2 INVERTEDPENDULUM-V1

0.0 0.5 1.0
1e6

800

850

900

950

1000
sums of rewards

0.0 0.5 1.0
1e6

94

96

98

100
returns

0.0 0.5 1.0
1e6

800

850

900

950

1000
lengths of episodes

0
250

500
750

1000 ×1060.0
0.5

1.0
25
50
75
100

estimated state values

0
250

500
750

1000 ×1060.0
0.5

1.0
25
50
75

estimated state values

PPO time
PPO

InvertedPendulum-v1, = 0.99, training limit = 1000, evaluation limit = 1000

0.0 0.5 1.0
1e6

800

900

1000
returns

0.0 0.5 1.0
1e6

800

900

1000
lengths of episodes

0
250

500
750

1000 ×1060.0
0.5

1.0

500

1000

estimated state values

0
250

500
750

1000 ×1060.0
0.5

1.0
250
500
750

estimated state values

PPO time
PPO

InvertedPendulum-v1, = 1.0, training limit = 1000, evaluation limit = 1000

A.3 REACHER-V1

0.0 0.5 1.0
1e6

30

20

10

sums of rewards

0.0 0.5 1.0
1e6

20

10

returns

0.0 0.5 1.0
1e6

48

50

52

lengths of episodes

0 12 25 37
50 ×1060.0

0.5
1.0
30
20
10
0

estimated state values

0 12 25 37
50 ×1060.0

0.5
1.0
30
20
10

estimated state values

PPO time
PPO

Reacher-v1, = 0.99, training limit = 50, evaluation limit = 50

0.0 0.5 1.0
1e6

40

30

20

10

returns

0.0 0.5 1.0
1e6

48

50

52

lengths of episodes

0 12 25 37
50 ×1060.0

0.5
1.0

20

0

estimated state values

0 12 25 37
50 ×1060.0

0.5
1.0
30
20
10

estimated state values

PPO time
PPO

Reacher-v1, = 1.0, training limit = 50, evaluation limit = 50

12

Under review as a conference paper at ICLR 2018

A.4 HOPPER-V1

0 1 2
1e6

400

600

800

1000

sums of rewards

0 1 2
1e6

175

200

225

250

275
returns

0 1 2
1e6

150

200

250

lengths of episodes

0 75
150

225
300 ×1060

1
2

100
200
300

estimated state values

0 75
150

225
300 ×1060

1
20
100
200

estimated state values

PPO time
PPO

Hopper-v1, = 0.99, training limit = 300, evaluation limit = 300

0 1 2
1e6

400

600

800

1000

returns

0 1 2
1e6

150

200

250

300
lengths of episodes

0 75
150

225
300 ×1060

1
2

500

1000

estimated state values

0 75
150

225
300 ×1060

1
2

200
400

estimated state values

PPO time
PPO

Hopper-v1, = 1.0, training limit = 300, evaluation limit = 300

0 1 2
1e6

500

1000

1500

2000

sums of rewards

0 1 2
1e6

175

200

225

250

275
returns

0 1 2
1e6

200

400

600

lengths of episodes

0
250

500
750

1000 ×1060
1

20
100
200
300

estimated state values

0
250

500
750

1000 ×1060
1

20
100
200
300

estimated state values

PPO time
PPO

Hopper-v1, = 0.99, training limit = 1000, evaluation limit = 1000

0 1 2
1e6

1000

2000

3000
returns

0 1 2
1e6

200

400

600

800

1000
lengths of episodes

0
250

500
750

1000 ×1060
1

20
1000
2000

estimated state values

0
250

500
750

1000 ×1060
1

2
500
1000
1500

estimated state values

PPO time
PPO

Hopper-v1, = 1.0, training limit = 1000, evaluation limit = 1000

13

Under review as a conference paper at ICLR 2018

B ALL RESULTS FOR PPO WITH PARTIAL-EPISODE BOOTSTRAPPING

B.1 HOPPER-V12

0 2 4
1e6

0

50000

100000

sums of rewards

0 2 4
1e6

175

200

225

250

275
returns

0 2 4
1e6

0

10000

20000

30000
lengths of episodes

0
2500

5000
7500

10000 ×1060
2

4
200
0

200
400

estimated state values

0
1809

3619
5428

7238 ×1060
2

4
0

100
200
300

estimated state values

PPO bootstrap
PPO

Hopper-v1, = 0.99, training limit = 200, evaluation limit = 1000000

0 2 4
1e6

0

20000

40000

60000

80000
sums of rewards

0 2 4
1e6

175

200

225

250

275
returns

0 2 4
1e6

0

20000

40000

lengths of episodes

0
2500

5000
7500

10000 ×1060
2

4
0

200

400

estimated state values

0
2500

5000
7500

10000 ×1060
2

4
0

200

estimated state values

PPO bootstrap
PPO

Hopper-v1, = 0.99, training limit = 300, evaluation limit = 1000000

0 2 4
1e6

0

50000

100000

150000
sums of rewards

0 2 4
1e6

175

200

225

250

275
returns

0 2 4
1e6

0

10000

20000

30000

40000
lengths of episodes

0
2500

5000
7500

10000 ×1060
2

40

200

400

estimated state values

0
2500

5000
7500

10000 ×1060
2

4
0

100
200
300

estimated state values

PPO bootstrap
PPO

Hopper-v1, = 0.99, training limit = 400, evaluation limit = 1000000

B.2 INFINITE CUBE PUSHER

0 2 4
1e6

0

5

10

15

20
sums of rewards

0 2 4
1e6

0.0

0.5

1.0

1.5

2.0

returns

0 2 4
1e6

950

975

1000

1025

1050
lengths of episodes

0
250

500
750

1000 ×1060
2

40
1
2

estimated state values

0
250

500
750

1000 ×1060
2

4
0.0
0.1
0.2

estimated state values

PPO bootstrap
PPO

InfiniteCubePusher-v0, = 0.99, training limit = 50, evaluation limit = 1000

0 2 4
1e6

0

5

10

15

20
sums of rewards

0 2 4
1e6

0.0

0.5

1.0

1.5

2.0

returns

0 2 4
1e6

950

975

1000

1025

1050
lengths of episodes

0
250

500
750

1000 ×1060
2

4

1
2

estimated state values

0
250

500
750

1000 ×1060
2

40.0
0.2
0.4
0.6

estimated state values

PPO bootstrap
PPO

InfiniteCubePusher-v0, = 0.99, training limit = 100, evaluation limit = 1000

0 2 4
1e6

0

5

10

15

20
sums of rewards

0 2 4
1e6

0.0

0.5

1.0

1.5

2.0
returns

0 2 4
1e6

950

975

1000

1025

1050
lengths of episodes

0
250

500
750

1000 ×1060
2

40
1
2

estimated state values

0
250

500
750

1000 ×1060
2

40.00
0.25
0.50
0.75

estimated state values

PPO bootstrap
PPO

InfiniteCubePusher-v0, = 0.99, training limit = 150, evaluation limit = 1000

2For the estimated state-value graphs, the episode time steps are only shown up to 10,000.

14

	Introduction
	Time-awareness for time-limited tasks
	The Last Moment problem
	The Two-Goal Gridworld problem
	The Queue of Cars problem
	Standard control tasks

	Partial-episode bootstrapping for time-unlimited tasks
	The Two-Goals Gridworld problem
	Hopper
	The Infinite Cube Pusher task

	Discussion
	Conclusion
	All results for time-aware PPO
	Queue of Cars
	InvertedPendulum-v1
	Reacher-v1
	Hopper-v1

	All results for PPO with partial-episode bootstrapping
	Hopper-v1
	Infinite Cube Pusher

