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ABSTRACT

While deep neural networks have shown promising results in a wide range of
applications on highly powerful computational devices, one challenging task is
to deploy a deep neural network on embedded devices for the widespread use.
Deep neural networks and specially convolutional neural networks are usually
over-parameterized and one possible solution is to remodel the network architec-
ture with a smaller network architecture with a trade-off on modeling accuracy
and performance. Here we take advantage of meta-learning algorithms to syn-
thesize a more efficient model while it boosts the modeling performance. To this
end, we propose an ensemble of deep evolutionary intelligence frameworks where
it synthesizes several very efficient models with less than 3% drop on modeling
accuracy and then aggregates them to boost the modeling performance. Exper-
imental results demonstrates that the proposed ensemble of Deep Evolutionary
Synthesis approach synthesizes an ensemble model which is 1.5X smaller than
the original network architecture while performing more accurate (83.30% com-
pared to 83.18%) than the original network in terms of modeling accuracy for
binary object segmentation.

1 INTRODUCTION

Deep neural networks (DNNs), specifically convolutional neural networks (CNNs), have made sig-
nificant progress in a wide range of applications across a number of domains LeCun et al. (2015);
Bengio et al. (2009). However, due to the large number of parameters, deep learning methods of-
ten require significant amount of memory and computational resources. Despite the fact that new
deep learning solutions have offered promising detection and classification performance, deploy-
able real-time methods are still strongly required, particularly for embedded applications. Structural
redundancy of traditional deep neural networks leads to increasing the required memory as well
as training and decision time, which intensifies the deployment cost of such methods in embedded
platforms Gong et al. (2014); Liu et al. (2015).

Recently, a wide range of approaches have targeted deep neural networks to reduce the redundancy
in parameters of the deep networks, and therefore attain efficient networks in terms of computations
and required memory. Among them, one can refer to compressing deep neural networks using
vector quantization Gong et al. (2014), pruning to lower the network complexity as well as over-
fitting Hanson & Pratt (1989); LeCun et al. (1990), combining quantization and pruning Han et al.
(2015), and evolutionary synthesis of deep models Shafiee & Wong (2016); Shafiee et al. (2016) as
some examples. However, reducing the redundancy in deep neural networks, in general, is prone to
having loss in detection accuracy.
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Ensemble learning has been traditionally used as an effective solution to attain a model with im-
proved generalisation ability Dietterich (2000; 2002). Recently, ensemble methods have been em-
ployed in a number of applications to combine different variations of deep neural networks, and
therefore improve the prediction performance Ciregan et al. (2012); Deng & Platt (2014); Du et al.
(2017). Multi-Column deep neural network was proposed in Ciregan et al. (2012) to boost recog-
nition performance for traffic sign classification by combining various DNNs trained on differently
preprocessed data.

In this paper, an efficient architecture of deep neural network is presented based on ensemble of
highly sparsified variations of a model. Model sparsification is performed by taking advantage of
the evolutionary deep intelligence framework Shafiee & Wong (2016) to synthesise highly efficient
independent networks. Over the evolutionary procedure, each network is trained towards yielding a
highly sparse set of synaptic weights and clusters across successive generations of evolution. The
ensemble of highly sparse neural networks is desired to achieve a high detection performance, yet
maintaining the capability to reduce the deployment costs.

2 METHODOLOGY

In this paper, the objective is to achieve an efficient architecture for a deep neural network model suit-
able for embedded applications, while improving the detection accuracy of the model. The proposed
framework works on the basis of ensemble learning of generated models through the evolutionary
synthesis.

Evolutionary Framework. The evolutionary synthesis of deep neural networks (Evo-net), inspir-
ing from biological evolution, tries to achieve an efficient architecture for the original deep model
Shafiee & Wong (2016). In evolutionary approach, the deep neural network model evolves in succes-
sive generations to yield highly efficient networks. This approach aims to mimic natural selection,
heredity, and random mutation from biological evolution. The architectural evolution is formu-
lated based on computational environmental factors in a random manner and a synaptic probability
model, where descendant network is synthesized relying on these synaptic probability models from
the ancestor network.

The genetic framework for the deep neural network architecture H with a set of possible synapses
S and a set of the synaptic strengthW is formulated as a conditional probability of the architecture
in synthesised in generation g given the architecture of its ancestor in generation g − 1,

P (Hg) = F(E) · P (Sg|Wg−1), (1)
where F(E) models the environmental factor to computationally limit resources available for the
descendant networks. The term F(E) constrains the number of synapses that can be synthesized
in the descendant network and is set to F(E) = K, where the quantity K enforces the highest
percentage of synapses desired in the descendant network.

To have a more efficient encoding scheme, synaptic clustering was proposed in ? to improve the
demands for memory and storage, as well as adaptability for parallel computations in GPUs. The
synthesis procedure in Eq. 2 is reformulated as

P (Hg) =
∏
c∈C

[Fc(E)P (s̄g,c|Wg−1) ·
∏
i∈c
Fs(E)P (sg,i|wg−1,i)], (2)

where Fc(·) and Fs(·) stand for the environmental factors enforced at the cluster and synapse levels,
respectively. Here sg,c ∈ Sg and s̄g,c ⊂ Sg denote a particular synapse and a particular cluster of
synapses at generation g for a given cluster c, and wg−1,i ∈ Wg−1. The specific synaptic cluster
in a deep convolutional architecture is allowed to be any subset of synapses such as a kernel or a
set of kernels. The descendant networks are synthesised and trained, and the evolutionary synthesis
process is successively repeated to achieve descendant networks of desired characteristics.

Ensemble of Classifiers Bagging Breiman (1996), as a popular and effective ensemble method,
aims to increase the stability of learning algorithms. The ensemble of networks in this paper, follows
bagging scheme, which is simply formed by taking average of the output of activations from several
networks generated through the evolutionary synthesis. For a given input image, the prediction of
all synthesised networks contributing the in ensemble are averaged.
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Table 1: Synaptic and cluster efficiency, A-E1 and A-E2, vs detection accuracy, Fβ at the forth
generation of the synthesized network.

Gen A-E1 A-E2 Fβ

0 1 1 0.8318
1 1.17 1.12 0.8294
2 1.42 1.28 0.8273
3 2.92 1.76 0.8136
4 4.57 2.14 0.8082

Table 2: Detection accuracy,Fβ , of the original network, synthesised networks, M1, M2, M3, and
ensemble of networks.

Original M1 M2 M3 Ensemble

0.8318 0.8182 0.8201 0.8250 0.8330

3 EXPERIMENTAL RESULTS AND DISCUSSION

In order to assess the efficacy of the proposed framework, the evolutionary synthesis is performed
across several generations, over parallel branches, to generate sparse deep models. The network
architecture efficiency and accuracy is assessed using MSRA-B dataset Jiang et al. (2013). The
MSRA-B dataset contains 5000 images, and is highly used for the application of visual saliency
detection. For the experiments, the dataset is divided into training, validation, and test subdivisions,
each containing 2500, 500, 2000 images respectively. The training and validation sets are augmented
using horizontal flipping for the training purpose. The model proposed in Luo et al. (2017), as a
high performance saliency detection method based on a multiscale structure, is opted as the original
network architecture. The network settings are set to the values suggested by the authors in the
original model Luo et al. (2017).

The deep neural network with the above setting is trained over a number of generations. At every
single generation, the model is forced by the environment factors to randomly remove a percentage
of the parameters. Table 1 illustrated the synaptic and cluster efficiency of the synthesised at the forth
generation of the synthesized deep neural network. As is shown, the evolutionary framework is ca-
pable of achieving highly efficient models, in terms of synaptic and cluster efficiency, with less than
3% drop in detection accuracy. The evolutionary framework is performed to synthesize three differ-
ent variations from the original network model. The ensemble of synthesised networks is formed to
perform the saliency detection over the test dataset. Table 2 refers to the detection accuracy results
from the synthesised networks in four generations, illustrated by M1, M2, and M3, and the ensem-
ble results. Detection accuracy using ensemble of networks takes advantage of variations in three
contributing networks and could improve the accuracy compared to the original network. While,
achieving an improvement in accuracy, the ensemble of network still benefits from the smaller num-
ber of parameters compared to original network. Based on the quantitative results, applying Evo-Net
in an ensemble framework significantly improves the architecture efficiency of the model in forma-
tion of highly sparse synaptic weights and clusters, and therefore facilitates the adaptation for highly
parallel computations such as GPUs. Yielding an efficient, yet powerful deep models for vehicular
applications can lead to a promising direction for future exploration in embedded deep learning.
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