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ABSTRACT

Transforming a graphical user interface screenshot created by a designer into com-
puter code is a typical task conducted by a developer in order to build customized
software, websites, and mobile applications. In this paper, we show that deep
learning methods can be leveraged to train a model end-to-end to automatically
generate code from a single input image with over 77% of accuracy for three dif-
ferent platforms (i.e. iOS, Android and web-based technologies).

1 INTRODUCTION

The process of implementing client-side software based on a Graphical User Interface (GUI)
mockup created by a designer is the responsibility of developers. Implementing GUI code is, how-
ever, time-consuming and prevent developers from dedicating the majority of their time implement-
ing the actual functionality and logic of the software they are building. Moreover, the computer
languages used to implement such GUIs are specific to each target runtime system; thus resulting in
tedious and repetitive work when the software being built is expected to run on multiple platforms
using native technologies. In this paper, we describe a model trained end-to-end with stochastic
gradient descent to simultaneously learns to model sequences and spatio-temporal visual features to
generate variable-length strings of tokens from a single GUI image as input.

Our first contribution is pix2code, a novel application of Convolutional and Recurrent Neural Net-
works to generate computer tokens from a single GUI screenshot as input. That is, no engineered
feature extraction pipeline nor expert heuristics was designed to process the input data; our model
learns from the pixel values of the input image alone. Our experiments demonstrate the effective-
ness of our method for generating computer code for various platforms (i.e. iOS and Android native
mobile interfaces, and multi-platform web-based HTML/CSS interfaces) without the need for any
change or specific tuning to the model. In fact, pix2code can be used as such to support different
target languages simply by being trained on a different dataset. A video demonstrating our system
is available online1.

Our second contribution is the release of our synthesized datasets consisting of both GUI screenshots
and associated source code for three different platforms. Our datasets and our pix2code implemen-
tion are publicly available2 to foster future research.

2 RELATED WORK

The automatic generation of programs using machine learning techniques is a relatively new field
of research and program synthesis in a human-readable format have only been addressed very re-
cently. A recent example is DeepCoder by Balog et al. (2016), a system able to generate computer
programs by leveraging statistical predictions to augment traditional search techniques. In another
work by Gaunt et al. (2016), the generation of source code is enabled by learning the relation-
ships between input-output examples via differentiable interpreters. Furthermore, Ling et al. (2016)
recently demonstrated program synthesis from a mixed natural language and structured program
specification as input. It is important to note that most of these methods rely on Domain Specific
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(a) Training (b) Sampling

Figure 1: Overview of the pix2code model architecture. During training, the GUI image is encoded
by a CNN-based vision model; the context (i.e. a sequence of one-hot encoded tokens corresponding
to DSL code) is encoded by a language model consisting of a stack of LSTM layers. The two
resulting feature vectors are then concatenated and fed into a second stack of LSTM layers acting
as a decoder. Finally, a softmax layer is used to sample one token at a time; the output size of the
softmax layer corresponding to the DSL vocabulary size. Given an image and a sequence of tokens,
the model (i.e. contained in the gray box) is differentiable and can thus be optimized end-to-end
through gradient descent to predict the next token in the sequence. During sampling, the input
context is updated for each prediction to contain the last predicted token. The resulting sequence of
DSL tokens is compiled to the desired target language using traditional compiler design techniques.

Languages (DSLs); computer languages (e.g. markup languages, programming languages, mod-
eling languages) that are designed for a specialized domain but are typically more restrictive than
full-featured computer languages. Using DSLs thus limit the complexity of the programming lan-
guage that needs to be modeled and reduce the size of the search space.

Although the generation of computer programs is an active research field as suggested by these
breakthroughs, program generation from visual inputs is still a nearly unexplored research area.
The closest related work is a method developed by Nguyen & Csallner (2015) to reverse-engineer
native Android user interfaces from screenshots. However, their method relies entirely on engineered
heuristics requiring expert knowledge of the domain to be implemented successfully. Our paper is,
to the best of our knowledge, the first work attempting to address the problem of user interface code
generation from visual inputs by leveraging machine learning to learn latent variables instead of
engineering complex heuristics.

In order to exploit the graphical nature of our input, we can borrow methods from the computer vi-
sion literature. In fact, an important number of research (Vinyals et al. (2015); Donahue et al. (2015);
Karpathy & Fei-Fei (2015); Xu et al. (2015)) have addressed the problem of image captioning with
impressive results; showing that deep neural networks are able to learn latent variables describing
objects in an image and their relationships with corresponding variable-length textual descriptions.
All these methods rely on two main components. First, a Convolutional Neural Network (CNN)
performing unsupervised feature learning mapping the raw input image to a learned representation.
Second, a Recurrent Neural Network (RNN) performing language modeling on the textual descrip-
tion associated with the input picture. These approaches have the advantage of being differentiable
end-to-end, thus allowing the use of gradient descent for optimization.

3 PIX2CODE

The task of generating computer code written in a given programming language from a GUI screen-
shot can be compared to the task of generating English textual descriptions from a scene photog-
raphy. In both scenarios, we want to produce a variable-length strings of tokens from pixel values.
We can thus divide our problem into three sub-problems. First, a computer vision problem of un-
derstanding the given scene (i.e. in this case, the GUI image) and inferring the objects present, their
identities, positions, and poses (i.e. buttons, labels, element containers). Second, a language mod-
eling problem of understanding text (i.e. in this case, computer code) and generating syntactically
and semantically correct samples. Finally, the last challenge is to use the solutions to both previous
sub-problems by exploiting the latent variables inferred from scene understanding to generate cor-
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responding textual descriptions (i.e. computer code rather than English) of the objects represented
by these variables.

3.1 VISION MODEL

CNNs are currently the method of choice to solve a wide range of vision problems thanks to their
topology allowing them to learn rich latent representations from the images they are trained on
(Sermanet et al. (2013); Krizhevsky et al. (2012)). We used a CNN to perform unsupervised feature
learning by mapping an input image to a learned fixed-length vector; thus acting as an encoder as
shown in Figure 1.

The input images are initially re-sized to 256× 256 pixels (the aspect ratio is not preserved) and the
pixel values are normalized before to be fed in the CNN. No further pre-processing is performed.
To encode each input image to a fixed-size output vector, we exclusively used small 3× 3 receptive
fields which are convolved with stride 1 as used in VGGNet by Simonyan & Zisserman (2014).
These operations are applied twice before to down-sample with max-pooling. The width of the
first convolutional layer is 32, followed by a layer of width 64, and finally width 128. Two fully
connected layers of size 1024 applying the rectified linear unit activation complete the vision model.

(a) iOS GUI screenshot (b) Code describing the GUI written in our DSL

Figure 2: An example of a native iOS GUI written in our markup-like DSL.

3.2 LANGUAGE MODEL

We designed a simple lightweight DSL to describe GUIs as illustrated in Figure 2. In this work we
are only interested in the GUI layout, the different graphical components, and their relationships;
thus the actual textual value of the labels is ignored. Additionally to reducing the size of the search
space, the DSL simplicity also reduces the size of the vocabulary (i.e. the total number of tokens
supported by the DSL). As a result, our language model can perform token-level language modeling
with a discrete input by using one-hot encoded vectors; eliminating the need for word embedding
techniques such as word2vec (Mikolov et al. (2013)) that can result in costly computations.

In most programming languages and markup languages, an element is declared with an opening
token; if children elements or instructions are contained within a block, a closing token is usually
needed for the interpreter or the compiler. In such a scenario where the number of children elements
contained in a parent element is variable, it is important to model long-term dependencies to be
able to close a block that has been opened. Traditional RNN architectures suffer from vanishing
and exploding gradients preventing them from being able to model such relationships between data
points spread out in time series (i.e. in this case tokens spread out in a sequence). Hochreiter &
Schmidhuber (1997) proposed the Long Short-Term Memory (LSTM) neural architecture in order to
address this very problem. The different LSTM gate outputs can be computed as follows:
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it = φ(Wixxt +Wiyht−1 + bi) (1)
ft = φ(Wfxxt +Wfyht−1 + bf ) (2)
ot = φ(Woxxt +Woyht−1 + bo) (3)
ct = ft • ct−1 + it • σ(Wcxxt +Wcyht−1 + bc) (4)
ht = ot • σ(ct) (5)

With W the matrices of weights, xt the new input vector at time t, ht−1 the previously produced
output vector, ct−1 the previously produced cell state’s output, b the biases, and φ and σ the acti-
vation functions sigmoid and hyperbolic tangent, respectively. The cell state c learns to memorize
information by using a recursive connection as done in traditional RNN cells. The input gate i is
used to control the error flow on the inputs of cell state c to avoid input weight conflicts that occur
in traditional RNN because the same weight has to be used for both storing certain inputs and ignor-
ing others. The output gate o controls the error flow from the outputs of the cell state c to prevent
output weight conflicts that happen in standard RNN because the same weight has to be used for
both retrieving information and not retrieving others. The LSTM memory block can thus use i to
decide when to write information in c and use o to decide when to read information from c. We used
the LSTM variant proposed by Gers et al. (2000) with a forget gate f to reset memory and help the
network model continuous sequences.

3.3 DECODER

Our model is trained in a supervised learning manner by feeding an image I and a contextual se-
quenceX of T tokens xt, t ∈ {0 . . . T − 1} as inputs; and the token xT as the target label. As shown
on Figure 1, a CNN-based vision model encodes the input image I into a vectorial representation
p. The input token xt is encoded by an LSTM-based language model into an intermediary repre-
sentation qt allowing the model to focus more on certain tokens and less on others (Graves (2013)).
This first language model is implemented as a stack of two LSTM layers with 128 cells each. The
vision-encoded vector p and the language-encoded vector qt are concatenated into a single feature
vector rt which is then fed into a second LSTM-based model decoding the representations learned
by both the vision model and the language model. The decoder thus learns to model the relationship
between objects present in the input GUI image and the associated tokens present in the DSL code.
Our decoder is implemented as a stack of two LSTM layers with 512 cells each. This architecture
can be expressed mathematically as follows:

p = CNN(I) (6)
qt = LSTM(xt) (7)
rt = (q, pt) (8)

yt = softmax(LSTM ′(rt)) (9)
xt+1 = yt (10)

This architecture allows the whole pix2code model to be optimized end-to-end with gradient descent
to predict a token at a time after it has seen both the image as well as the preceding tokens in the
sequence. The discrete nature of the output (i.e. fixed-sized vocabulary of tokens in the DSL) allows
us to reduce the task to a classification problem. That is, the output layer of our model has the same
number of cells as the vocabulary size; thus generating a probability distribution of the candidate
tokens at each time step allowing the use of a softmax layer to perform multi-class classification.

3.4 TRAINING

The length T of the sequences used for training is important to model long-term dependencies;
for example to be able to close a block of code that has been opened. After conducting empirical
experiments, the DSL input files used for training were segmented with a sliding window of size
48; in other words, we unroll the recurrent neural network for 48 steps. This was found to be a
satisfactory trade-off between long-term dependencies learning and computational cost. For every
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token in the input DSL file, the model is therefore fed with both an input image and a contextual
sequence of T = 48 tokens. While the context (i.e. sequence of tokens) used for training is updated
at each time step (i.e. each token) by sliding the window, the very same input image I is reused for
samples associated with the same GUI. The special tokens < START > and < END > are used
to respectively prefix and suffix the DSL files similarly to the method used by Karpathy & Fei-Fei
(2015). Training is performed by computing the partial derivatives of the loss with respect to the
network weights calculated with backpropagation to minimize the multiclass log loss:

L(I,X) = −
T∑

t=1

xt+1 log(yt) (11)

With xt+1 the expected token, and yt the predicted token. The model is optimized end-to-end hence
the loss L is minimized with regard to all the parameters including all layers in the CNN-based
vision model and all layers in both LSTM-based models. Training with the RMSProp algorithm
(Tieleman & Hinton (2012)) gave the best results with a learning rate set to 1e − 4 and by clipping
the output gradient to the range [−1.0, 1.0] to cope with numerical instability (Graves (2013)). To
prevent overfitting, a dropout regularization (Srivastava et al. (2014)) set to 25% is applied to the
vision model after each max-pooling operation and at 30% after each fully-connected layer. In
the LSTM-based models, dropout is set to 10% and only applied to the non-recurrent connections
(Zaremba et al. (2014)). Our model was trained with mini-batches of 64 image-sequence pairs.

3.5 SAMPLING

To generate DSL code, we feed the GUI image I and a contextual sequence X of T = 48 tokens
where tokens xt . . . xT−1 are initially set empty and the last token of the sequence xT is set to the
special < START > token. The predicted token yt is then used to update the next sequence of
contextual tokens. That is, xt . . . xT−1 are set to xt+1 . . . xT (xt is thus discarded), with xT set to
yt. The process is repeated until the token < END > is generated by the model. The generated
DSL token sequence can then be compiled with traditional compilation methods to the desired target
language.

Table 1: Dataset statistics.

Dataset type Synthesizable Training set Test set
Instances Samples Instances Samples

iOS UI (Storyboard) 26× 105 1500 93672 250 15984
Android UI (XML) 21× 106 1500 85756 250 14265

web-based UI (HTML/CSS) 31× 104 1500 143850 250 24108

4 EXPERIMENTS

Access to consequent datasets is a typical bottleneck when training deep neural networks. To the
best of our knowledge, no dataset consisting of both GUI screenshots and source code was available
at the time this paper was written. As a consequence, we synthesized our own data resulting in
the three datasets described in Table 1. The column Synthesizable refers to the maximum number
of unique GUI configuration that can be synthesized using our stochastic user interface generator.
The columns Instances refers to the number of synthesized (GUI screenshot, GUI code) file pairs.
The columns Samples refers to the number of distinct image-sequence pairs. In fact, training and
sampling are done one token at a time by feeding the model with an image and a sequence of
tokens obtained with a sliding window of fixed size T . The total number of training samples thus
depends on the total number of tokens written in the DSL files and the size of the sliding window.
Our stochastic user interface generator is designed to synthesize GUIs written in our DSL which is
then compiled to the desired target language to be rendered. Using data synthesis also allows us to
demonstrate the capability of our model to generate computer code for three different platforms.

Our model has around 109×106 parameters to optimize and all experiments are performed with the
same model with no specific tuning; only the training datasets differ as shown on Figure 3. Code
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(a) pix2code training loss (b) Micro-average ROC curves

Figure 3: Training loss on different datasets and ROC curves calculated during sampling with the
model trained for 10 epochs.

generation is performed with both greedy search and beam search to find the tokens that maximize
the classification probability. To evaluate the quality of the generated output, the classification error
is computed for each sampled DSL token and averaged over the whole test dataset. The length
difference between the generated and the expected token sequences is also counted as error. The
results can be seen on Table 2.

Figures 4, 6, and 5 show samples consisting of input GUIs (i.e. ground truth), and output GUIs
generated by a trained pix2code model. It is important to remember that the actual textual value
of the labels is ignored and that both our data synthesis algorithm and our DSL compiler assign
randomly generated text to the labels. Despite occasional problems to select the right color or the
right style for specific GUI elements and some difficulties modelling GUIs consisting of long lists
of graphical components, our model is generally able to learn the GUI layout in a satisfying manner
and can preserve the hierarchical structure of the graphical elements.

Table 2: Experiments results reported for the test sets described in Table 1.

Dataset type Error (%)
greedy search beam search 3 beam search 5

iOS UI (Storyboard) 22.73 25.22 23.94
Android UI (XML) 22.34 23.58 40.93

web-based UI (HTML/CSS) 12.14 11.01 22.35

5 CONCLUSION AND DISCUSSIONS

In this paper, we presented pix2code, a novel method to generate computer code given a single GUI
image as input. While our work demonstrates the potential of such a system to automate the process
of implementing GUIs, we only scratched the surface of what is possible. Our model consists of
relatively few parameters and was trained on a relatively small dataset. The quality of the generated
code could be drastically improved by training a bigger model on significantly more data for an
extended number of epochs. Implementing a now-standard attention mechanism (Bahdanau et al.
(2014); Xu et al. (2015)) could further improve the quality of the generated code.

Using one-hot encoding does not provide any useful information about the relationships between the
tokens since the method simply assigns an arbitrary vectorial representation to each token. There-
fore, pre-training the language model to learn vectorial representations would allow the relation-
ships between tokens in the DSL to be inferred (i.e. learning word embeddings such as word2vec by
Mikolov et al. (2013)) and as a result alleviate semantical error in the generated code. Furthermore,
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one-hot encoding does not scale to very big vocabulary and thus restrict the number of symbols that
the DSL can support.

Generative Adversarial Networks GANs developed by Goodfellow et al. (2014) have shown to be
extremely powerful at generating images and sequences (Yu et al. (2016); Reed et al. (2016); Zhang
et al. (2016); Shetty et al. (2017); Dai et al. (2017)). Applying such techniques to the problem of
generating computer code from an input image is so far an unexplored research area. GANs could
potentially be used as a standalone method to generate code or could be used in combination with
our pix2code model to fine-tune results.

A major drawback of deep neural networks is the need for a lot of training data for the resulting
model to generalize well on new unseen examples. One of the significant advantages of the method
we described in this paper is that there is no need for human-labelled data. In fact, the network
can model the relationships between graphical components and associated tokens by simply being
trained on image-sequence pairs. Although we used data synthesis in our paper partly to demonstrate
the capability of our method to generate GUI code for various platforms; data synthesis might not be
needed at all if one wants to focus only on web-based GUIs. In fact, one could imagine crawling the
World Wide Web to collect a dataset of HTML/CSS code associated with screenshots of rendered
websites. Considering the large number of web pages already available online and the fact that new
websites are created every day, the web could theoretically supply a virtually unlimited amount of
training data; potentially allowing deep learning methods to fully automate the implementation of
web-based GUIs.

(a) Groundtruth GUI 1 (b) Generated GUI 1 (c) Groundtruth GUI 2 (d) Generated GUI 2

Figure 4: Experiment samples for the iOS GUI dataset.

(a) Groundtruth GUI 3 (b) Generated GUI 3 (c) Groundtruth GUI 4 (d) Generated GUI 4

Figure 5: Experiment samples from the Android GUI dataset.
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(a) Groundtruth GUI 5 (b) Generated GUI 5

(c) Groundtruth GUI 6 (d) Generated GUI 6

Figure 6: Experiment samples from the web-based GUI dataset.
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