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ABSTRACT

Deep neural networks are vulnerable to adversarial noise. Adversarial training (AT)
has been demonstrated to be the most effective defense strategy to protect neural
networks from being fooled. However, we find AT omits to learning robust features,
resulting in poor performance of adversarial robustness. To address this issue, we
highlight two characteristics of robust representation: (1) exclusion: the feature of
natural examples keeps away from that of other classes; (2) alignment: the feature
of natural and corresponding adversarial examples is close to each other. These
motivate us to propose a generic framework of AT to gain robust representation,
by the asymmetric negative contrast and reverse attention. Specifically, we design
an asymmetric negative contrast based on predicted probabilities, to push away
examples of different classes in the feature space. Moreover, we propose to weight
feature by parameters of the linear classifier as the reverse attention, to obtain class-
aware feature and pull close the feature of the same class. Empirical evaluations on
three benchmark datasets show our methods greatly advance the robustness of AT
and achieve state-of-the-art performance.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved great success in academia and industry, but they are
easily fooled by carefully crafted adversarial examples to output incorrect results (Goodfellow et al.,
2014), which leads to potential threats and insecurity in the application. Given a naturally trained
DNN and a natural example, an adversarial example can be generated by adding small perturbations
to the natural example. Adversarial examples can always fool models to make incorrect output. At
the same time, it is difficult to distinguish adversarial examples from natural examples by human eyes.
In recent years, there are many researches exploring the generation of adversarial examples to cheat
models in various fields, including image classification (Goodfellow et al., 2014; Madry et al., 2017;
Carlini & Wagner, 2016; Croce & Hein, 2020), object detection (Xie et al., 2017; Chen et al., 2021b),
natural language processing (Morris et al., 2020; Boucher et al., 2022), semantic segmentation (Nesti
et al., 2022; Luo et al., 2022), etc. The vulnerability of DNNs has aroused common concerns on
adversarial robustness.

Many empirical defense methods have been proposed to protect DNNs from adversarial perturbations,
such as adversarial training (AT) (Madry et al., 2017; Zhang et al., 2019; Wang et al., 2020; Huang
et al., 2020; Zhou et al., 2022; Zhang et al., 2020; Wu et al., 2020), image denoising (Liao et al.,
2018), defensive distillation (Zhao et al., 2022; Chen et al., 2021a) and so on. The mainstream view
is that AT is the most effective defense, which has a training process of a two-sided game. The
"attacker" crafts perturbation dynamically to generate adversarial data to cheat the "defender", and
the "defender" minimizes the loss function against adversarial samples to improve the robustness
of models. Existing work (Zhao et al., 2022; Chen et al., 2021a; Zhang et al., 2020; Dong et al.,
2021; Huang et al., 2020; Jin et al., 2022; Zhou et al., 2022) has improved the effectiveness of AT
in many aspects, but few studies pay attention to learning robust feature. The overlook may lead
to potential threats in the feature space of AT models, which harms robust classification. Besides,
there are no criteria for robust feature. In addition, adversarial contrastive learning (ACL) and robust
feature selection (RFS) are techniques to optimize feature distribution. ACL (Kim et al., 2020; Fan
et al., 2021; Yu et al., 2022) is a kind of contrast learning (CL) (Chen et al., 2020; He et al., 2020;
Grill et al., 2020) that extends to AT. RFS mostly modifies the architecture of models (Xiao et al.,
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Figure 1: Frequency histograms of the L2 distance and cosine similarity of the feature that belongs to
natural examples, AEs and OEs. We train ResNet-18 models on CIFAR-10 with three AT methods:
PDG-AT (Madry et al., 2017), TRADES (Zhang et al., 2019) and MART (Wang et al., 2020). We use
all samples labeled as class 0 in the test set as natural examples and generate AEs by PGD-10.

2019; Bai et al., 2021; Yan et al., 2021) to select important feature. However, the target problems of
them are not to learn robust feature.

To demonstrate AT is indeed deficient in the representation which causes limited adversarial robust-
ness, we conduct a simple experiment. We choose the L2 distance and cosine similarity as metrics.
And we measure the distance and similarity of the feature between natural examples, adversarial
examples (AEs) and examples of other classes (OEs). The frequency histograms of the distance
and similarity are shown in Figure 1. Figure 1 (a) and Figure 1 (b) show that the cosine similarity
of the feature between natural examples and OEs shows a bell-shaped distribution between 0.4 and
0.8, and the L2 distance shows a skewed distribution between 2.0 and 12.0, which indicates there
are very close pairs of natural examples and OEs that are not distinguished in the feature space. In
Figure 1 (c) and Figure 1 (d), it is shown that there is a skewed distribution between 0.9 and 0.99
for the cosine similarity of the feature between natural examples and AEs, and a skewed distribution
between 0.5 and 2.5 for the L2 distance, which indicates that the feature of natural examples and AEs
is not adequately aligned. Thus, there is still large room for optimization of the feature of AT.

Based on the observation, we propose two characteristics of robust feature: exclusion: the feature
of natural examples keeps away from that of other classes; alignment: the feature of natural and
corresponding adversarial samples is close to each other. First, exclusion confirms the separability
between different classes and avoids confusion in the feature space, which makes it hard to fool the
model because the feature of different classes keeps a large distance. Second, alignment ensures the
feature of natural examples is aligned with adversarial one, which guarantees the predicted results of
the natural and adversarial examples of the same instances are also highly consistent. And it helps to
narrow the gap between robust accuracy and clean accuracy.

To address the issue, we propose an AT framework to concentrate on robust representation with the
guidance of the two characteristics. Specifically, we suggest two strategies to meet the characteristics,
respectively. For exclusion, we propose an asymmetric negative contrast based on predicted prob-
abilities, which freezes natural examples and pushes away OEs by reducing the confidence of the
predicted class when predicted classes of natural examples and OEs are consistent. For alignment, we
use the reverse attention to weight feature by parameters of the linear classifier corresponding to target
classes, which contains the importance of feature to target classes during classification. Because
the feature of the same class gets the same weighting and feature of different classes is weighted
disparately, natural examples and AEs become close to each other in the feature space. Empirical
evaluations show that AT methods combined with our framework can greatly enhance robustness,
which means the neglect of learning robust feature is one of the main reasons for the poor robust
performance of AT. In a word, we propose a generic AT framework with the Asymmetric Negative
Contrast and Reverse Attention (ANCRA), to learn robust representation and advance robustness.
Our main contributions are summarized as follows:

• We suggest improving adversarial training from the perspective of learning robust feature,
and two characteristics are highlighted as criteria of optimizing robust representation.

• We propose a generic framework of adversarial training, termed as ANCRA, to obtain robust
feature by the asymmetric negative contrast and reverse attention, with the guidance of two
characteristics of robust feature. It can be easily combined with other defense methods.
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• Empirical evaluations show our framework can obtain robust feature and greatly improve
adversarial robustness, which achieves state-of-the-art performances on CIFAR-10, CIFAR-
100 and Tiny-ImageNet.

2 RELATED WORK

Adversarial training Madry et al. (2017) propose PGD attack and PGD-based adversarial training,
forcing the model to correctly classify adversarial samples within the epsilon sphere during training
to obtain robustness, which is the pioneer of adversarial learning. Zhang et al. (2019) propose to
learn both natural and adversarial samples and reduce the divergence of classification distribution of
both to reduce the difference between robust accuracy and natural accuracy. Wang et al. (2020) find
that misclassified samples during training harm robustness significantly, and propose to improve the
model’s attention to misclassification by adaptive weights. Zhang et al. (2020) propose to replace
fixed attack steps with attack steps that just cross the decision boundary, and improve the natural
accuracy by appropriately reducing the number of attack iterations. Huang et al. (2020) replace labels
with soft labels predicted by the model and adaptively reduce the weight of misclassification loss to
alleviate robust overfitting problem. Dong et al. (2021) also propose a similar idea of softening labels
and explain the different effects of hard and soft labels on robustness by investigating the memory
behavior of the model for random noisy labels. Chen et al. (2021a) propose random weight smoothing
and self-training based on knowledge distillation, which greatly improves the natural and robust
accuracy. Zhou et al. (2022) embed a label transition matrix into models to infer natural labels from
adversarial noise. However, little work has been done to improve AT from the perspective of robust
feature learning. Our work shows AT indeed has defects in the feature distribution, and strategies
proposed to learn robust feature can greatly advance robustness, which indicates the neglect of robust
representation results in poor robust performance of AT.

Adversarial contrastive learning Kim et al. (2020) propose to maximize and minimize the
contrastive loss for training. Fan et al. (2021) notice that the robustness of ACL relies on fine-tuning,
and pseudo labels and high-frequency information can advance robustness. Kucer et al. find that
the direct combination of self-supervised learning and AT penalizes non-robust accuracy. Bui et al.
(2021) propose some strategies to select positive and negative examples based on predicted classes
and labels. Yu et al. (2022) find the instance-level identity confusion problem brought by positive
contrast and address it by asymmetric methods. These methods motivate us to further consider how
to obtain robust feature by contrast mechanism. We design a new negative contrast to push away
natural and negative examples and mitigate the confusion caused by negative contrast.

Robust feature selection Xiao et al. (2019) take the maximum k feature values in each activation
layer to increase adversarial robustness. Zoran et al. (2020) use a spatial attention mechanism to
identify important regions of the feature map. Bai et al. (2021) propose to suppress redundant feature
channels and dynamically activate feature channels with the parameters of additional components. Yan
et al. (2021) propose to amplify the top-k activated feature channels. Existing work has shown
enlarging important feature channels is beneficial for robustness, but most approaches rely on extra
model components and do not explain the reason. We propose the reverse attention to weight feature
by class information without any extra components, and explain it by alignment of feature.

3 METHODOLOGY

This section explains the instantiation of our AT framework from the perspective of the two charac-
teristics of robust feature. To meet exclusion, we design an asymmetric negative contrast based on
predicted probabilities to push away the feature of natural examples and OEs. To confirm alignment,
we propose the reverse attention to weight the feature of the same class, by the corresponding weight
of the targeted class in parameters of the linear classifier, so that the feature of natural examples and
AEs is aligned and the gap of the feature between natural examples and AEs becomes small.

3.1 NOTATIONS

In this paper, capital letters indicate random variables or vectors, while lowercase letters represent
their realizations. We define the function for classification as f(·). It can be parameterized by DNNs.
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Linear(·) is the linear classifier with a weight of Ω (C, R), in which C denotes the class number and
R denotes the channel number of the feature map. g(·) is the feature extractor, i.e., the rest model
without Linear(·). Let B = {xi, yi}Ni be a batch of natural samples where xi is labeled by yi. xa

denotes adversarial examples (AEs), xo denotes negative examples randomly selected from other
classes (OEs). Given an adversarial transformation Ta from an adversary A (e.g., PGD attack (Madry
et al., 2017)), and a strategy To for selection or generation of OEs. For data, we consider a positive
pair PP={xi, x

a
i |xi ∈ B, xa

i = Ta(xi)}Ni . We define a negative pair NP={xi, x
o
i |xi ∈ B, xo

i =
To(xi)}Ni . Let N(x, ϵ) represents the neighborhood of x : {x̃ : ∥x̃ − x∥ ≤ ϵ}, where ϵ is the
perturbation budget. For an input xi, we consider its feature zi before Linear(·), the probability
vector pi = softmax(f(xi)) and predicted class hi = argmax(pi), respectively.

3.2 ADVERSARIAL TRAINING WITH ASYMMETRIC NEGATIVE CONTRAST

First, we promote AT to learn robust representation that meets exclusion. Notice that ACL has the
contrastive loss (van den Oord et al., 2018) to maximize the consistency of PPs and to minimize the
consistency of NPs. Motivated by the contrast mechanism, we consider designing a new negative con-
trast and combining it with AT loss, which creates a repulsive action between NPs when minimizing
the whole loss. Thus, we propose a generic pattern of AT loss with a negative contrast.

LCAL(x, y, xa, xo) = LAT(x, xa, y) + ζ · Sim (x, xo) , (1)

Where x denotes natural examples with labels y, xa denotes AEs, xo denotes OEs, Sim is a similarity
function, and ζ is the weight of Sim. Generated by maximizing LCE , AEs typically have wrong
predicted classes. The generation is as follows:

xa
t+1 := Π

N(x,ϵ)
(xa

t + ϵ sign (∇xLCE ((f(xa
t ) , y))) , (2)

where ϵ denotes the L∞-norm of perturbation budget, xa
t denotes adversarial samples after the

tth attack iteration, Π denotes a clamp function, sign denotes a sign function, LCE denotes the
cross-entropy loss and ∇xLCE denotes the gradient of LCE with respect to x. When minimizing
Equation 1, LAT learns to classify natural examples and AEs correctly, and additional negative
contrast promotes the inconsistency of NPs, which keeps the feature of NPs away from each other to
ensure exclusion. We will further discuss the function and problem of the negative contrast.

(Yu et al., 2022) have indicated that when the predicted classes of the adversarial positive examples
(i.e., AEs) and negative samples (i.e., OEs) are the same, there is a conflict led by the positive contrast,
resulting in wrong classification. On this basis, we find a similar conflict can also be caused by the
negative contrast when their predicted classes are different, which is called class confusion. We
show a practical instance in Figure 2. When optimizing the class space, the positive example pulls
its natural example close to the wrong class. The negative example pushes the natural example to
leave the initial class. With these actions, the training process suffers from class confusion, leading to
natural examples moving toward the wrong class space, which does harm to exclusion.

To alleviate the problem of class confusion, We should reasonably control the repulsion of negative
contrast. We propose an asymmetric method of the negative contrast, Simα(x, xo), to decouple the
repulsive force into two parts. It contains a one-side push from the natural example to the OE and a
one-side push from the OE to the natural example, given by:

Simα(x, xo) = α · Sim(x, xo) + (1− α) · Sim(xo, x), (3)

where Sim(x, xo) denotes the one-sided similarity of x and xo. When minimizing Sim(x, xo), we
stop the back-propagation gradient of x and only move xo away from x. α denotes the weighting
factor to adjust the magnitude of the two repulsive forces. When α = 0, negative samples are frozen
and only the feature of natural samples is optimized to be pushed far away from the feature of negative
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(a) Before optimization (b) After optimization
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Figure 2: Illustrations of class confusion. In each circle, data points have the same predicted class. In
(a), positive examples are adversarial examples and located in the wrong predicted class different
from natural examples. The positive contrast pulls natural examples to move toward the wrong class,
and the negative contrast pushes natural examples to leave the initial class. Finally, natural examples
come to the decision boundary and even into the wrong class easily as (b) shows.

samples. As α increases, the natural sample becomes more repulsive to the negative sample and the
negative sample pushes the natural example less. To mitigate the class confusion problem, we should
choose α that tends to 1 to reduce the repulsive force from the negative sample to the natural example,
to prevent the natural example from being pushed into the wrong class. Experiments show that α =1
leads to the best performance (provided in Appendix A.2), which optimizes NPs by only pushing off
negative samples and follows what we have expected.

Then we propose the negative contrast based on predicted probabilities, Simα
cc(x, x

o), to measure
the repulsive force of NPs pushing away from each other. It pushes away NPs by decreasing the
corresponding probabilities of the predicted classes when the predicted classes of NPs are consistent.

Simα
cc(x, x

o) =
1

∥Bi∥

n∑
i=1

I (hi = ho
i ) ·

[
α
√
p̂i(hi) · poi (hi) + (1− α)

√
pi(hi) · p̂oi (hi)

]
, (4)

where ∥Bi∥ denotes the batch size, I(·) denotes the Indicator function and p̂ denotes freezing the
back-propagation gradient of p. hi and hn

i denote the predicted classes of the NP. And pi and pni
denote the probability vectors of the NP. Under the negative contrast, the model pushes the natural
example in the direction away from the predicted class of the OE and pushes the OE in the direction
away from the predicted class of the natural example when and only when two predicted classes of
the NP are consistent. This ensures that the action of exclusion not only pushes away the feature of
NPs in the feature space, but also reduces the probabilities of NPs in the incorrect class. Since the
negative contrast has only directions to reduce the confidence and no explicit directions to increase
the confidence, it does not create any actions to push the natural example into the feature space of
wrong classes even in the scenario of class confusion, which can effectively alleviate the problem.

3.3 ADVERSARIAL TRAINING WITH REVERSE ATTENTION

Second, we continue to improve AT to learn robust representation that meets alignment. Motivated
by Bai et al. (2021); Yan et al. (2021), we utilize the values of linear weight to denote the importance
of feature channels to targeted classes. We exploit the importance of feature channels to align the
examples in the same classes and pull close the feature of PPs, which is named by reverse attention.
To be specific, we take the Hadamard product (Kronecker product) of the partial parameters of the
classifier Ωj and the feature vector z. ’partial parameters’ means those weights of the linear layer
that are used to calculate the probability of the target class. Because reverse attention weights the
feature of PPs by the same parameters, it helps alignment. Given by:
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z′i =

{
zi ⊙ ωi,y, (training phase)
zi ⊙ ωi,h(x), (testing phase)

(5)

Where z denotes the feature vector, zi denotes the importance of the ith feature channel, ωi,j denotes
the linear parameters of the ith feature channel to the jth class, ⊙ denotes the Hadamard product
operation, which is the method of multiplying two matrices of the same size element by element.

As shown in Figure3, We add the reverse attention to the last layer of the model and then get auxiliary
probability vectors as many as the blocks in the layer. In the ith block, the unweighted feature vector
zi goes through Linear(·) and the auxiliary probability vector pi outputs, unless we get the final
probability vector p′. Suppose there are n blocks in the last layer, we will use pn−2, pn−1, p′ to
calculate losses and add them together. During the training phase, we use the true label y as an
indicator to determine the importance of channels. In the testing phase, since the true label is not
available, we simply choose a sub-vector of the linear weight by the predicted class h(x) as the
importance of channels. The model with the reverse attention does not need any extra modules, but
module interactions are changed.
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Figure 3: An illustration of reverse attention (RA). z and z′ denote the feature vector before and
after weighting, Ωj denotes the linear parameters of the target class j. p and p′ denote the probability
vector before and after weighting. In the calculation, z is multiplied by Ωj to get z′. And we calculate
p′ and p and add the losses of them to get the total loss. When minimizing the loss, the similarity of
examples in the same class becomes bigger, causing attractive forces to each other.

Let’s make a detailed analysis and explanation of the principle of this method. In the model, the
feature extractor captures the representation that contains enough information to classify, and the
linear layer establishes a relationship from feature to predicted classes. The probability of the
predicted class equals the sum of the product of linear weight corresponding to predicted class and
feature vector. In this premise, the linear layer learns to correctly increase the probability of the label
class and decrease other probabilities when training. Thus it can gradually recognize which feature
channels are important for specific classes, and keep large weight values for those feature channels.
On this basis, we propose reverse attention to utilize its parameters containing feature importance
to improve feature. The feature vectors are multiplied by the parameters of the target class, which
can change the magnitude of each feature channel adaptively according to the feature importance,
acting as attention with the guidance of the linear layer. From the perspective of the feature itself,
the important channels in the feature vector are boosted and the redundant channels are weakened
after the attention. Therefore, the feature value contributing to the target class will become larger,
which is helpful for correct classification. From the perspective of the overall feature distribution,
reverse attention can induce beneficial changes in the feature distribution. Since the linear layer is
unique in the model, different examples in the same class share the same linear weights. Feature
vectors with the same target class(e.g., examples in PPs) get the same weighting and become more
similar. Moreover, feature vectors with different target classes(e.g., examples in NPs) are weighted by
different parameters, and the weighted feature distributions may become more inconsistent. Therefore,
the reverse attention guides the alignment of the feature of the examples in the same class, pulling the
feature of PPs closer and pushing the feature of NPs far away, which benefits alignment and drops
by to promote exclusion. The aligned feature has similar activations in every feature channel, which
helps the model narrow the gap between feature of natural examples and AEs.

6



Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

In order to demonstrate the effectiveness of the proposed approach, we show feature distribution
of trained models first. Then we evaluate our framework against white-box attacks and adaptive
attacks, and make a comparison with other defense methods. We conduct experiments across different
datasets and models. Because our methods are compatible with existing AT techniques and can
be easily incorporated in a plug-and-play manner, we choose three baselines to combine with our
framework for evaluation: PGD-AT-ANCRA (Madry et al., 2017), TRADES-ANCRA (Zhang et al.,
2019), and MART-ANCRA (Wang et al., 2020).

4.1 SETTINGS

Implementation On CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), we train ResNet-18 (He et al.,
2016a) with a weight decay of 2.0× 10−4. We adopt the SGD optimizer with a learning rate of 0.01,
epochs of 120 and a batch size of 128 as Wang et al. (2020). For the trade-off hyperparameters β,
we use 6.0 in TRADES1 and 5.0 in MART, following the original setting in their papers. For other
hyperparameters, we tune the values based on TRADES-ANCRA. We generate AEs for training
by L∞-norm PGD (Madry et al., 2017), with a step size of 0.007, an attack iterations of 10 and a
perturbation budget of 8/255. We use a single NVIDIA A100 and two GTX 2080 Ti.

Baseline We compare the proposed PGD-AT-ANCRA, TRADES-ANCRA, and MART-ANCRA
with the popular baselines: PGD-AT (Madry et al., 2017), TRADES (Zhang et al., 2019),
MART (Wang et al., 2020) and SAT (Huang et al., 2020). Moreover, we also choose three state-of-
the-art methods: AWP (Wu et al., 2020), S2O (Jin et al., 2022) and UDR (Bui et al., 2022). We keep
the same settings among all the baselines with our settings and follow their original hyperparameters.

Evaluation We choose several adversarial attacks to attack the target models, including
PGD (Madry et al., 2017), FGSM (Goodfellow et al., 2014), C&W (Carlini & Wagner, 2016)
and AutoAttack (Croce & Hein, 2020) which is a powerful and reliable attack and an ensemble attack
with three white-box attacks and one black-box attack. We notice that our methods use the auxiliary
probability vector p in the training and testing phase, so we design two scenarios: 1) train with p and
test without p; 2) train with p and test with p. 1) denotes evaluation against white-box attacks and 2)
denotes evaluation against adaptive attacks. Following the default setting of AT, the max perturbation
strength is set as 8. / 255. for all attack methods under the L∞. The attack iterations of PGD and
C&W are 40 (i.e., PGD-40), and the step size of FGSM is 8. / 255. unlike 0.007 for other attacks.
The clean accuracy and robust accuracy are used as the evaluation metrics.

4.2 COMPARISON RESULTS OF FEATURE DISTRIBUTION

(a) Cosine similarity of NP’s feature (b) L2 distance of NP’s feature (c) Cosine similarity of PP’s feature (d) L2 distance of PP’s feature

Figure 4: Frequency histograms of the L2 distance and cosine similarity of feature of natural examples,
AEs and OEs. We train ResNet-18 models on CIFAR-10 with four defense techniques: PDG-AT,
TRADES, MART and TRADES-ANCRA. Other details are the same with Figure 1

Frequency histograms of feature distribution are shown in Figure 4. It is shown that our methods can
greatly improve feature distribution, which follows the characteristics of exclusion and alignment.
In Figure 4 (a) and Figure 4 (b), it shows that the cosine similarity of the model trained by our
method between natural examples and OEs shows a skewed distribution between -0.05 and 0.1,
and the L2 distance with our method shows a bell-shaped distribution between 5.5 and 10.0, which
indicates natural examples and OEs have been fully distinguished in the feature space and exclusion

1Unlike vanilla TRADES, we maximize the CE loss to generate adversarial examples as PGD.
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has been met. In Figure 4 (c) and Figure 4 (d), it shows that in the model trained by our method,
there is a uniform distribution between 0.95 and 0.99 for the cosine similarity of the feature between
natural examples and AEs, and a skewed distribution between 0.05 and 1.5 for the L2 distance of the
feature, which indicates the feature between natural examples and AEs is very close to each other and
alignment has been confirmed. Thus, our framework successfully helps AT to obtain robust feature.
More feature visualizations are provided in Appendix A.3.

4.3 COMPARISON RESULTS AGAINST WHITE-BOX ATTACKS

Table 1: Robustness (%) against white-box attacks. Nat denotes clean accuracy. PGD denotes robust
accuracy against PGD-40. FGSM denotes robust accuracy against FGSM. C&W denotes robust
accuracy against C&W. AA denotes robust accuracy against AutoAttack. Mean denotes average
robust accuracy. The variation of accuracy ≤ 1.7%. We show the most successful defense with bold.

Defense CIFAR-10 CIFAR-100

Nat PGD FGSM C&W AA Mean Nat PGD FGSM C&W AA Mean
PGD-AT 80.90 44.35 58.41 46.72 42.14 47.91 56.21 19.41 30.00 41.76 17.76 27.23
TRADES 78.92 48.40 59.60 47.59 45.44 50.26 53.46 25.37 32.97 43.59 21.35 30.82

MART 79.03 48.90 60.86 45.92 43.88 49.89 53.26 25.06 33.35 38.07 21.04 29.38
SAT 63.28 43.57 50.13 47.47 39.72 45.22 42.55 23.30 28.36 41.03 18.73 27.86
AWP 76.38 48.88 57.47 48.22 44.65 49.81 54.53 27.35 34.47 44.91 21.98 31.18
S2O 40.09 24.05 29.76 47.00 44.00 36.20 26.66 13.11 16.83 43.00 21.00 23.49
UDR 57.80 39.79 45.02 46.92 34.73 41.62 33.63 20.61 24.19 33.77 16.41 23.75

PGD-AT-ANCRA 85.1085.1085.10 89.0389.0389.03 87.00 89.2389.2389.23 59.15 81.10 59.73 58.10 58.45 58.58 34.44 52.39
TRADES-ANCRA 81.70 82.9682.9682.96 82.74 83.01 59.7059.7059.70 77.10 53.73 51.24 52.17 52.55 35.8135.8135.81 47.94

MART-ANCRA 84.88 88.56 87.9587.9587.95 88.77 59.62 81.2381.2381.23 60.1060.1060.10 58.4058.4058.40 58.7458.7458.74 59.4159.4159.41 35.05 52.9052.9052.90

We have conducted experiments on ResNet-18 to evaluate different defenses under white-box attacks.
The results are shown in Table 1. First, on CIFAR-10, our approaches improve the clean accuracies
of based approaches by 5.2%, 3.2% and 5.9%, and also improve the robust performance under all the
attacks (e.g., increase by 44.7%, 34.6% and 39.7% against PGD). Compared with state-of-the-art
defenses, the robust accuracies of our methods are almost two times as large as theirs (e.g., 81.23% >
49.81%). Second, on CIFAR-100, our approaches also greatly improve the robustness and advance
the clean accuracies. The clean accuracies of our methods have been increased by 3.5%, 0.3% and
6.8% compared with based methods, and the lowest average robust accuracy of ours is larger than the
best one among other methods by 16.8%. We also train PreActResNet-18 (He et al., 2016b) models
on Tiny-ImageNet (Deng et al., 2009). As shown in Table 2, our methods made obvious progress
in robustness and generation compared with baselines. In general, our three approaches gain the
best performance both in the natural and attacked scenarios. To our surprise, MART-ANCRA and
PGD-ANCRA rather than TRADES-ANCRA gain the best performance in a lot of cases without
hyper-parameter tuning. More results are provided in Appendix A.5, A.7.

Table 2: Clean and robust accuracy (%) of PreActResNet-18 on Tiny-ImageNet.

Defense PGD-AT PGD-AT-ANCRA TRADES TRADES-ANCRA MART MART-ANCRA
Nat 41.31 43.02 37.27 38.94 38.94 43.83

PGD 10.28 29.79 16.30 31.24 14.78 31.44

4.4 COMPARISON RESULTS AGAINST ADAPTIVE ATTACKS

We report the performance on CIFAR-10 against adaptive attacks with pi to evaluate the robustness.
Besides, we report vanilla TRADES as a baseline. As shown in Table 3 and Table 4, the robust
accuracies of our method against adaptive attacks are larger than those of the baseline against vanilla
attacks. e.g., robustness on ResNet-18 against adaptive PGD is higher than the baseline by 13.28%
and robustness on WideResNet-34-10 (Zagoruyko & Komodakis, 2016) against adaptive PGD is
higher than the baseline by 2.88%. The robustness under adaptive AutoAttack has increased slightly,
but not by a significant margin (0.74%, 1.20%). We will discuss the reasons in the Limitation. The
results indicate that our approaches can still maintain superb performance under adaptive attacks.
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Table 3: Robust accuracy (%) against adap-
tive attacks of ResNet-18.

Defense Adaptive Attacks

PGD FGSM C&W
TRADES 48.40 59.60 47.59

TRADES-ANCRA 61.68 61.56 72.36
PGD-AT-ANCRA 54.43 58.23 66.36
MART-ANCRA 56.96 60.43 71.06

Table 4: Robust accuracy (%) against adaptive attacks
of WideResNet (WRN) models.

Defense Model Adaptive Attacks

PGD AA
TRADES WRN-28-10 57.08 51.11

TRADES-ANCRA WRN-28-10 58.60 51.85
TRADES WRN-34-10 56.47 50.79

TRADES-ANCRA WRN-34-10 59.35 51.99

4.5 ABLATION STUDIES

We train four models by TRADES, TRADES with the asymmetric negative contrast (TRADES-
ANC), TRADES with the reverse attention (TRADES-RA) and TRADES-ANCRA, respectively.
As shown in Table 5, when incorporating individual ANC or RA, the performance of robustness
and generalization has been improved compared with vanilla TRADES. Besides, when TRADES-
ANCRA is compared with other methods, the clean accuracy and robust accuracies against all the
attacks except FGSM have been enhanced, which indicates that the two strategies are compatible and
the combination can alleviate the side effects of independent methods.

Table 5: Clean and robust accuracy (%) of
ResNet-18 trained by TRADES, TRADES-
ANC, TRADES-RA and TRADES-ANCRA
against various attacks.

Defense Nat PGD FGSM C&W
TRADES 78.92 48.40 59.60 47.59

TRADES-ANC 80.77 54.18 63.44 49.84
TRADES-RA 80.46 61.59 61.48 72.15

TRADES-ANCRA 81.70 61.68 61.56 72.36

Table 6: Clean and robust accuracy (%) of all the
probability vectors trained by TRADES-ANCRA.
"Final PV wo RA" means we remove reverse atten-
tion and then load trained parameters2to test it.

Probability Vector (PV) Nat PGD Adaptive PGD
Auxiliary PV p0 81.81 83.52 62.25
Auxiliary PV p1 81.81 83.49 62.23

Final PV p′ 81.81 83.47 62.24
Final PV wo RA p′′ 59.77 58.53 52.81

4.6 LIMITATION

Because the weights for reverse attention are determined by predicted classes, the wrong predicted
classes may lead to the wrong weighted feature and degraded performance. As shown in Table 6, the
final predicted results and intermediate predicted labels remain highly consistent. Fortunately, Table 3
has indicated that the high dependence on predicted classes does not significantly affect performance.
We will further study this limitation and hope to improve it in the future.

5 CONCLUSION

This work addresses the overlook of robust representation learning in the adversarial training by a
generic AT framework with the asymmetric negative contrast and reverse attention. We propose
two characteristics of robust feature to guide the improvement of AT, i.e., exclusion and alignment.
Specifically, the asymmetric negative contrast based on probabilities freezes natural examples, and
only pushes away examples of other classes in the feature space. Besides, the reverse attention
weights feature by the parameters of the linear classifier, to provide class information and align
feature of the same class. Our framework can be used in a plug-and-play manner with other defense
methods. Analysis and empirical evaluations demonstrate that our framework can obtain robust
feature and greatly improve robustness and generalization.
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A APPENDIX

A.1 ILLUSTRATION OF THE ASYMMETRIC NEGATIVE CONTRAST
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Figure 5: An illustration of the asymmetric negative contrast based on probabilities (ANC). p and po

denote the probability vector of x and xo, and Simα(x, xo) denotes the asymmetric negative contrast.
Firstly, we get xa and xo from x by specific attacks. Then we input them to obtain their probability
vectors to calculate the loss. When minimizing the loss, the similarity of p and po becomes smaller,
causing repulsive forces to each other.

We have drawn an illustration of the asymmetric negative contrast to help readers better understand it.
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A.2 EXPERIMENTS ABOUT HYPERPARAMETERS

We have used two hyperparameters in the loss function: α and ζ. α denotes the weighting factor to
adjust the magnitude of the two repulsive forces, which we mentioned in Equation 3 in Section 3.2.
ζ denotes the weight of the asymmetric negative contrast in the total loss, which we mentioned in
Equation 1 in Section 3.2. We tune these hyperparameters on CIFAR-10 on ResNet-18.

As shown in Figure 6, there is a positive relationship between the accuracy and α. Though there is an
obvious trade-off between the clean accuracy and robust accuracy when α equals from 0.5 to 1.0,
we can still see an abnormal increasing trend. It is because the larger α leads to the larger repulsive
force from the OE to the natural example, to prevent the natural example from being pushed into
the wrong class. Besides, as shown in Figure 7, we choose ζ = 3.00 in which models gain the best
robust accuracy against PGD-40 in the last epoch.
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A.3 FEATURE VISUALIZATION

We have drawn some frequency histograms of feature distributions on classes 1, 3 and 7 as Figure 4.
As shown in Figure 8, it has similar results as the results of class 0, which indicates our methods
successfully help AT to improve feature distribution and obtain robust representation.
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Figure 8: Frequency histograms of the L2 distance and cosine similarity of feature of natural examples,
AEs and OEs.

What’s more, we have conducted several experiments of feature visualization. We use
UMAP (McInnes & Healy, 2018), a visualization like t-SNE (van der Maaten & Hinton, 2008),
to reduce the dimension of feature vectors and draw the distribution map. Results are shown in
Figure 10 and Figure 9, where different colors denote samples of different classes. Unlike traditional
AT methods, our approach can improve feature distribution by pulling close samples of the same
class and pushing away samples of different classes, which follows exclusion and alignment.

0
1
2
3
4
5
6
7
8
9

PGD-AT TRADES MART TRADES-ANCRA

Figure 9: Feature visualization of four methods on natural and adversarial examples. Adversarial
samples are crafted by PGD-10.
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Figure 10: Feature visualization of four methods on natural examples.

14



Under review as a conference paper at ICLR 2024

A.4 EXPERIMENTS AGAINST BLACK-BOX ATTACKS

We have made some experiments against transfer-based black-box attacks. Notice that all the models
are ResNet-18, so it is easy to be attacked. AEs are generated by PGD-100 on source models and
tested on target models. As shown in Table 7, our method gains the best robustness among all the
methods, indicating its effectiveness in the black-box scenario.

Table 7: Robustness (%) against transfer-based attacks.

Target Source

PGD-AT TRADES MART
PGD-AT 44.73 58.25 59.65
TRADES 58.91 48.53 60.21

MART 58.66 58.46 49.26
TRADES-ANCRA 62.03 60.43 62.23

A.5 EXPERIMENTS ON LARGE DATASET

We have conducted some experiments to prove its effectiveness on large datasets. We train
PreActResNet-18 (He et al., 2016b) models on Tiny-ImageNet (Deng et al., 2009). We adopt
the SGD optimizer with a learning rate of 0.1, a momentum of 0.9, a weight decay of 5.0× 10−4,
epochs of 120 and a batch size of 128. The hyperparameters are the same as our settings in the text.

Table 8: Clean and robust accuracy (%) of PreActResNet-18 trained by PGD-AT-ANCRA, TRADES-
ANCRA and MART-ANCRA on Tiny-ImageNet. The error ranges are reported in brackets.

Defense Nat PGD-40 Adaptive PGD-40
PGD-AT 41.31(±1.2) 10.28(±0.7) \

PGD-AT-ANCRA 43.02(±1.7) 29.79(±0.7) 11.99(±0.6)
TRADES 37.27(±0.5) 16.30(±0.8) \

TRADES-ANCRA 38.94(±0.6) 31.24(±1.4) 17.87(±0.3)
MART 38.61(±0.9) 14.78(±0.5) \

MART-ANCRA 43.83(±0.9) 31.44(±0.4) 13.84(±0.7)

As shown in Table 8, our methods made obvious progress in robustness compared with baselines.
The performances of our method against adaptive PGD-40 are better than those against PGD-40 of
baselines except MART. Besides, all the clean accuracies of ours are higher than those of baseline.
These results indicate its effectiveness on big datasets.

A.6 EXPERIMENTS ON LARGE MODEL

We have conducted some experiments to prove its effectiveness on large models. We train WideRes-
Net (Zagoruyko & Komodakis, 2016) models on CIFAR-10. We adopt the SGD optimizer with a
learning rate of 0.1, a momentum of 0.9, a weight decay of 2.0× 10−4, epochs of 76 and a batch
size of 128. α, β are the same as our settings in the text. ζ = 6.0 when training WideResNet-28-10
and ζ = 3.0 when training WideResNet-34-10.

Table 9: Clean and robust accuracy (%) of WideResNet models trained by TRADES-ANCRA.

Defense Model Nat PGD Adaptive PGD AA Adaptive AA
TRADES WideResNet-28-10 82.47 57.08 \ 51.11 \

TRADES-ANCRA WideResNet-28-10 83.61 78.82 58.60 65.87 51.85
TRADES WideResNet-34-10 82.04 56.47 \ 50.79 \

TRADES-ANCRA WideResNet-34-10 83.61 79.31 59.35 66.28 51.99

As shown in Table 9, our method has made some enhancements in clean and robust accuracies. Our
method has better natural accuracies than baselines by 1.14% and 1.57%. Besides, the accuracies of
our method against adaptive attacks are higher than those of baselines against vanilla attacks (e.g.,
51.99%>50.79%). These results indicate its effectiveness on large models.
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A.7 COMPARATIVE EXPERIMENTS WITH METHODS IN THE ROBUSTBENCH

Table 10: Comparative experiments with methods in the RobustBench. All the models are in ResNet-
18 trained on CIFAR-10. AA denotes robust accuracy against AutoAttack. Best results are in bold.

Defense Nat AA
Sehwag et al. (2021) 87.3587.3587.35 58.50

Addepalli et al. (2022b) 85.71 52.48
Addepalli et al. (2022a) 80.24 51.06

PGD-AT-ANCRA 85.10 59.15
TRADES-ANCRA 81.70 59.7059.7059.70

MART-ANCRA 84.88 59.62

We have made a comparison with the current state-of-the-art performances listed on the RobustBench3

on ResNet-18. The results are shown in Table 10. Compared with those methods without synthetic or
extra data (i.e., Addepalli et al. (2022b) and Addepalli et al. (2022a)), our method has a higher robust
accuracy than theirs by 7.0%. And our method has even outperformed the methods with synthetic
data (Sehwag et al., 2021) in robustness. Though the clean accuracy of Sehwag et al. (2021) is more
than ours by 5.6%-2.2%, the best robust performance has indicated the effectiveness of our methods.
Experiment results in ResNet-18 have shown our superiority of robustness.

A.8 TIME COST

In our experiments, our TRADES-ANCRA only costs more time than TRADES by 3.1 hours (3.1=9.3-
6.2) in 120 epochs. Considering the significant gain in clean and robust accuracy resulting from the
proposed method, the cost is relatively worthwhile.

3https://robustbench.github.io/
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