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This work addresses the critical question of why and when diffusion models, de-
spite being designed for generative tasks, can excel at learning high-quality repre-
sentations in a self-supervised manner. To address this, we develop a mathemat-
ical framework based on a low-dimensional data model and posterior estimation,
revealing a fundamental trade-off between generation and representation quality
near the final stage of image generation. Our analysis explains the unimodal rep-
resentation dynamics across noise scales, mainly driven by the interplay between
data denoising and class specification. Building on these insights, we propose an
ensemblemethod that aggregates features across noise levels, significantly improv-
ing both clean performance and robustness under label noise. Extensive experi-
ments on both synthetic and real-world datasets validate our findings.

1. Introduction
Diffusion models, a new class of likelihood-based generative models, have achieved great empirical
success in various tasks such as image and video generation, speech and audio synthesis, and solv-
ing inverse problems [1–14]. These models, consisting of forward and backward processes, learn
data distributions by simulating the non-equilibrium thermodynamic diffusion process [2, 15, 16].
The forward process progressively adds Gaussian noise to training samples until the data is fully
destroyed, while the backward process involves training the score to generate samples from the
noisy inputs [16, 17].
In addition to their impressive generative capabilities, recent studies [18–23] have found the ex-
ceptional representation power of diffusion models. They showed that the encoder in the learned
denoisers can act as a powerful self-supervised representation learner, enabling strong performance
on downstream tasks such as classification [19, 20], semantic segmentation [18], and image align-
ment [22]. Notably, these learned features oftenmatch or even surpass existingmethods specialized
for self-supervised learning. These findings indicate the potential of diffusion models to serve as a
unified foundation model for both generative and recognition vision tasks—paralleling the role of
large language models like the GPT family in the NLP domain [24, 25].
However, it remains unclear whether the representation capabilities of diffusion models stem from
the diffusion process or the denoisingmechanism [26]. Moreover, despite recent endeavors [21, 23],
our understanding of the representation power of diffusion models across noise levels remains lim-
ited. As shown in Baranchuk et al. [18], Xiang et al. [19], Tang et al. [22], while thesemodels exhibit
a coarse-to-fine progression in generation quality from noise to image, their representation quality
follows an unimodal curve—indicating a trade-off between generation and representation quality
near the final stage of image generation. Understanding this unimodal representation curve is key
to uncovering the mechanisms underlying representation learning in diffusion models. These in-
sights can inform the development of more principled approaches for downstream representation
learning, including improved feature selection and ensemble or distillation methods. Furthermore,
understanding and balancing the trade-off between representation capacity and generative perfor-
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mance is essential for developing diffusionmodels as unified foundationmodels for both generative
and recognition tasks.

Summary of contributions. We introduce a mathematical framework for studying representation
learning in diffusion models using low-dimensional data models that capture the intrinsic struc-
ture of image datasets [27, 28]. Building on the denoising auto-encoder (DAE) formulation [29–
31], we derive insights into unimodal representation quality across noise levels and the representa-
tion–generation trade-off by analyzing how diffusion models learn low-dimensional distributions.
We further demonstrate how these theoretical findings enhance representation learning in practice.
Our main contributions are:

• Mathematical framework for studying representation learning in diffusion models. We in-
troduce the Class-Specific Signal-to-Noise Ratio (CSNR) to quantify representation quality and
analyze representation dynamics through the lens of how diffusion models learn a noisy mix-
ture of low-rank Gaussians (MoLRG) distribution [32]. Our analysis reveals that the denoising
objective is the primary driver of representation learning, while the diffusion process itself has a
minimal impact. Based on these insights, we recommend using clean images as inputs for feature
extraction in diffusion-based representation learning.

• Theoretical characterization of unimodal curve and representation–generation trade-off.
Building on ourmathematical framework, we theoretically characterize the unimodal behavior of
representation quality across noise levels in diffusion models. By linking representation quality
to the CSNR of optimal posterior estimation, we show that unimodality arises from the inter-
play between denoising strength and class confidence across varying noise scales. This analysis
provides fundamental insights into the trade-off between representation quality and generative
performance.

• Empirical insights into diffusion-based representation learning. Our findings offer practical
guidance for optimizing diffusion models in representation learning. Specifically, we introduce
a soft-voting ensemble method that aggregates features across noise levels, leading to significant
improvements in classification performance and robustness to label noise. Additionally, we un-
cover an implicit weight-sharing mechanism in diffusion models, which explains their superior
performance and more stable representations compared to traditional DAEs.

Relationship to prior results. Asdiscussed inAppendixA.1, empirical developments of leveraging
diffusion models for downstream representation learning have gained significant attention. How-
ever, a theoretical understanding of how diffusion models learn representations across different
noise levels remains largely unexplored. A recent study by [23] takes initial steps in this direction
by analyzing the optimization dynamics of a two-layer CNN trained with diffusion loss on binary
class data. Since their framework does not explicitly distinguish between timesteps, their conclu-
sions remain general across different noise levels. In contrast, our work characterizes and compares
representations learned at different timesteps, provides a deeper understanding of diffusion-based
representation learning and also extends to multi-class settings. A recent study by [33] also investi-
gates the influence of timesteps in diffusion-based representation learning, but with a methodolog-
ical focus. Unlike our work, it does not provide a theoretical explanation or practical metrics for the
emergence of unimodal representation dynamics or the trade-off between representation quality
and generative performance.

2. Problem Setup

2.1. Preliminaries on Denoising Diffusion Models

Basics of diffusion models. Diffusion models are a class of probabilistic generative models that
aim to reverse a progressive noising process by mapping an underlying data distribution, pdata, to a
Gaussian distribution.
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(a) Classification (b) Segmentation
Figure 1: Unimodal representation dynamic: using clean images as inputs improves represen-
tation quality. We train DDPM/EDM-based diffusion models on various datasets and evaluate
downstream performance using clean images (x0) versus noisy images (xt). Both scenarios show
a unimodal performance trend, peaking at intermediate noise levels. While clean images perform
similarly to noisy inputs at low noise, they outperform as noise increases.

• The forward diffusion process. Starting from clean data x0, noise is progressively added following
a schedule based on time step t until the data becomes pure Gaussian noise. At each step t, the
noised data is expressed as xt = stx0 + stσtϵ, where ϵ ∼ N (0, I) is Gaussian noise, and st, stσt
scale the signal and noise, respectively.

• The reverse diffusion process. We can run a reverse SDE [34] to sample from x1 as:
dxt =

(
f(t)xt − g2(t)∇ log pt(xt)

)
dt+ g(t)dw̄t,

where {w̄t}t∈[0,1] is the standard Wiener process running backward in time from t = 1 to t = 0
and the functions f(t), g(t) : R → R respectively denote the drift and diffusion coefficients.

Training with denoising auto-encoder (DAE) based objective. Since the score function
∇ log pt(xt) depends on the unknown data distribution pdata and satisfies

st E [x0|xt] = xt + s2tσ
2
t∇ log pt(xt), (1)

we can estimate ∇ log pt(xt) by training a network xθ(xt, t) to approximate the posterior mean
E[x0|xt] [19, 21, 35]. This is achieved by minimizing the loss L(θ) via

min
θ

N∑
i=1

∫ 1

0

λt Eϵ

[∥∥∥xθ(x
(i)
t , t)− x

(i)
0

∥∥∥2]dt, (2)

where ϵ ∼ N (0, In), λt represents the weight associated with each noise level, and N denotes the
dataset size. Moreover, x(0)

i
i.i.d.∼ pdata is the training sample and the corresponding noisy sample is

given by x
(i)
t = stx

(i)
0 + stσtϵ for each i ∈ [N ]. To simplify the analysis, we assume throughout the

paper that st = 1 and λt remain constant across all noise levels, with the noise level denoted as σt.
It is worth noting if we only minimize the error at one specific timestep, we are exactly training a
single step DAE proposed in [31], and in Section 4.2 we discuss the superiority of diffusion models
over DAEs.

2.2. Representation Learning via Diffusion Models
Once the diffusionmodel xθ is trained via (2), we extract and evaluate the representation from data
x0 as follows:

• Using clean images as network inputs. We propose to use clean images, x0, as inputs to the
network xθ(x0, t) for extracting representation across different noise levels t. This is different
from existing approaches [18, 19, 22] that use noisy images xt for representation extraction.
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• Layer selection for representations. Following the protocol in [19], we freeze the entire model
and extract representations from the layer of the diffusion model xθ(x0, t) that yields the best
downstream performance.2 Typically, we select a layer near the bottleneck layer of U-Net and the
exact midpoint layer of DiT to balance between data compression and performance.

• Evaluation of representation. Once the model is trained, we freeze the model and assess its rep-
resentation quality based on downstream performancemetrics, such as accuracy for classification
and mean intersection over union (mIoU) for segmentation tasks.

Remarks on network inputs. Beyond simplifying the analysis, our choice of using clean images
as network inputs xθ(x0, t) (rather than xθ(xt, t)) for representation extraction is driven by two
primary considerations.

• Empirical performance gains. As demonstrated in Figure 1, using clean inputs outperforms using
noisy inputs xt on both classificaiton and segmentation tasks, a result further supported by our
studies on the posterior estimation; see Figure 10 in the Appendix. These findings imply that
the denoising objective is the primary driver of representation capabilities in diffusion models,
whereas the progressive denoising procedure has a relatively minor impact on representation
quality.

• Alignment with existing learning paradigms. Moreover, our approach is also consistent with stan-
dard supervised and self-supervised learning, where data augmentations (e.g., cropping [36],
color jittering,masking [37]) are applied during training to improve robustness, but clean, unaug-
mented images are typically used at inference. In diffusion models, similarly, additive Gaussian
noise serves as a form of data augmentation during training [21], while clean images are used for
inference.

3. Study of Representation Dynamics
With the setup in Section 2, this section theoretically investigates the representation dynamics of dif-
fusionmodels across the noise levels, providing new insights for understanding the representation-
generation tradeoff. Moreover, our theoretical studies are corroborated by experimental results on
real datasets.

3.1. Assumptions of Low-Dimensional Data Distribution

Figure 2: An illustration of MoLRG with dif-
ferent noise levels. We visualize samples
drawn from noisy MoLRG with noise levels
δ = 0.1, 0.3 andK = 3.

In this work, we assume that the input data follows
a noisy version of the mixture of low-rank Gaussians
(MoLRG) distribution [32, 38, 39], defined as follows.
Assumption 1 (K-Class Noisy MoLRG Distribution).
For any sample x0 drawn from the noisy MoLRG dis-
tribution withK subspaces, the following holds:

x0 = Uka+ δU⊥
k e, with prob. πk ≥ 0, k ∈ [K]. (3)

Here, k represents the class of x0 and follows a multi-
nomial distribution k ∼ Mult(K,πk), Uk ∈ On×dk

denotes an orthonormal basis for the k-th subspace
with its complement U⊥

k ∈ On×(n−dk), dk is the sub-
space dimension with dk ≪ n, and the coefficient
a

i.i.d.∼ N (0, Idk
) is drawn from the normal distribution. The level of the noise e i.i.d.∼ N (0, In−dk

) is
controlled by the scalar δ < 1.

2After feature extraction, we apply a global average pooling to the features. For instance, given a feature
map of dimension 256× 4× 4, we pool the last two dimensions, resulting in a 256-dimensional vector.
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Best Generation  Best Representation

Input Posterior Estimations at Corresponding Timesteps

Figure 3: Trade-offs between representation quality and generation quality. The curve with pen-
tagon markers demonstrates the transition from fine to coarse granularity in posterior estimation as
noise levels increase, corresponding to the monotonic rise in FID. In contrast, the curve with square
markers reveals an unimodal trend in posterior classification accuracy, achieving peak performance
at intermediate noise levels. This occurs when high-level details are filtered out while essential
low-level semantic information is preserved, as illustrated by the posterior estimations according to
different noise levels shown at the bottom of the figure.

As shown in Figure 2, data from MoLRG resides on a union of low-dimensional subspaces, each
following a Gaussian distribution with a low-rank covariance matrix representing its basis. The
study of Noisy MoLRG distributions is further motivated by the fact that
• MoLRG captures the intrinsic low-dimensionality of image data. Although real-world imagedatasets are

high-dimensional in terms of pixel count and data volume, extensive empirical studies [27, 28, 40]
demonstrated that their intrinsic dimensionality is considerably lower. Additionally, recent work
[41, 42] has leveraged the intrinsic low-dimensional structure of real-world data to analyze the
convergence guarantees of diffusionmodel sampling. The MoLRG distribution, whichmodels data
in a low-dimensional space with rank dk ≪ n, effectively captures this property.

• The latent space of latent diffusion models is approximately Gaussian. State-of-the-art large-scale diffu-
sionmodels [43, 44] typically employ autoencoders [45] to project images into a low-dimensional
latent space, where a KL penalty encourages the learned latent distribution to approximate stan-
dard Gaussians [3]. Furthermore, recent studies [21, 46] show that diffusion models can be
trained to leverage the intrinsic subspace structure of real-world data.

• Modeling the complexity of real-world image datasets. The noise term δU⊥
k ei captures perturba-

tions outside the k-th subspace via the orthogonal complement U⊥
k , analogous to insignificant

attributes of real-world images, such as the background of an image. While this additional noise
term may be less significant for representation learning, it plays a crucial role in enhancing the
fidelity of generated samples.

Moreover, the noisy MoLRG is analytically tractable. For simplicity, we assume equal subspace di-
mensions (d1 = · · · = dK = d), orthogonal bases (UT

k Ul = 0 for k ̸= l), uniform mixing weights
(π1 = · · · = πK = 1/K), and define the noise space as U⊥ =

⋂K
k=1 U

⊥
k ∈ On×(n−Kd). Then, we can

derive the ground truth posterior mean E [x0|xt] for the noisy MoLRG distribution as:
Proposition 1. Suppose the data x0 is drawn from a noisy MoLRG data distribution with K-class and noise
level δ. Let ζt = 1

1+σ2
t
and ξt = δ2

δ2+σ2
t
, where σt is the noise scaling in (1). Then for each time t > 0, the

optimal posterior estimator E [x0|xt] has the analytical form:

E [x0|xt] =

K∑
l=1

w⋆
l (xt, t)

(
ζtUlU

T
l + ξtU

⊥
l U⊥T

l

)
xt.

where w⋆
l (xt, t) =

exp(gl(xt,t))∑K
l=1 exp(gl(xt,t))

is a soft-max operator for gl(x, t) = 1
2σ2

t
ζt∥UT

l x∥2 + δ2

2σ2
t
ξt∥U⊥T

l x∥2.
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The proof can be found in Appendix A.4.1 and it is an extension of the result in [32]. For x0 follow-
ing noisy MoLRG, note that the optimal solution x̂⋆

θ(xt, t) of the training loss (2) would exactly be
E [x0|xt]. As such, as illustrated in Figure 3, the analytical form of the posterior estimation facilitates
the study of generation-representation tradeoff across timesteps:

• The generation quality. The generation quality of posterior estimation cam be measured by
||x̂⋆

θ(xt, t) − x0||2. As shown in Proposition 1, this error is minimized at t = 0 with σt = 0,
where the true class weight satisfies w⋆

k(xt) = 1, yielding x̂⋆
θ(xt, t) = x0. As t increases, higher

noise levels σt decrease w⋆
k(xt), causing a monotonic increase in FID, as seen in Figure 3.

• The representation quality. The representation quality follows a unimodal trend across timesteps
[19, 22], which can be measured through the posterior estimator x̂⋆

θ(xt, t) (see Section 3.2). As
shown in Figure 3, this unimodal behavior creates a trade-off between generation and represen-
tation quality, particularly at smaller twhen closer to the original image.

3.2. Measuring Posterior Representation Quality
For understanding diffusion-based representation learning, we introduce a metric termed Class-
specific Signal-to-Noise Ratio (CSNR) to quantify the posterior representation quality as follows.
Definition 1 (Class-specific Signal-to-Noise Ratio). Suppose the data x0 follows the noisy
MoLRG introduced in Assumption 1. Without loss of generality, let k denote the true class of x0.
For its associated posterior estimator x̂θ,

CSNR(x̂θ, t) := Ek

[
Ex0

[∥UkU
T
k x̂θ(x0, t)∥2 | k]

Ex0
[
∑

l ̸=k ∥UlUT
l x̂θ(x0, t)∥2 | k]

]
Here, Uk represents the basis of the subspace corresponding to the true class to which x0 belongs
and the Uls with l ̸= k denotes the bases of the subspaces for other classes.

Intuitively, successful prediction of the class for x0 is achieved when the projection onto the correct
class subspace, ∥UkU

T
k x̂θ(x0, t)∥, preserves larger energy than the projections onto subspaces of

any other class, ∥UlU
T
l x̂θ(x0, t)∥. Thus, CSNR measures the ratio of the true class signal to irrel-

evant noise from other classes at a given noise level t, serving as a practical metric for evaluating
classification performance and hence the representation quality. In this work, we use posterior rep-
resentation quality as a proxy for studying the representation dynamics of diffusion models for the
following reasons:

• Posterior quality reflects feature quality. Diffusion models x̂θ are trained to perform posterior esti-
mation at a given time step t using corrupted inputs, with the intermediate features emerging
as a byproduct of this process. Thus, a more class-representative posterior estimation inherently
implies more class-representative intermediate features.

• Model-agnostic analysis. Our goal is to provide a general analysis independent of specific network
architectures and feature extraction protocols. Posterior representation quality offers a unified
metric that avoids assumptions tied to particular architectures, making the analysis broadly ap-
plicable.

3.3. Main Theoretical Results
Based upon the setup in Section 3.1 and Section 3.2, we obtain the following results.
Theorem 1. (Informal) Suppose the data x0 follows the noisy MoLRG introduced in Assumption 1 with K
classes and noise level δ, then the CSNR of the optimal denoiser x̂⋆

θ takes the following form:

CSNR(x̂⋆
θ, t) =

1

(K − 1)δ2
·

(
1 +

σ2
t

δ2 h(ŵ
+
t , δ)

1 +
σ2
t

δ2 h(ŵ
−
t , δ)

)2

. (4)
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Here, h(w, δ) := (1 − δ2)w + δ2 is a monotonically increasing function with respect to w. Additionally,
h(ŵ+

t , δ) and h(ŵ−
t , δ) denote positive and negative class confidence rates with{

ŵ+
t (σt, δ) = Ek[Ex0

[wk(x0, t) | k]],
ŵ−

t (σt, δ) = Ek[Ex0 [wl(x0, t) | k ̸= l]],

whose analytical forms can be found in Appendix A.4.2.

We defer the formal statement of Theorem 1 and its proof to Appendix A.4.2. In the following, we
discuss the implications of our result.

0.05 0.24 0.43 0.65 0.9 1.21 1.6 2.12
Time step (σt)

0.0

5.0

10.0

15.0

20.0

σ2
t /δ

2

h(ŵ +
t , δ)

0.8

0.9

1.0

Figure 4: Illustration of the interplay between the
denoising rate and the class confidence rate.

Theunimodal curve ofCSNR across noise lev-
els. Intuitively, our theorem shows that uni-
modal curve is mainly induced by the the in-
terplay between the “denoising rate" σ2

t /δ
2 and

the positive class confidence rate h(ŵ+
t , δ) as

noise level σt increases. As observed in Fig-
ure 4, the “denoising rate" (σ2

t /δ
2) increases

monotonically with σt while the class confi-
dence rateh(ŵ+

t , δ)monotonically declines. Ini-
tially, when σt is small, the class confidence rate
remains relatively stable due to its flat slope,
and an increasing “denoising rate" improves
the CSNR, resulting in improved posterior estimation. However, as indicated by Proposition 1,
when σt becomes too large, h(ŵ+

t , δ) approaches h(ŵ−
t , δ), leading to a drop in CSNR, which limits

the ability of the model to project x0 onto the correct signal subspace and ultimately hurts posterior
estimation.
Alignment of CSNR with posterior representation quality. Although our theory is derived from
the noisy MoLRG distribution, it effectively captures real-world phenomena. As shown in Figures 5
and 6, we conduct experiments on both synthetic (i.e., noisy MoLRG) and real-world datasets (i.e.,
CIFAR and ImageNet) to measure CSNR(x̂θ, t) as well as the posterior probing accuracy. For pos-
terior probing, we use posterior estimations at different timesteps as inputs for classification. The
results consistently show thatCSNR(x̂θ, t) follows a unimodal pattern across all cases, mirroring the
trend observed in posterior probing accuracy as the noise scale increases. This alignment provides
a formal justification for previous empirical findings [18, 19, 22], which have reported a unimodal
trajectory in the representation dynamics of diffusion models with increasing noise levels. Detailed
experimental setups are provided in Appendix A.3.
Explanation of generation and representation trade-off. Our theoretical findings reveal the under-
lying rationale behind the generation and representation trade-off: the proportion of data associated
with δ represents class-irrelevant attributes. The unimodal representation learning dynamic thus
captures a “fine-to-coarse" shift [47, 48], where these class-irrelevant attributes are progressively
stripped away. During this process, peak representation performance is achieved at a balance point
where class-irrelevant attributes are eliminated, while class-essential information is preserved. In
contrast, high-fidelity image generation requires capturing the entire data distribution—from coarse
structures to fine details—leading to optimal performance at the lowest noise level σt, where class-
irrelevant attributes encoded in the δ-term are maximally retained. Thus, our insights explain the
trade-off between generation and representation quality. As visualized in Figure 3 and Figure 15,
representation quality peaks at an intermediate noise level where irrelevant details are stripped
away, while generation quality peaks at the lowest noise level, where all details are preserved.

4. Practical Insights
We examine the practical implications of our findings in Section 4.1, leveraging feature information
at different levels of granularity to enhance robustness. Additionally, we discuss the advantages of
diffusion models over traditional single-step DAEs in Section 4.2.
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Figure 5: Posterior probing accuracy and associated CSNR dynamics in MoLRG data. We plot the
posterior probing accuracy and CSNR with the posterior estimations obtained from a learned esti-
mator x̂θ. both ofwhich exhibit a consistent unimodal pattern. Additionally, we include the optimal
CSNR , calculated from the ground truth posterior function x̂⋆

θ defined in Proposition 1, as a ref-
erence. The estimator is trained on a 3-class MoLRG dataset with data dimension n = 50, subspace
dimension d = 15, and noise scale δ = 0.5.

(a) CIFAR10 (b) MiniImageNet

Figure 6: Dynamics of posterior probing accuracy and associated CSNR on CIFAR10 and Mini-
ImageNet. Posterior probing accuracy is plotted alongside CSNR(x̂θ, t). Probing accuracy is eval-
uated on the test set, while the empirical CSNR is computed from the training set. Both exhibit
an aligning unimodal pattern. We use released EDM models [49] trained on the CIFAR-10 [50]
and ImageNet [51] datasets, evaluating them on CIFAR-10 and MiniImageNet [52], respectively.
To compute CSNR , we apply PCA on the original CIFAR-10/MiniImageNet images to extract the
basis Uks. Further details can be found in Appendix A.3.

4.1. Feature Ensembling Across Timesteps Improves Representation
Robustness

Our theoretical insights imply that features extracted at different timesteps capture varying levels
of granularity. Given the high linear separability of intermediate features, we propose a simple
ensembling approach across multiple timesteps to construct a more holistic representation of the
input. Specifically, in addition to the optimal timestep, we extract feature representations at four
additional timesteps—two from the coarse (larger σt) and two from the fine-grained (smaller σt)
end of the spectrum. We then train linear probing classifiers for each set and, during inference, apply
a soft-voting ensemble by averaging the predicted logits before making a final decision.(experiment
details in Appendix A.3)
We evaluate this ensemble method against results obtained from the best individual timestep, as
well as a self-supervised method MAE [37], on both the pre-training dataset and a transfer learn-
ing setup. The results, reported in Table 1 and Table 2, demonstrate that ensembling significantly
enhances performance for both EDM [49] and DiT [43], consistently outperforming their vanilla
diffusion model counterparts and often surpassing MAE. Moreover, ensembling substantially im-
proves the robustness of diffusion models for classification under label noise.
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Method MiniImageNet⋆ Test Acc. %
Label Noise Clean 20% 40% 60% 80%
MAE 73.7 70.3 67.4 62.8 51.5
EDM 67.2 62.9 59.2 53.2 40.1
EDM (Ensemble) 72.0 67.8 64.7 60.0 48.2
DiT 77.6 72.4 68.4 62.0 47.3
DiT (Ensemble) 78.4 75.1 71.9 66.7 56.3

Table 1: Comparison of test performance across different methods under varying label noise
levels. All comparedmodels are publicly available and pre-trained on ImageNet-1K [51], evaluated
using MiniImageNet classes. Bold font highlights the best result in each scenario.

Method Transfer Test Acc. %
CIFAR100 DTD Flowers102

Label Noise Clean 20% 40% 60% 80% Clean 20% 40% 60% 80% Clean 20% 40% 60% 80%
MAE 63.0 58.8 54.7 50.1 38.4 61.4 54.3 49.9 40.5 24.1 68.9 55.2 40.3 27.6 9.6
EDM 62.7 58.5 53.8 48.0 35.6 54.0 49.1 45.1 36.4 21.2 62.8 48.2 37.2 24.1 9.7
EDM (Ensemble) 67.5 64.2 60.4 55.4 43.9 55.7 49.5 45.2 37.1 22.0 67.8 53.9 41.5 25.0 10.4
DiT 64.2 58.7 53.5 46.4 32.6 65.2 59.7 53.0 43.8 27.0 78.9 65.2 52.4 34.7 13.3
DiT (Ensemble) 66.4 61.8 57.6 51.3 39.2 65.3 60.6 56.1 46.3 30.6 79.7 67.0 54.6 36.6 14.7

Table 2: Comparison of transfer learning performance across different methods under varying
label noise levels. All compared models are publicly available and pre-trained on ImageNet-1K
[51], evaluated on different downstream datasets. Bold font highlights the best result in each sce-
nario.

4.2. Weight Sharing in Diffusion Models Facilitates Representation Learning

Second, we reveal why diffusion models, despite sharing the same denoising objective with clas-
sical DAEs, achieve superior representation learning due to their inherent weight-sharing mecha-
nism. By minimizing loss across all noise levels (2), diffusion models enable parameter sharing
and interaction among denoising subcomponents, creating an implicit "ensemble" effect. This im-
proves feature consistency and robustness across noise scales compared to DAEs [21], as illustrated
in Figure 7.
To test this, we trained 10 DAEs, each specialized for a single noise level, alongside a DDPM-based
diffusion model on CIFAR10 and CIFAR100. We compared feature quality using linear probing
accuracy and feature similarity relative to the optimal features at σt = 0.06 (where accuracy peaks)
via sliced Wasserstein distance (SWD) [53].
The results in Figure 7 confirm the advantage of diffusion models over DAEs. Diffusion models
consistently outperform DAEs, particularly in low-noise regimes where DAEs collapse into trivial
identity mappings. In contrast, diffusion models leverage weight-sharing to preserve high-quality
features, ensuring smoother transitions and higher accuracy as noise increases. This advantage is
further supported by the SWD curve, which reveals an inverse correlation between feature accu-
racy and feature differences. Notably, diffusion model features remain significantly closer to their
optimal state across all noise levels, demonstrating superior representational capacity.
Our finding also aligns with prior results that sequentially training DAEs across multiple noise
levels improves representation quality [54–56]. Our ablation study further confirms thatmulti-scale
training is essential for improving DAE performance on classification tasks in low-noise settings
(details in Appendix A.2, Table 3).

5. Discussion
In this work, we develop a mathematical framework for analyzing the representation dynamics of
diffusion models. By introducing the concept of CSNR and leveraging a low-dimensional mixture
of low-rank Gaussians, we characterize the trade-off between generative quality and representation
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Figure 7: Diffusion models exhibit higher and smoother feature accuracy and similarity com-
pared to individual DAEs. We train DDPM-based diffusion models and individual DAEs on the
CIFAR datasets and evaluate their representation learning performance. Feature accuracy, and fea-
ture differences from the optimal features (indicated by ⋆) are plotted against increasing noise levels.
The results reveal an inverse correlation between feature accuracy and feature differences, with dif-
fusion models achieving both higher/smoother accuracy and smaller/smoother feature differences
compared to DAEs.

quality. Our theoretical analysis explains how the unimodal representation learning dynamics ob-
served across noise scales emerge from the interplay between data denoising and class specification.
Beyond theoretical insights, we propose an ensemblemethod inspired by our findings that enhances
classification performance in diffusion models, both with and without label noise. Additionally, we
empirically uncover an inherent weight-sharingmechanism in diffusionmodels, which accounts for
their superior representation quality compared to traditional DAEs. Experiments on both synthetic
and real-world datasets validate our findings. Additionally, our findings also open up new avenues
for future research that we discuss in the following.

• Principled diffusion-based representation learning. While diffusionmodels have shown strong
performance in various representation learning tasks, their application often relies on trial-and-
error methods and heuristics. For example, determining the optimal layer and noise scale for
feature extraction frequently involves grid searches. Our work provides a theoretical framework
to understand representation dynamics across noise scales. A promising future direction is to
extend this analysis to include layer-wise dynamics. Combining these insights could pave the
way for more principled and efficient approaches to diffusion-based representation learning.

• Representation alignment for better image generation. Recent work REPA Yu et al. [57]
has demonstrated that aligning diffusion model features with features from pre-trained self-
supervised foundation models can enhance training efficiency and improve generation quality.
By providing a deeper understanding of the representation dynamics in diffusion models, our
findings could further advance such representation alignment techniques, facilitating the devel-
opment of diffusion models with superior training and generation performance.

References
[1] Ismail Alkhouri, Shijun Liang, Rongrong Wang, Qing Qu, and Saiprasad Ravishankar.

Diffusion-based adversarial purification for robust deep mri reconstruction. In ICASSP 2024-
2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
12841–12845. IEEE, 2024.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

10



[3] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and BjörnOmmer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[4] Huijie Zhang, Yifu Lu, Ismail Alkhouri, Saiprasad Ravishankar, Dogyoon Song, and Qing
Qu. Improving training efficiency of diffusion models via multi-stage framework and tailored
multi-decoder architectures. InConference onComputer Vision and Pattern Recognition 2024, 2024.
URL https://openreview.net/forum?id=YtptmpZQOg.

[5] Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel
Ephrat, Junhwa Hur, Guanghui Liu, Amit Raj, et al. Lumiere: A space-time diffusion model
for video generation. In SIGGRAPH Asia 2024 Conference Papers, pages 1–11, 2024.

[6] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High
definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[7] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for
efficient and high fidelity speech synthesis. Advances in neural information processing systems,
33:17022–17033, 2020.

[8] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DIFFWAVE: A versa-
tile diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

[9] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal tuning for latent-
based editing of real images. ACM Transactions on Graphics (TOG), 42(1):1–13, 2022.

[10] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aber-
man. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 22500–
22510, 2023.

[11] Siyi Chen, Huijie Zhang, Minzhe Guo, Yifu Lu, Peng Wang, and Qing Qu. Exploring low-
dimensional subspace in diffusion models for controllable image editing. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=50aOEfb2km.

[12] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion mod-
els for inverse problems using manifold constraints. Advances in Neural Information Processing
Systems, 35:25683–25696, 2022.

[13] Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solv-
ing inverse problems with latent diffusion models via hard data consistency. In The Twelfth
International Conference on Learning Representations, 2024.

[14] Xiang Li, Soo Min Kwon, Ismail R Alkhouri, Saiprasad Ravishanka, and Qing Qu. De-
coupled data consistency with diffusion purification for image restoration. arXiv preprint
arXiv:2403.06054, 2024.

[15] Jascha Sohl-Dickstein, EricWeiss, NiruMaheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015.

[16] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. Inter-
national Conference on Learning Representations, 2021.

11

https://openreview.net/forum?id=YtptmpZQOg
https://openreview.net/forum?id=50aOEfb2km
https://openreview.net/forum?id=50aOEfb2km


[17] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[18] Dmitry Baranchuk, Andrey Voynov, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko.
Label-efficient semantic segmentation with diffusion models. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=SlxSY2UZQT.

[19] Weilai Xiang, Hongyu Yang, Di Huang, and Yunhong Wang. Denoising diffusion autoen-
coders are unified self-supervised learners. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 15802–15812, 2023.

[20] Soumik Mukhopadhyay, Matthew Gwilliam, Vatsal Agarwal, Namitha Padmanabhan,
Archana Swaminathan, Srinidhi Hegde, Tianyi Zhou, and Abhinav Shrivastava. Diffusion
models beat gans on image classification. arXiv preprint arXiv:2307.08702, 2023.

[21] Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. Deconstructing denoising diffusion
models for self-supervised learning. arXiv preprint arXiv:2401.14404, 2024.

[22] Luming Tang, Menglin Jia, QianqianWang, Cheng Perng Phoo, and BharathHariharan. Emer-
gent correspondence from image diffusion. Advances in Neural Information Processing Systems,
36:1363–1389, 2023.

[23] Andi Han, Wei Huang, Yuan Cao, and Difan Zou. On the feature learning in diffusionmodels.
arXiv preprint arXiv:2412.01021, 2024.

[24] Alec Radford, JeffWu, RewonChild, David Luan, DarioAmodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[25] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[26] Michael Fuest, Pingchuan Ma, Ming Gui, Johannes S Fischer, Vincent Tao Hu, and Bjorn Om-
mer. Diffusion models and representation learning: A survey. arXiv preprint arXiv:2407.00783,
2024.

[27] Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrin-
sic dimension of images and its impact on learning. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=XJk19XzGq2J.

[28] Jan Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Your diffusion
model secretly knows the dimension of the data manifold. arXiv preprint arXiv:2212.12611,
2022.

[29] Pascal Vincent, H. Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In International Conference onMachine
Learning, 2008.

[30] Pascal Vincent, H. Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a
local denoising criterion. J. Mach. Learn. Res., 11:3371–3408, 2010.

[31] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[32] Peng Wang, Huijie Zhang, Zekai Zhang, Siyi Chen, Yi Ma, and Qing Qu. Diffusion models
learn low-dimensional distributions via subspace clustering. arXiv preprint arXiv:2409.02426,
2024.

12

https://openreview.net/forum?id=SlxSY2UZQT
https://openreview.net/forum?id=XJk19XzGq2J


[33] Zhongqi Yue, Jiankun Wang, Qianru Sun, Lei Ji, Eric I-Chao Chang, and Hanwang Zhang.
Exploring diffusion time-steps for unsupervised representation learning. In The Twelfth Inter-
national Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=bWzxhtl1HP.

[34] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[35] Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and StéphaneMallat. Generalization in
diffusionmodels arises fromgeometry-adaptive harmonic representations. InThe Twelfth Inter-
national Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=ANvmVS2Yr0.

[36] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
andArmand Joulin. Emerging properties in self-supervised vision transformers. InProceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[37] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 16000–16009, 2022.

[38] Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applica-
tions. IEEE transactions on pattern analysis and machine intelligence, 35(11):2765–2781, 2013.

[39] PengWang, Huikang Liu, AnthonyMan-Cho So, and Laura Balzano. Convergence and recov-
ery guarantees of the k-subspaces method for subspace clustering. In International Conference
on Machine Learning, pages 22884–22918. PMLR, 2022.

[40] Sixue Gong, Vishnu Naresh Boddeti, and Anil K Jain. On the intrinsic dimensionality of im-
age representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3987–3996, 2019.

[41] Zhihan Huang, Yuting Wei, and Yuxin Chen. Denoising diffusion probabilistic models are
optimally adaptive to unknown low dimensionality. arXiv preprint arXiv:2410.18784, 2024.

[42] Jiadong Liang, Zhihan Huang, and Yuxin Chen. Low-dimensional adaptation of diffusion
models: Convergence in total variation. arXiv preprint arXiv:2501.12982, 2025.

[43] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[44] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller,
Joe Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution
image synthesis. In The Twelfth International Conference on Learning Representations, 2024.

[45] Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[46] Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion
generative models. In European Conference on Computer Vision, pages 274–289. Springer, 2022.

[47] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh
Yoon. Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 11472–11481, 2022.

[48] Binxu Wang and John J Vastola. Diffusion models generate images like painters: an analytical
theory of outline first, details later. arXiv preprint arXiv:2303.02490, 2023.

[49] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Proc. NeurIPS, 2022.

13

https://openreview.net/forum?id=bWzxhtl1HP
https://openreview.net/forum?id=bWzxhtl1HP
https://openreview.net/forum?id=ANvmVS2Yr0
https://openreview.net/forum?id=ANvmVS2Yr0


[50] Alex Krizhevsky, GeoffreyHinton, et al. Learningmultiple layers of features from tiny images.
2009.

[51] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

[52] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. Advances in neural information processing systems, 29, 2016.

[53] Anh-Dzung Doan, Bach Long Nguyen, Surabhi Gupta, Ian Reid, Markus Wagner, and Tat-Jun
Chin. Assessing domain gap for continual domain adaptation in object detection. Computer
Vision and Image Understanding, 238:103885, 2024.

[54] B. Chandra and Rajesh Kumar Sharma. Adaptive noise schedule for denoising autoencoder.
In International Conference on Neural Information Processing, 2014.

[55] Krzysztof Geras and Charles Sutton. Scheduled denoising autoencoders. In International Con-
ference on Learning Representations (ICLR) 2015, 2015.

[56] Qianjun Zhang and Lei Zhang. Convolutional adaptive denoising autoencoders for hierarchi-
cal feature extraction. Frontiers of Computer Science, 12:1140 – 1148, 2018.

[57] Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin,
and Saining Xie. Representation alignment for generation: Training diffusion transformers is
easier than you think. arXiv preprint arXiv:2410.06940, 2024.

[58] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, 2020.

[59] Arnu Pretorius, Steve Kroon, and Herman Kamper. Learning dynamics of linear denoising
autoencoders. In International Conference on Machine Learning, pages 4141–4150. PMLR, 2018.

[60] Harald Steck. Autoencoders that don’t overfit towards the identity. In Neural Information Pro-
cessing Systems, 2020.

[61] Daniel Kunin, Jonathan Bloom, Aleksandrina Goeva, and Cotton Seed. Loss landscapes of
regularized linear autoencoders. In International conference on machine learning, pages 3560–
3569. PMLR, 2019.

[62] Kamil Deja, Tomasz Trzciński, and JakubMTomczak. Learning data representationswith joint
diffusion models. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 543–559. Springer, 2023.

[63] Yujun Shi, Chuhui Xue, Jun Hao Liew, Jiachun Pan, Hanshu Yan, Wenqing Zhang, Vincent YF
Tan, and Song Bai. Dragdiffusion: Harnessing diffusion models for interactive point-based
image editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 8839–8849, 2024.

[64] Xingyi Yang and Xinchao Wang. Diffusion model as representation learner. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 18938–18949, 2023.

[65] Daiqing Li, Huan Ling, Amlan Kar, David Acuna, Seung Wook Kim, Karsten Kreis, Antonio
Torralba, and Sanja Fidler. Dreamteacher: Pretraining image backbones with deep generative
models. InProceedings of the IEEE/CVF International Conference onComputerVision, pages 16698–
16708, 2023.

14



[66] Nick Stracke, Stefan Andreas Baumann, Kolja Bauer, Frank Fundel, and Björn Ommer. Clean-
dift: Diffusion features without noise. arXiv preprint arXiv:2412.03439, 2024.

[67] Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holynski, and Trevor Darrell. Diffusion
hyperfeatures: Searching through time and space for semantic correspondence. Advances in
Neural Information Processing Systems, 36, 2024.

[68] Korbinian Abstreiter, Sarthak Mittal, Stefan Bauer, Bernhard Schölkopf, and Arash Mehrjou.
Diffusion-based representation learning. arXiv preprint arXiv:2105.14257, 2021.

[69] YinghengWang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and
Volodymyr Kuleshov. Infodiffusion: Representation learning using information maximizing
diffusion models. In International Conference on Machine Learning, pages 36336–36354. PMLR,
2023.

[70] Drew A Hudson, Daniel Zoran, Mateusz Malinowski, Andrew K Lampinen, Andrew Jaegle,
James LMcClelland, LoicMatthey, Felix Hill, andAlexander Lerchner. Soda: Bottleneck diffu-
sion models for representation learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 23115–23127, 2024.

[71] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn.
Diffusion autoencoders: Toward a meaningful and decodable representation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 10619–10629, 2022.

[72] Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, and Qing Qu. The
emergence of reproducibility and consistency in diffusion models. In Forty-first International
Conference on Machine Learning, 2023.

[73] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pages 722–729, 2008.

[74] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic
latent space. arXiv preprint arXiv:2210.10960, 2022.

[75] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=Hk99zCeAb.

[76] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for Gen-
erative Adversarial Networks . IEEE Transactions on Pattern Analysis & Machine Intelligence,
43(12):4217–4228, 2021. ISSN 1939-3539. doi: 10.1109/TPAMI.2020.2970919. URL https:
//doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2970919.

[77] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium–
supplementary material. Advances in Neural Information Processing Systems, 2017.

[78] tanelp. tiny-diffusion. https://github.com/tanelp/tiny-diffusion, 2022.
[79] Diederik P Kingma. Adam: A method for stochastic optimization. In International Conference

on Learning Representations, 2015.
[80] M. Cimpoi, S.Maji, I. Kokkinos, S. Mohamed, , andA. Vedaldi. Describing textures in thewild.

In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

15

https://openreview.net/forum?id=Hk99zCeAb
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2970919
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2970919
https://github.com/tanelp/tiny-diffusion


A. Appendix
TheAppendix is organized as follows: in Appendix A.1, we discuss relatedworks; in Appendix A.2,
we provide complementary experiments; in Appendix A.3, we present the detailed experimental
setups for the empirical results in the paper. Lastly, in Appendix A.4, we provide proof details for
Section 3.

A.1. Related Works
Denoising auto-encoders. Denoising autoencoders (DAEs) are trained to reconstruct corrupted
images to extract semantically meaningful information, which can be applied to various vision
[29, 30] and language downstream tasks [58]. Related to our analysis of the weight-sharing mecha-
nism, several studies have shown that trainingwith a noise scheduler can enhance downstream per-
formance [54–56]. On the theoretical side, prior works have studied the learning dynamics [59, 60]
and optimization landscape [61] through the simplified linear DAE models.
Diffusion-based representation learning. Diffusion-based representation learning [26] has
demonstrated significant success in various downstream tasks, including image classification
[19, 20, 62], segmentation [18], correspondence [22], and image editing [63]. To further enhance
the utility of diffusion features, knowledge distillation [64–67] methods have been proposed, aim-
ing to bypass the computationally expensive grid search for the optimal t in feature extraction and
improving downstreamperformance. Beyond directly using intermediate features frompre-trained
diffusionmodels, research efforts has also explored novel loss functions [68, 69] and networkmodi-
fications [70, 71] to developmore unified generative and representation learning capabilities within
diffusion models. Unlike the aforementioned efforts, our work focuses more on understanding the
representation learning capabilities of diffusion models.

A.2. Additional Experiments
Influence of data complexity in diffusion representation learning Our analyses in the main body
of the paper are based on the assumption that the training dataset contains sufficient samples for the
diffusion model to learn the underlying distribution. Interestingly, if this assumption is violated by
training the model on insufficient data, the unimodal representation learning dynamic disappears
and the probing accuracy also drops severely.
As illustrated in Figure 8, we train 2 different UNets following the EDM [49] configuration with
training dataset size ranging from 25 to 215. The unimodal curve emerges only when the dataset
size exceeds 212, whereas smaller datasets produce flat curves.
The underlying reason for this observation is that, when training data is limited, diffusion models
memorize all individual data points rather than learn the true underlying data structure [32]. In this
scenario, the model memorizes an empirical distribution that lacks meaningful low-dimensional
structures and thus deviates from the setting in our theory, leading to the loss of the unimodal
representation dynamic. To confirm this, we calculated the generalization score, which measures
the percentage of generated data that does not belong to the training dataset, as defined in [72]. As
shown in Figure 9, representation learning only achieves strong accuracy and displays the unimodal
dynamic when the generalization score approaches 1, aligning with our theoretical assumptions.
Posterior quality decides feature quality Diffusion models x̂θ are trained to perform posterior
estimation at a given time step tusing corrupted inputs, with the features for representation learning
emerging as an intermediate byproduct of this process. This leads to a natural conjecture: changes
in feature quality should directly correspond to changes in posterior estimation quality.

To test this hypothesis, we visualize the posterior estimation results for clean inputs (x̂θ(x0, t)) and
noisy inputs (x̂θ(xt, t)) across varying noise scales σt in Figure 10. The results reveal that, similar to
the findings for feature representation, clean inputs yield superior posterior estimation compared to
corrupted inputs, with the performance gap widening as the noise scale increases. Furthermore, as
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Figure 8: The influence of data complexity in diffusion-based representation learning. With the
samemodel trained in Figure 9, weplot the representation learning dynamics for each trainedmodel
as a function of changing noise levels.
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Figure 9: Better representations are learned in the generalization regime. We train EDM-based
[49] diffusionmodels on the CIFAR-10 dataset using different training dataset sizes, ranging from 26

to 215. (a) The change in the generalization score [72] as the dataset size increases, where regions
with a generalization score close to 0 are labeled as the memorization regime, and those close to
1 are labeled as the generalization regime. (b) The peak representation learning feature accuracy
achieved as a function of dataset size.

illustrated in the Figure 3, if we consider posterior estimation as the last-layer features and directly
use it for classification, the accuracy curve reveals a unimodal trend as noise level progresses, similar
to the behavior observed in feature classification accuracy. These findings strongly validate the
conjecture.
Building on this insight, we use posterior estimation as a proxy to analyze the dynamics of diffusion-
based representation learning in Section 3. Moreover, since the unimodal representation dynamic
persists across different network architectures and feature extraction layers, analyzing posterior es-
timation also enables us to study the problem without relying on specific architectural or layer-
dependent assumptions.
Additional representation learning experiments on DDPM. Apart from EDM and DDPM* mod-
els pre-trained using the framework proposed by [49], we also experiment with the features ex-
tracted by classic DDPM models [2] to make sure the observations do not depend on the specific
training framework. We use the same groups of noise levels and also test using clean or noisy images
as input to extract features at the bottleneck layer, and then conduct the linear probe. The DDPM
models we use are trained on the Flowers-102 [73] and the CIFAR10 dataset accordingly. Different
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(a) x̂θ(xt, t): Posterior estimation using noise image as inputs.
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(b) x̂θ(x0, t): Posterior estimation using clean image as inputs.
Figure 10: Using clean images as inputs improves posterior estimation quality. We use a pre-
trained DDPM diffusion model on CIFAR10 to visualize posterior estimation for clean inputs and
noisy inputs across varying noise scales σt. Clean inputs produce smooth and descriptive estima-
tions even at high noise levels, whereas noisy inputs result in blurry and lossy estimations at large
σt, making it difficult to extract meaningful representations.

Figure 11: Performance comparison: clean vs. noisy inputs. We use pre-trained DDPM/EDM
model on the CIFAR10/CIFAR100 datasets and Flowers-102 [73]. The feature probing accuracy is
plotted to compare the performance when using clean versus noisy inputs.

from the framework proposed by [49], the input to the classic DDPMmodel is the same as the input
to the UNet inside. Therefore, we calculate the scaling factor √ᾱt = 1/

√
σ2(t) + 1, and use √ᾱtx0

as the clean image input. Besides, for noisy input, we set xt =
√
ᾱt(x0+n), with n ∼ N

(
0, σ(t)2I

).
The linear probe results are presented in Figure 11, where we consistently see an unimodal curve,
as well as compatible or even superior representation learning performance of clean input x0.

Extend CSNR on feature representations. In the main body of the paper, we define CSNR with
respect to the posterior estimation function. Given that the intermediate representations of diffusion
models exhibit near-linear properties [74], we extend the definition of CSNR to feature extraction
functions:

CSNR(t, fθ) := Ek

[
Ex0

[∥ÛkÛ
T
k fθ(x0, t)∥2 | k]

Ex0
[
∑

l ̸=k ∥ÛlÛT
l fθ(x0, t)∥2 | k]

]
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Figure 12: Dynamics of feature probing accuracy and associated CSNR on MoLRG data Feature
probing accuracy is plotted alongside CSNR(f̂θ, t). Probing accuracy is evaluated on the test set,
while the empirical CSNR is computed from the training set. Both exhibit an aligning unimodal
pattern.

(a) CIFAR10 (b) MiniImageNet

Figure 13: Dynamics of feature probing accuracy and associatedCSNR on CIFAR10 andMiniIm-
ageNet. Feature probing accuracy is plotted alongside CSNR(f̂θ, t). Probing accuracy is evaluated
on the test set, while the empiricalCSNR is computed from the training set. Both exhibit an aligning
unimodal pattern.

Here, fθ(·, t) represents a diffusion feature extraction function that includes all layers up to the fea-
ture extraction layer of a diffusion model. The matrix Ûk denotes the extracted basis corresponding
to the correct class of the features, while Ûl(l ̸= k) represents the bases of incorrect classes.
We validate this extension of CSNR as a measure of feature representation quality. Using the same
models from Figure 5 and Figure 6, we extract intermediate features at each time step and evaluate
classification performance on the test set via linear probing. For CSNR calculation, we compute the
basis using features extracted at each time step and subsequently calculate CSNR for the extracted
features, denoted as CSNR(f̂θ, t). The results are presented in Figure 12 and Figure 13 for synthetic
and real datasets, respectively. As shown in the plots, CSNR(fθ, t) consistently follows a unimodal
pattern, mirroring the trend of feature probing performance as the noise scale increases.
Validation of x̂⋆

approx approximation inAppendixA.4.2. In Theorem2,we approximate the optimal
posterior estimation function x̂⋆

θ using x̂⋆
approx by taking the expectation inside the softmax with

respect to x0. To validate this approximation, we compare the CSNR calculated from x̂⋆
θ and from

x̂⋆
approx using the definition in Proposition 1 and (5) in Appendix A.4.2, respectively. We use a fixed

dataset size of 2400 and set the default parameters to n = 50, d = 5, K = 3, and δ = 0.1 to generate
MoLRG data. We then vary one parameter at a time while keeping the others constant, and present
the computedCSNR in Figure 14. As shown, the approximatedCSNR score consistently alignswith
the actual score.
Visualization of the MoLRG posterior estimation and CSNR across noise scales. In Figure 5, we
show that both the posterior classification accuracy and CSNR exhibit a unimodal trend for the
MoLRG data. To further illustrate this behavior, we provide a visualization of the posterior estima-
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Figure 14: Comparison between CSNR calculated using the optimal model x̂⋆
θ and the CSNR cal-

culated with our approximation in Theorem 1. We generate MoLRG data and calculate CSNR using
both the corresponding optimal posterior function x̂⋆

θ and our approximation x̂⋆
approx from Theo-

rem 1. Default parameters are set as n = 50, d = 5, K = 3, and δ = 0.1. In each row, we vary one
parameter while keeping the others fixed, comparing the actual and approximated CSNR.

tion and CSNR at different noise scales in Figure 15. In the plot, each class is represented by a
colored straight line, while deviations from these lines correspond to the δ-related noise term. Ini-
tially, increasing the noise scale effectively cancels out the δ-related data noise, resulting in a cleaner
posterior estimation and improved probing accuracy. However, as the noise continues to increase,
the class confidence rate drops, leading to an overlap between classes, which ultimately degrades
the feature quality and probing performance.
Mitigating the performance gap between DAE and diffusion models. Throughout the empiri-
cal results presented in this paper, we consistently observe a performance gap between individual
DAEs and diffusion models, especially in low-noise regions. Here, we use a DAE trained on the
CIFAR10 dataset with a single noise level σ = 0.002, using the NCSN++ architecture [49]. In the
default setting, the DAE achieves a test accuracy of 32.3. We then explore three methods to improve
the test performance: (a) adding dropout, as noise regularization and dropout have been effective
in preventing autoencoders from learning identity functions [60]; (b) adopting EDM-based precon-
ditioning during training, including input/output scaling, loss weighting, etc.; and (c) multi-level
noise training, in which the DAE is trained simultaneously on three noise levels [0.002, 0.012, 0.102].
Each modification is applied independently, and the results are reported in Table 3. As shown,
dropout helps improve performance, but even with a dropout rate of 0.95, the improvement is mi-
nor. EDM-based preconditioning achieves moderate improvement, while multi-level noise training
yields the most promising results, demonstrating the benefit of incorporating the diffusion process
in DAE training.

A.3. Experimental Details
In this section, we provide technical details for all the experiments in the main body of the paper.
Experimental details for Figure 1.
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Best Generation Best Representation

Figure 15: Visualization of posterior estimation for a clean input, higher CSNR correspondings
to higher classification accuracy. The same MoLRG data is fed into the models; each row represents
a different denoising model, and each column corresponds to a different time step with noise scale
(σt). The teal box indicates the best generation quality and The red box indicates the best represen-
tation quality.

Table 3: Improve DAE representation performance at low noise region. A vanilla DAE trained on
the CIFAR-10 dataset with a single noise level of σ = 0.002 serves as the baseline. We evaluate the
performance improvement of dropout regularization, EDM-based preconditioning, andmulti-level
noise training (σ = {0.002, 0.012, 0.102}). Each technique is applied independently to assess its
contribution to performance enhancement.

Modifications Test acc.
Vanilla DAE 32.3

+Dropout (0.5) 35.3
+Dropout (0.9) 36.4
+Dropout (0.95) 38.1

+EDM preconditioning 49.2
+Multi-level noise training 58.6

• Experimental details for Figure 1(a). We train diffusion models based on the unified frame-
work proposed by [49]. Specifically, we use theDDPM+network, and use VP configuration
for Figure 1(a). [49] has shown equivalence between VP configuration and the traditional
DDPM setting, thus we call the models in Figure 3(a) as DDPM* models. We train two
models on CIFAR10 and CIFAR100, respectively. After training, we conduct linear probe
on CIFAR10 and CIFAR100. At a specific noise level σ(t), we either use clean image x0 or
noisy image xt = x0 + n as input to the DDPM* models for extracting features after the
’8x8_block3’ layer. Here, n represents random noise and n ∼ N

(
0, σ(t)2I

). We train a
logistic regression on features in the train split and report the classification accuracy on the
test split of the dataset. We perform the linear probe for each of the following noise levels:
[0.002, 0.008, 0.023, 0.060, 0.140, 0.296, 0.585, 1.088, 1.923, 3.257].

• Experimental details for Figure 1(b). We exactly follow the protocol in [18], using the same
datasetswhich are subsets of CelebA [75] and FFHQ [76], the same training procedure, and
the same segmentation networks (MLPs). The only difference is that we use a newer latent
diffusion model [3] pretrained on CelebAHQ from Hugging Face and the noise are added
to the latent space. For feature extraction we concatenate the feature from the first layer of
each resolution in the UNet’s decoder (after upsampling them to the same resolution as the
input). We perform segmentation for each of the following noise levels:[0.015, 0.045, 0.079,
0.112, 0.176, 0.342, 0.724, 2.041].
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Experimental details for Figure 3. We use a pre-trained EDM CIFAR10 model from the official
GitHub repository [49] and extract 10 sets of posterior estimations corresponding to σt values rang-
ing from 0.002 to 8.401. MLP probing is applied to these posterior estimations to evaluate posterior
accuracy, and FID [77] is computed relative to the original CIFAR10 dataset. For the posterior visu-
alizations in the bottom figure, we randomly select a sample and display its posterior estimations
according to the same σt schedule.
Experimental details for Figure 5 and Figure 15. For the MoLRG experiments, we train a 3-layerMLP
with ReLU activation and a hidden dimension of 1024, following the setup provided in an open-
source repository [78]. The MLP is trained for 200 epochs using DDPM scheduling with T = 500,
employing the Adam optimizer with a learning rate of 5 × 10−4. For feature extraction, we use
the activations of the second layer of the MLP (dimension 1024) as intermediate features for linear
probing. For CSNR computation, we follow the definition in Section 3.2 since we have access to the
ground-truth basis for the MoLRG data, i.e.,U1,U2, andU3 ∈ R50×15 . For probing we simply train a
linear probe on the posterior and estimations, noting that we take the absolute value of the posterior
estimations before feeding them to the probe.
For both panels in Figure 5, we train our probe the same training set used for diffusion and test
on five different MoLRG datasets generated with five different random seeds, reporting the average
accuracy and CSNR at time steps [1, 5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 240, 260, 280]. In
Figure 15, we switch to a 3-class MoLRG with d = 1, n = 10, δ = 0.3 and visualize the posterior
estimations at time steps [1, 20, 80, 200, 260] by projecting them onto the union of U1,U2, and U3

(a 3D space), then further projecting onto the 2D plane by a random 3×2matrix with orthonormal
columns. The subtitles of each visualization show the correspondingCSNR calculated as explained
above.
Experimental details for Figure 6. We use pre-trained EDM models [49] for CIFAR10 and Ima-
geNet, extracting feature representations from the best-performing layer and posterior estimations
as the network outputs at each timestep . For the ImageNet model, features are extracted using im-
ages and classes from MiniImageNet [52]. Feature accuracy is evaluated via linear probing, while
posterior accuracy is assessed using a two-layer MLP, where posterior estimations pass through a
linear layer and ReLU activation before the final linear classifier. The bases for the CSNRmetric on
features are computed via singular value decomposition (SVD) on feature representations at each
timestep for each class, followed by CSNR calculation using its definition in Section 3.2. For poste-
rior estimation, we directly use bases Uk derived from raw dataset images. In all cases, the first 5
right singular vectors of each class are used to extract Uk.
Experimental details for Figure 7. We train individual DAEs using the DDPM++ network and VP
configuration outlined in Karras et al. [49] at the following noise scales:

[0.002, 0.008, 0.023, 0.06, 0.14, 0.296, 0.585, 1.088, 1.923, 3.257].

Each model is trained for 500 epochs using the Adam optimizer [79] with a fixed learning rate of
1 × 10−4. For the diffusion models, we reuse the model from Figure 3(d). The sliced Wasserstein
distance is computed according to the implementation described in Doan et al. [53].
Experimental details for Figure 8 and Figure 9. We use the DDPM++ network and VP config-
uration to train diffusion models[49] on the CIFAR10 dataset, using two network configurations:
UNet-64 and UNet-128, by varying the embedding dimension of the UNet. Training dataset sizes
range exponentially from 26 to 215. For each dataset size, both UNet-64 and UNet-128 are trained on
the same subset of the training data. All models are trainedwith a duration of 50K images following
the EDM training setup. After training, we calculate the generalization score as described in Zhang
et al. [72], using 10K generated images and the full training subset to compute the score.
Experimental details for Table 1 and Table 2 For EDM, we use the official pre-trained checkpoints
on ImageNet 64 × 64 from [49], and for DiT, we use the released DiT-XL/2 model pre-trained on
ImageNet 256×256 from [43]. As a baseline, we include theHugging Face pre-trainedMAE encoder
(ViT-B/16) [37].
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For diffusion models, features are extracted from the layer and timestep that achieve the highest
probing accuracy, following [19]. After feature extraction, we adopt the probing protocol from
[21], passing the extracted features through a probe consisting of a BatchNorm1d layer followed
by a linear layer. To ensure fair comparisons, all input images are cropped or resized to 224 × 224,
matching the resolution used for MAE training.
For ensembling, we extract features from two additional timesteps on either side of the optimal
timestep. Independent probes are trained on these timesteps, yielding five probes in total. At
test time, we apply a soft-voting ensemble by averaging the output logits from all five probes for
the final prediction. Specifically, let Wt ∈ RK×d be the linear classifier trained on features from
timestep t, and let ht ∈ Rd denote the feature representation of a sample at timestep t. Consid-
ering neighboring timesteps t − 2, t − 1, t + 1, and t + 2, our ensemble prediction is computed as:
ŷ = arg max

(
1
5

∑t+2
t=t−2 Wtht

)
.

We evaluate each method under varying levels of label noise, ranging from 0% to 80%, by ran-
domly mislabeling the specified percentage of training labels before applying linear probing. Per-
formance is assessed on both the pre-training dataset and downstream transfer learning tasks. For
pre-training evaluation, we use the images and classes from MiniImageNet [52] to reduce compu-
tational cost. For transfer learning, we evaluate on CIFAR100 [50], DTD [80], and Flowers102 [73].
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A.4. Proofs

A.4.1. Proof of Proposition 1

Proof. We follow the same proof steps as in [32] Lemma 1with a change of variable. Let ck =

[
ak

ek

]
and Ũk =

[
Uk δU⊥

k

], we first compute

pt(x|Y = k)

=

∫
pt (x|Y = k, ck)N (ck;0, Id+D) dck

=

∫
pt(x|x0 = Ũkck)N (ck;0, Id+D) dck

=

∫
N (x; stŨkck, γ

2
t In)N (ck;0, Id+D) dck

=
1

(2π)n/2(2π)(d+D)/2γnt

∫
exp
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− 1

2γ2t
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(
−1

2
∥ck∥2

)
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∫
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(
− 1

2γ2t

(
xTx− 2stx
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T
k Ũk
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T
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where we repeatedly apply the pdf of multi-variate Gaussian and the second last equality uses
det(s2tUkU

T
k + s2t δ

2U⊥
k U⊥T
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d(s2t δ

2 + γ2t )
D and (s2tUkU

T
k + s2t δ

2U⊥
k U⊥T

k +
γ2t In)

−1 =
(
In − s2t/(s

2
t + γ2t )UkU

T
k − s2t δ

2/(s2t δ
2 + γ2t )U

⊥
k U⊥T
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/γ2t because of theWoodburyma-

trix inversion lemma. Hence, with P (Y = k) = πk for each k ∈ [K], we have

pt(x) =

K∑
k=1

pt(x|Y = k)P(Y = k) =

K∑
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T
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Now we can compute the score function

∇ log pt(x) =
∇pt(x)
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According to Tweedie’s formula, we have
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2 + γ2t )). The final equality uses the pdf of
multi-variant Gaussian and the matrix inversion lemma discussed earlier.
Now since πk is consistent for all k and st = 1, we have
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A.4.2. Proof of Theorem 1

We first state the formal version of Theorem 1.
To simplify the calculation of CSNR as introduced in Section 3.2 on posterior estimation, which
involves the expectation over the softmax term w⋆

k, we approximate x̂⋆
θ as follows:

x̂⋆
approx(x, t) =

K∑
k=1

ŵk

(
1

1 + σ2
t

UkU
T
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δ2

δ2 + σ2
t
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k U⊥T
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x,

where ŵk :=
exp (Ex0 [gk(x0, t)])∑K
k=1 exp (Ex0

[gk(x0, t)])
.

(5)

In otherwords, we use ŵk in (5) to approximatew⋆
k(x0) in Proposition 1 by taking expectation inside

the softmaxwith respect tox0. This allows us to treat ŵk as a constantwhen calculatingCSNR, mak-
ing the analysis more tractable while maintaining E[∥UlU

T
l x̂⋆

θ(x0, t)∥2] ≈ E[∥UlU
T
l x̂⋆

approx(x0, t)∥2]
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for all l ∈ [K]. We verify the tightness of this approximation at Appendix A.2 (Figure 14). With this
approximation, we state the theorem as follows:
Theorem 2. Let data x0 be any arbitrary data point drawn from the MoLRG distribution defined in Assump-
tion 1 and let k denote the true class x0 belongs to. Then CSNR introduced in Section 3.2 depends on the
noise level σt in the following form:

CSNR(x̂⋆
approx, t) =

1

(K − 1)δ2
·

(
1 +

σ2
t

δ2 h(ŵk, δ)

1 +
σ2
t

δ2 h(ŵl, δ)

)2

(6)

where h(w, δ) := (1−δ2)w+δ2. Since δ is fixed, h(w, δ) is a monotonically increasing function with respect
to w. Note that here δ represents the magnitude of the fixed intrinsic noise in the data where σt denotes the
level of additive Gaussian noise introduced during the diffusion training process.

Proof. Following the definition of CSNR as defined in Section 3.2, Lemma 1 and the fact that k ∼
Mult(K,πk)with π1 = · · · = πK = 1/K, we can write

CSNR(x̂⋆
approx, t) =

Ex0 [∥UkU
T
k x̂⋆

approx(x0, t)∥2]
Ex0

[
∑

l ̸=k ∥UlUT
l x̂⋆

approx(x0, t)∥2]
=

Ex0 [∥UkU
T
k x̂⋆

approx(x0, t)∥2]∑
l ̸=k Ex0

[∥UlUT
l x̂⋆

approx(x0, t)∥2]

=

(
ŵk

1+σ2
t
+ (K−1)δ2ŵl

δ2+σ2
t

)2
d

(K − 1)
(

ŵl

1+σ2
t
+ δ2(ŵk+(K−2)ŵl)

δ2+σ2
t

)2
δ2d

=
1

(K − 1)δ2
·
(

ŵkδ
2 + ŵkσ

2
t + (K − 1)δ2ŵl + (K − 1)δ2ŵlσ

2
t

ŵlδ2 + ŵlσ2
t + δ2ŵk + (K − 2)δ2ŵl + δ2ŵkσ2

t + (K − 2)δ2ŵlσ2
t

)2

=
1

(K − 1)δ2
·

(
δ2 + σ2

t

(
ŵk + (K − 1)δ2ŵl

)
δ2 + σ2

t (ŵl + δ2ŵk + (K − 2)δ2ŵl)

)2

=
1

(K − 1)δ2
·

(
1 +

σ2
t

δ2

(
(1− δ2)ŵk + δ2(ŵk + (K − 1)ŵl)

)
1 +

σ2
t

δ2 ((1− δ2)ŵl + δ2(ŵl + ŵk + (K − 2)ŵl))

)2

=
1

(K − 1)δ2
·

(
1 +

σ2
t

δ2

(
(1− δ2)ŵk + δ2

)
1 +

σ2
t

δ2 ((1− δ2)ŵl + δ2)

)2

=
1

(K − 1)δ2
·

(
1 +

σ2
t

δ2 h(ŵk, δ)

1 +
σ2
t

δ2 h(ŵl, δ)

)2

where h(w, δ) := (1− δ2)w + δ2.

Lemma 1. With the set up of a K-class MoLRG data distribution as defined in (3), and define the noise space
as U⊥ =

⋂K
k=1 U

⊥
k ∈ On×(n−Kd) (i.e., mutual noise for all classes). Consider the following the function:

x̂⋆
approx(x, t) =

K∑
k=1

ŵk(x)

(
1

1 + σ2
t

UkU
T
k +

δ2

δ2 + σ2
t

U⊥
k U⊥T

k

)
x, (7)

where ŵk(x) :=
exp (Ex[gk(x, t)])∑K
k=1 exp (Ex[gk(x, t)])

, (8)

and gk(x) =
1

2σ2
t (1 + σ2

t )
∥UT

k x∥2 + δ2

2σ2
t (δ

2 + σ2
t )
∥U⊥T

k x∥2. (9)
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I.e., we consider a simplified version of the expected posterior mean as in Proposition 1 by taking expectation
of gk(x) prior to the softmax operation. Under this setting, for any clean x0 from class k (i.e., x0 = Ukai +
bU⊥

k ei), we have:

Ex0 [∥UkU
T
k x̂⋆

approx(x0, t)∥2] =
(

ŵk

1 + σ2
t

+
(K − 1)δ2ŵl

δ2 + σ2
t

)2

d (10)

Ex0
[∥UlU

T
l x̂⋆

approx(x0, t)∥2] =
(

ŵl

1 + σ2
t

+
δ2(ŵk + (K − 2)ŵl)

δ2 + σ2
t

)2

δ2d (11)

Ex0
[∥U⊥U

T
⊥ x̂⋆

approx(x0, t)∥2] =
δ6(n− kd)

(δ2 + σ2
t )

2
(12)

E[∥x̂⋆
approx(x0, t)∥2] =

(
ŵk

1 + σ2
t

+
(K − 1)δ2ŵl

δ2 + σ2
t

)2

d︸ ︷︷ ︸
E ∥UkUT

k x̂⋆
approx(x0,t)∥2]

+ (K − 1)

(
ŵl

1 + σ2
t

+
δ2(ŵk + (K − 2)ŵl)

δ2 + σ2
t

)2

δ2d︸ ︷︷ ︸
E[
∑K

l ̸=k UlUT
l x̂⋆

approx(x0,t)∥2]

+
δ6(n−Kd)

(δ2 + σ2
t )

2︸ ︷︷ ︸
E[∥U⊥UT

⊥ x̂⋆
approx(x0,t)∥2]

(13)

and

ŵk := ŵk(x0) =
exp

(
d

2σ2
t (1+σ2

t )
+ δ4D

2σ2
t (δ

2+σ2
t )

)
exp

(
d

2σ2
t (1+σ2

t )
+ δ4D

2σ2
t (δ

2+σ2
t )

)
+ (K − 1) exp

(
δ2d

2σ2
t (1+σ2

t )
+ δ2d+δ4(D−d)

2σ2
t (δ

2+σ2
t )

) ,
ŵl := ŵl(x0) =

exp
(

δ2d
2σ2

t (1+σ2
t )

+ δ2d+δ4(D−d)
2σ2

t (δ
2+σ2

t )

)
exp

(
d

2σ2
t (1+σ2

t )
+ δ4D

2σ2
t (δ

2+σ2
t )

)
+ (K − 1) exp

(
δ2d

2σ2
t (1+σ2

t )
+ δ2d+δ4(D−d)

2σ2
t (δ

2+σ2
t )

)
(14)

for all class index l ̸= k.

Proof. Throughout the proof, we use the following notation for slices of vectors.
ei[a : b] Slices of vector ei from ath entry to bth entry.

We begin with the softmax terms. Since each class has its unique disjoint subspace, it suffices to
consider gk(x0, t) and gl(x0, t) for any l ̸= k. Let at = 1

2σ2
t (1+σ2

t )
and ct = δ2

2σ2
t (δ

2+σ2
t )
, we have:

E[gk(x0, t)] = E[at∥UT
k x0∥2 + ct∥U⊥T

k x0∥2]
= E[at∥UT

k (Ukai + bU⊥
k ei)∥2] + E[ct∥U⊥T

k (Ukai + bU⊥
k ei)∥2]

= E[at∥ai∥2] + E[ct∥bei∥2]
= atd+ ctδ

2D

where the last equality follows from ai
i.i.d.∼ N (0, Id) and ei

i.i.d.∼ N (0, ID).
Without loss of generality, assume the j = k + 1, we have:

E[gl(x0, t)] = E[at∥UT
l x0∥2 + ct∥U⊥T

l x0∥2]
= E[at∥UT

l (Ukai + bU⊥
k ei)∥2] + E[ct∥U⊥T

l (Ukai + bU⊥
k ei)∥2]

= E[at∥bei[1 : d]∥2] + E
[
ct

∥∥∥ [ ai

0 ∈ RD−d

]
+ b

[
0 ∈ Rd

ei[d : D]]

] ∥∥∥2]
= atδ

2d+ ct(d+ δ2(D − d))
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Plug at and bt back with the exponentials, we get ŵk and ŵl.

Now we prove (10):

UkU
T
k x̂⋆

approx(x0, t) = ŵkUkU
T
k

(
1

1 + σ2
t

UkU
T
k +

δ2

δ2 + σ2
t

U⊥
k U⊥T

k

)
x0

+
∑
l ̸=k

ŵlUkU
T
k

(
1

1 + σ2
t

UlU
T
l +

δ2

δ2 + σ2
t

U⊥
l U⊥T

l

)
x0

= ŵk

(
1

1 + σ2
t

UkU
T
k x0

)
+
∑
l ̸=k

ŵl

(
δ2

δ2 + σ2
t

UkU
T
k x0

)

=

(
ŵk

1 + σ2
t

+
(K − 1) δ2ŵl

δ2 + σ2
t

)
UkU

T
k (Ukai + bU⊥

k ei)

=

(
ŵk

1 + σ2
t

+
(K − 1) δ2ŵl

δ2 + σ2
t

)
Ukai

Since Uk ∈ On×d:

E[∥UkU
T
k x̂⋆

approx(x0, t)∥2] =
(

ŵk

1 + σ2
t

+
(K − 1) δ2ŵl

δ2 + σ2
t

)2

d

and similarly for (11):
UlU

T
l x̂⋆

approx(x0, t) = ŵkUlU
T
l

(
1

1 + σ2
t

UkU
T
k +

δ2

δ2 + σ2
t

U⊥
k U⊥T

k

)
x0

+ ŵlUlU
T
l

(
1

1 + σ2
t

UlU
T
l +

δ2

δ2 + σ2
t

U⊥
l U⊥T

l

)
x0

+
∑
j ̸=k,l

ŵjUlU
T
l

(
1

1 + σ2
t

UjU
T
j +

δ2

δ2 + σ2
t

U⊥
j U⊥T

j

)
x0

= ŵk

(
δ2

δ2 + σ2
t

UlU
T
l x0

)
+ ŵl

(
1

1 + σ2
t

UlU
T
l x0

)
+
∑
j ̸=k,l

ŵj

(
δ2

δ2 + σ2
t

UlU
T
l x0

)

=

(
ŵl

1 + σ2
t

+
δ2(ŵk + (K − 2)ŵj)

δ2 + σ2
t

)
UlU

T
l (Ukai + bU⊥

k ei)

=

(
ŵl

1 + σ2
t

+
δ2(ŵk + (K − 2)ŵl)

δ2 + σ2
t

)
bUlei[1 : d]

where the third equality follows since ŵj = ŵl for all j ̸= k, l. Further, we have:

E[∥UlU
T
l x̂⋆

approx(x0, t)∥2] =
(

ŵl

1 + σ2
t

+
δ2(ŵk + (K − 2)ŵl)

δ2 + σ2
t

)2

δ2d

Next, we consider (12):

U⊥U
T
⊥ x̂⋆

approx(x0, t) = ŵkU⊥U
T
⊥

(
1

1 + σ2
t

UkU
T
k +

δ2

δ2 + σ2
t

U⊥
k U⊥T

k

)
x0

+
∑
l ̸=k

ŵlU⊥U
T
⊥

(
1

1 + σ2
t

UlU
T
l +

δ2

δ2 + σ2
t

U⊥
l U⊥T

l

)
x0

= ŵk

(
δ2

δ2 + σ2
t

U⊥U
T
⊥x0

)
+
∑
l ̸=k

ŵl

(
δ2

δ2 + σ2
t

U⊥U
T
⊥x0

)

=
δ2

δ2 + σ2
t

U⊥U
T
⊥ (Ukai + bU⊥

k ei)

=
δ3

δ2 + σ2
t

U⊥ei[(K − 1)d : D]
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Hence:

E[∥U⊥U
T
⊥ x̂⋆

approx(x0, t)∥2] =
δ6(n−Kd)

(δ2 + σ2
t )

2

Lastly, we prove (13). Given that the subspaces of all classes and the complement space are both
orthonormal and mutually orthogonal, we can write:

E[∥x̂⋆
approx(x0, t)∥2] = E[∥UkU

T
k x̂⋆

approx(x0, t)∥2] + E[
∑
l ̸=k

∥UlU
T
l x̂⋆

approx(x0, t)∥2] + E[∥U⊥U
T
⊥ x̂⋆

approx(x0, t)∥2]

Combine terms, we get:

E[∥x̂⋆
approx(x0, t)∥2] =

(
ŵk

1 + σ2
t

+
(K − 1)δ2ŵl

δ2 + σ2
t

)2

d

+ (K − 1)

(
ŵl

1 + σ2
t

+
δ2(ŵk + (K − 2)ŵl)

δ2 + σ2
t

)2

δ2d+
δ6(n−Kd)

(δ2 + σ2
t )

2
.
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