
Under review as a conference paper at ICLR 2017

MACHINE SOLVER FOR PHYSICS WORD PROBLEMS

Megan Leszczynski & José Moreira
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598 USA
mel255@cornell.edu, jmoreira@us.ibm.com

ABSTRACT

We build a machine solver for word problems on the physics of a free falling object
under constant acceleration of gravity. Each problem consists of a formulation
part, describing the setting, and a question part asking for the value of an unknown.
Our solver consists of two long short-term memory recurrent neural networks and
a numerical integrator. The first neural network (the labeler) labels each word
of the problem, identifying the physical parameters and the question part of the
problem. The second neural network (the classifier) identifies what is being asked
in the question. Using the information extracted by both networks, the numerical
integrator computes the solution. We observe that the classifier is resilient to errors
made by the labeler, which does a better job of identifying the physics parameters
than the question. Training, validation and test sets of problems are generated
from a grammar, with validation and test problems structurally different from the
training problems. The overall accuracy of the solver on the test cases is 99.8%.

1 INTRODUCTION

We present a complete system architecture for a machine solver that automatically solves a class
of physics word problems, namely classical mechanics of a point particle in free fall. This domain
allows us to formulate one dynamical system to which all the physics problems in this domain can
be mapped. The dynamical system describes how the state of the particle, defined by its location
and velocity, changes over time. Correspondingly, the initial conditions for the dynamical system
include the location and velocity of the particle at the time origin.

Given the word problem as input, the solver must first learn to extract the parameters needed to
produce the dynamical system and also learn to identify the type of question. Two independently
trained recurrent neural networks are used to complete these tasks. The first neural network, referred
to as the labeler, learns to find the dynamical system parameters and locate the question within the
problem statement. The second neural network, referred to as the classifier, identifies the type of
question. Finally, the solver uses a numerical integrator to solve the dynamical system and produce
the solution. We use a problem generator in order to produce disjoint datasets as input to the sys-
tem for training and testing. The generator produces short-answer high school-level physics word
problems with mixed units.

After a brief related work section, we provide a more detailed description of the class of physics
problems we address. We proceed to describe how the machine solver works and present exper-
imental results. We conclude with a summary of our work and proposals for future works. The
appendices contain additional details that did not fit in the body of the paper.

2 RELATED WORK

Automatically solving word problems has been a research interest of the natural language process-
ing community for some time, particularly with math word problems. The main challenge is to
develop a semantic representation of the word problem. Kushman et al. (2014) learned to represent
mathematical word problem with a system of equations, by aligning words in the word problem
to templates. While their technique learns to induce multiple templates and assumes knowledge of
numbers and nouns, we assume no knowledge of the words in the text but only map to one template.

1

Under review as a conference paper at ICLR 2017

Another study to solve math word problems was done by Hosseini et al. (2014). This study also
assumes the ability to identify numbers and nouns in the text and uses a dependency parser to
determine relationships between words in the text. Like the other study, this approach generalizes to
math word problems that require different equations. Shi et al. (2015) similarly used a parser to solve
math word problems. However, their parser maps the word problems to a carefully defined language
they created called DOL, from which equations can be derived. Rather than use a parser to break
down the word problems, we use neural networks to learn to identify key pieces of information. Our
study is the first of our knowledge to apply recurrent neural networks to the task of solving word
problems.

We chose to use recurrent neural networks (RNN) for the labeler and the classifier as both of their
inputs consist of sequences of words. Recurrent neural networks are commonly used to process se-
quences, and as a result have found application in natural language processing tasks such as machine
translation (Cho et al., 2014b) and speech recognition (Graves et al., 2013). After experimenting
with different models, we obtained the most success with Long Short-Term Memory (LSTM) vari-
ants of RNNs. For additional discussion on RNNs in general, and LSTMs in particular, we refer the
reader to Appendix A.

3 PROBLEM SPECIFICATION

We consider the following class of physical systems (see Figure 1(a)): In a two-dimensional space,
with gravity producing a downward constant acceleration g, there is one particle in free fall. That is,
no forces other than gravity are acting on the particle. Movement of the particle starts at time t = 0,
with an initial position defined by displacements d1 and d2 and initial velocity with components v1
and v2.

The time behavior of the particle can be represented by the dynamical system shown in Figure 1(b).
The state vector ~x(t) = [x1(t), x2(t), ẋ1(t), ẋ2(t)]

T consists of two positions and two velocities
and its derivative depends only on itself and the acceleration of gravity, as shown in the figure.
Combined with the initial condition ~x(0) = [d1, d2, v1, v2]

T , the differential equation produces a
unique solution.

 ẋ1(t)
ẋ2(t)
ẍ1(t)
ẍ2(t)

 =

 0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ·
 x1(t)
x2(t)
ẋ1(t)
ẋ2(t)

+

 0
0
0
−g


 x1(0)
x2(0)
ẋ1(0)
ẋ2(0)

 =

 d1
d2
v1
v2


(a) (b)

Figure 1: Physics domain (a): We consider a two-dimensional space with a free falling particle.
Displacements d1 and d2 define the initial position of the particle, while v1 and v2 define its initial
velocity. Gravity produces a constant acceleration g pointing straight down. The behavior of the
particle is defined by the dynamical system shown in (b).

Our machine solver computes answers to word problems in the domain just described. The word
problem must specify, sometimes indirectly, the five parameters of the dynamical system (d1, d2,
v1, v2, and g). It must also include a question that can be answered by computing the time behavior
of the system. We discuss how our machine solver works in the next section.

4 MACHINE SOLVER

In this section we describe the machine solver, which is composed of two recurrent neural networks
and the numerical integrator. The top-level system block diagram is shown in Figure 2.

2

Under review as a conference paper at ICLR 2017

Figure 2: The first step from word problem to dynamical system is accomplished via neural net-
works. The second step from dynamical system to solution is achieved with a numerical integrator.

4.1 NEURAL NETWORK ARCHITECTURES

The data flow through the labeler and classifier neural networks is shown in Figure 3. We used
TensorFlowTM1 to develop the neural network models for both labeler and the classifier. TensorFlow
is an open source library from Google that allowed us to easily explore different models and training
settings with already implemented RNN cells and optimizers (Abadi et al., 2015). We quickly
experiment with the provided optimizers to find the optimal optimizer for each network.

Figure 3: The word problem passes through two RNNs to be transformed into the dynamical system
form.

The labeler is an LSTM network with one hidden layer of ten units. Figure 4 shows an example of
the data flow through the labeler. The input to the labeler is the full problem statement and the output
is a label for each word. The words are input into the labeler via an embedding that is randomly
initialized and trained simultaneously with the weights and biases. The weights are also randomly
initialized and the biases are initialized to zero. To limit the exploration of the parameter space, we
set the dimension of the embedding to equal the number of hidden units.

Figure 4: Example of input to labeler with expected output. A label is associated with each word,
where O indicates other, or a word not needed for the dynamical system translation. Input text is
shortened for the example.

The chosen RNN model is one that produces an output at each time step and has recurrent connection
between hidden units, as described by Goodfellow et al. (2016) in Chapter 10, Figure 10.3. At each
step of the input sequence, the RNN receives a word embedding and outputs a label for the word.
The label that is outputted at each time step can fall into one of the ten categories shown in Table 1.
In addition to tagging words for their relevancy to the dynamical system formulation, we tag the
question part of the word problem to pass to the classifier.

We use three measures to assess the performance of the labeler: label accuracy, question accuracy,
and overall accuracy. Label accuracy is measured as having matching labels in the predicted and
expected (generated) labels, not including the question part of the word problem. Question accuracy
is measured as having both the first word of the question and the last word of the question labeled
correctly, as label-based post processing to extract the question relies only on these indices. Overall
accuracy is measured as meeting both of the label and question accuracy criteria.

1TensorFlow is a trademark of Google Inc.

3

Under review as a conference paper at ICLR 2017

Table 1: Possible output word labels and corresponding dynamical system parameters.

LABEL DESCRIPTION

QUEST Question
G Value for gravity g
A UNIT Unit for acceleration (gravity) g
D UNIT Unit for initial height d2
HEIGHT Initial height value or height of each story d2
V UNIT Unit for velocity v1, v2
V Initial velocity magnitude v1, v2
THETA Angle of initial movement v1, v2
STORY Value for number of stories (if applicable) d2
O Other

We train the labeler with TensorFlow’s Adam Optimizer, an initial learning rate of 0.1, and a mini-
batch size of 100 word problems. The Adam Optimizer uses adaptive learning rates and is par-
ticularly effective with sparse gradients (Kingma & Ba, 2014). We use early stopping based on a
validation accuracy or when the training accuracy stops improving. We chose the network architec-
ture and training settings after performing a limited grid search across the number of layers, number
of units per a layer, and learning rate. (See Appendix B.)

After the labeler assigns a label to each word, a post processing step maps the labels to the dynamical
system parameters, converting the initial conditions and value of gravity to SI units if necessary.

The classifier is an LSTM network with one hidden layer of 1,000 units. An example of the data
flow through the classifier is shown in Figure 5. For the problems in our dataset, the formulation
part of the word problem does not provide information necessary to classify the type of question.
Moreover, as sequences become longer, the performance of RNNs tend to decrease (Pascanu et al.,
2013). Armed with these two observations, we chose to only have the question part of the word
problem as the sequence to input into the classifier.

Figure 5: Example of input to classifier with expected output. Symbol x1 refers to horizontal dis-
placement and symbol x2 refers to vertical displacement.

As with the labeler, we encode the words of the sequence into word embeddings, matching the
dimension of the word embedding to the number of hidden units, and training them with the weights
and biases. In this case, a sequence would be one question. Unlike the labeler, there is only one
output for each sequence, occurring on the last step of the sequence. For more information see
Chapter 10, figure 10.5 of Goodfellow et al. (2016) for an illustration. The singular output is the
type of question, which can fall into one of the nine types shown in Table 2.

The classifier is trained with TensorFlow’s Gradient Descent Optimizer, an initial learning rate of
0.5, and a mini-batch size of 100 questions. As with the labeler, we performed a grid search to
choose these hyperparameters. (See Appendix B.)

4.2 NUMERICAL INTEGRATOR

The numerical integrator computes the evolution over time of the dynamical system shown in Fig-
ure 1(b). As input it receives the initial conditions, the value of g, and the type of question extracted
from the labeler and the classifier. Using SciPy’s ordinary differential equation integrator, a table
of values representing the system’s state to the point that the object hits the ground is iteratively
constructed. The numerical solution is refined to a precision of 0.001 (one part in a thousand), based
on the type of the question. For example, if the question is about the maximum height, we produce

4

Under review as a conference paper at ICLR 2017

Table 2: Possible Output Question Types

QUESTION TYPE DESCRIPTION

(x1 : max) Maximum horizontal distance traveled
(speed : max) Maximum speed obtained
(x2 : max) Maximum height obtained
(speed : max height) Speed at maximum height
(time : max height) Time that maximum height is reached
(x1 : x2=0) Distance traveled when object hits ground
(time : x2=0) Time that object hits ground
(speed : x2=0) Speed object is traveling when it hits the ground
(x1: max height) Distance object has traveled when it reaches its maximum height

a first instance of the table, find the maximum height in that table, and then search for the maximum
around that value with increased precision, repeating until we reach the desired precision. Finally,
the question type is used to determine which value from the table to output from the solver. This
data flow is shown in Figure 6.

Figure 6: Outputs from the labeler and the classifier feed into the numerical integrator, where the
labeler outputs form the dynamical system to integrate and the classifier outputs control the focus
and output of the integrator.

4.3 TRAINING, VALIDATION, AND TEST SETS

We define the word problems with a grammar that is provided in the APPENDIX. The word problems
in the training, validation, and test sets are exclusively made up of problems that follow the specifi-
cations laid out by the grammar. The grammar allows for mixed units, meaning that within the same
problem, the height may have a metric unit, while the velocity may have a U.S. customary unit. The
grammar also permits the initial conditions to be exposed in multiple ways. For instance, a theta
value and speed will be provided in some problems, from which the solver would need to calculate
the initial vertical velocity using the theta, whereas in other problems no theta value may be pro-
vided. Using mixed units and varying numbers of values to provide information about each initial
condition allows us to increase the complexity of the problems within the scope of the dynamical
system.

The grammar also ensures that the training set is disjoint from the validation and test sets, partic-
ularly in structure. Examples of generated problems are shown below in Figure 7. This is vital in
assessing the ability of the trained networks to generalize.

We implement the grammar in Python. When a new problem is instantiated, the grammar rules are
descended to build up the problem, making random choices when choices are available. Labels for
each problem are also automatically generated. The complete generative model is shown in Figure 8.
By using a problem generator to build our datasets, we are also free to choose the size of the dataset.
Our problem generator is capable of generating ∼26,000 different training problems and ∼22,000
different test and validation problems.

5

Under review as a conference paper at ICLR 2017

Assume the acceleration due to gravity is 85 ft/s2. A ping pong ball is dropped from the top of a 8
story building, where each story is 89 m. What is the maximum speed the ping pong ball obtains?

A chair is launched at a speed of 51 mph and an angle from the horizontal of 28 degrees. Let the
acceleration due to gravity on Planet Watson be 98 m/s2. How much time has passed when it
reaches its maximum height?

Figure 7: Examples of generated problems that adhere to the grammar

Figure 8: The generative model allows us to generate the input and output for the neural networks
without requiring any manual annotation.

5 EXPERIMENTAL RESULTS

5.1 LEARNING PROGRESS

The datasets consisted of 7,000 word problems for training, 2,000 word problems for validation, and
1,000 word problems for test. The progress of training over time is shown in Figure 9. As can be
seen in the left graph, the labeler learns to identify the beginning and end of the question faster than
it learns to correctly predict the labels. The overall accuracy of the labeler is both limited by and
equivalent to that of the label accuracy. With this particular model of the labeler, there is no problem
for which the labeler correctly predicts the non-question labels, but incorrectly locates the question.

Figure 9: Training accuracy of labeler (left) and classifier (right)

The training accuracy for the label, question, and overall reach 100% for all by the end of the first
epoch. The classifier also reaches 100% accuracy on the training set by the end of the first epoch.
The epoch is broken down into fractions as the training accuracy is evaluated every seven mini-
batches of 100 problems.

The accuracy on the test set after the labeler and classifier have been independently trained are shown
in Table 3. The accuracy of the combined RNN system amounts to an overall accuracy of 99.8%.
The labeler achieves 100% accuracy on predicting the non-question labels and incurs a small error on
predicting the beginning and end of the question. As a result, the question that is extracted based on
the labeler’s predictions does not always match the true question. However, based on the classifier’s
accuracy of 99.8%, the classifier is often resilient to the errors that labeler makes in extracting the

6

Under review as a conference paper at ICLR 2017

question. While the labeler incorrectly extracts ninety-one questions, the classifier only incorrectly
classifies two questions from a test set of 1,000 word problems. Figure 12 in Appendix C shows
examples of the labeler’s errors and how the classifier handles them.

We note that for the two wrongly classified cases, both shown in Figure 12, the classification error is
the same. That is, a question that should be about the speed of the object when it hits the ground is
classified as a question about the maximum speed the object reaches. The numerical answer to the
problem is the same for both classes of question. Therefore, even in the case of wrongly classified
questions, the system produces the right answer.

The high accuracy of the labeler and classifier are not a total surprise. LSTMs have been shown to be
very effective in learning context-free and even context-sensitive languages (Gers & Schmidhuber,
2001; Cleeremans et al., 1989; Rodriguez, 2001), including the ability to generalize and recognize
structures not seen before. Our training, validation and test sets are from a regular language, as
described in Appendix E, so an LSTM should do well in learning them. In fact, we have seen
situations (with the test, validation and test sets all with distinct structures) where the labeler and
classifier both achieve perfect accuracy on all test problems. We decided to include the data on the
“not so perfect” case because it illustrates some important points (Figure 12).

Table 3: Accuracies shown are on the test set of word problems for the system. The classifier is fed
the extracted questions as identified by the labeler. The combined RNN system accuracy is based
on the final output of the system having the same dynamical system parameters and question type as
the generated output for a word problem.

Labeler
Overall Label Question Classifier Combined RNN System
0.909 1.000 0.909 0.998 0.998

5.2 ANALYSIS OF TRAINED VARIABLES

The trained variables for both models consist of word embeddings for input to the RNN, and weights
and biases within the RNN and from the RNN to the final output. We focus our evaluation on the
RNN weights, as we believe these are more specific to the our physics problem solver. For an
evaluation of the word embeddings, please see Appendix D.

The distributions of weights for the labeler and classifier are shown in figures 10. As the labeler was
an LSTM network, there are weights from the input and the previous hidden values to input, forget,
and an output gates, as well as to the memory cells. While there appears to be a high concentration
of negative weights to the output gate and positive weights to the input gate, this is likely a result
of random initialization of the weights as this pattern was not consistently found with other random
initializations. The output weights, which go from the output of the LSTM cell’s hidden units to
the target labels, have a slightly wider range. The few number of zero weights indicates that the
majority outputs from the hidden units of the LSTM cell contribute to making the final prediction of
the label.

The LSTM weight distribution for the classifier is more uniform and compressed than that of the
labeler. We believe this is due to the great increase in parameters since the classifier has 1,000-
dimensional embeddings and 1,000 hidden units, leading to 8 million weights (Karpathy et al.,
2015). We predict that each piece of information captured by the trained embeddings and hidden
units makes a less significant contribution to the final prediction than with the labeler, as indicated by
the classifier’s smaller weight values. The range of the output values for the output weights similarly
contributes to this prediction, with a very small range of weights which are mostly concentrated
around zero.

After examining the general distribution of weights, we also wanted to explore potential patterns
of specific weights. We chose to explore the heat map of the weights for labeler since there are a
magnitude fewer connections, allowing the patterns to be more readily examined. We include the
heat map of the weight matrices for the connections between the hidden units of the labeler to the
output predictions in Figure 11. Looking at the heat map, hidden units 3 and 8 seem to have a similar
weight distribution across the output categories. We also see seemingly logical pairs forming, such

7

Under review as a conference paper at ICLR 2017

Figure 10: Top left: labeler LSTM weight distributions. Top right: classifier LSTM weight distri-
butions. Bottom left: labeler output weight distributions. Bottom right: classifier output weight
distributions.

Figure 11: Heat map for labeler weights from LSTM hidden layer to output layer.

as the strong positive weights associated with D UNIT and HEIGHT for hidden unit 6 and for V
and THETA for hidden unit 0. However, there are also features that are challenging to explain,
such as the strong positive contribution hidden unit 4 makes to predicting THETA while making an
equally strong negative contribution to predicting STORY.

6 CONCLUSIONS

We have developed a machine solver for a word problems on the physics of a free falling object in
two-dimensional space with constant acceleration of gravity. The solver has three main components.
The labeler labels each word of the problem to identify the parameters of a canonical dynamical
system that describes the time evolution of the object, and the part of the problem that corresponds
to the question being asked. The classifier classifies the question part. Finally, an integrator is used
to solve the dynamical system, producing a numerical answer to the problem.

A grammar-based generator is used to produce the training, validation and test set of problems for the
neural networks. The grammar is specified so that the validation and test problems are structurally
different from the training problems. We use a total of 10,000 generated problems, partitioned into
7,000 for training, 2,000 for validation and 1,000 for testing.

When measured against the test set of 1,000 problems, the dynamical system parameters are cor-
rectly identified in all of them. The question part is precisely identified in 909 cases, but because

8

Under review as a conference paper at ICLR 2017

the classifier can work with partial questions, in the end all but 2 questions are classified correctly.
Therefore, the combined accuracy of the two neural networks, for the purpose of solving the physics
problems, is 99.8%.

There are several opportunities for future work. First, we would like to investigate more deeply how
our neural networks work. In particular, what features of the word problem they are identifying and
how specific units are responsible for that identification. Second, we could extend our solver by con-
sidering more complex physical situations, including additional forces, three-dimensional motion,
multiple objects, and so on. We would have to extend our canonical dynamical system to represent
those situations and/or use a collection of dynamical systems. We expect that the complexity of the
neural networks and the training/validation/test sets will grow accordingly. Finally, the more am-
bitious goal would be to remove the canonical dynamical system(s) and train the networks to build
their own. We believe this would be closer to the way humans solve these physics problems.

REFERENCES

Martı́n Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems,
2015. Software available from http://tensorflow.org.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. In Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation (SSST-8), 2014a.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical ma-
chine translation. In Conference on Empirical Methods in Natural Language Processing (EMNLP
2014), 2014b.

Axel Cleeremans, David Servan-Schreiber, and James L. McClelland. Finite state automata and
simple recurrent networks. Neural Comput., 1(3):372–381, September 1989. ISSN 0899-7667.
doi: 10.1162/neco.1989.1.3.372. URL http://dx.doi.org/10.1162/neco.1989.1.
3.372.

Felix A. Gers and Jürgen Schmidhuber. LSTM recurrent networks learn simple context-free and
context-sensitive languages. IEEE Trans. Neural Networks, 12(6):1333–1340, 2001. doi: 10.
1109/72.963769. URL http://dx.doi.org/10.1109/72.963769.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Book in preparation for MIT
Press. Book available from http://www.deeplearningbook.org, 2016.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international conference on acoustics, speech and signal
processing, pp. 6645–6649. IEEE, 2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, November 1997. ISSN 0899-7667.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In EMNLP, pp. 523–533, 2014.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2014.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning to automatically solve
algebra word problems. 2014.

9

http://dx.doi.org/10.1162/neco.1989.1.3.372
http://dx.doi.org/10.1162/neco.1989.1.3.372
http://dx.doi.org/10.1109/72.963769

Under review as a conference paper at ICLR 2017

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318, 2013.

Paul Rodriguez. Simple recurrent networks learn context-free and context-sensitive languages by
counting. Neural Comput., 13(9):2093–2118, September 2001. ISSN 0899-7667. doi: 10.1162/
089976601750399326. URL http://dx.doi.org/10.1162/089976601750399326.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang Liu, and Yong Rui. Automatically solving
number word problems by semantic parsing and reasoning. In EMNLP, 2015.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. The Journal of Machine
Learning Research, 9(2579-2605):85, 2008.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

A RECURRENT NEURAL NETWORKS

The labeler and classifier are both recurrent neural networks (RNNs). We provide background in-
formation on RNNs in this section, followed by an overview of Long Short-Term Memory (LSTM)
networks, which are an advanced type of RNNs and were used to build our networks. A recurrent
neural network receives the previous values of the hidden layer as input in addition to the current
input values into the network. Thus each hidden unit retains information about the history of the
sequence. As explained in Goodfellow et al. (2016), the fundamental behavior of recurrent neural
networks can be captured in the following equation:

h(t) = f(h(t−1), x(t); θ),

where h(t) represents the state of the RNN unit at time t, x(t) represents the current input, and θ
represents the weights and biases. The function f is usually hyperbolic tangent (Karpathy et al.,
2015). It is important to note that the weights and biases are reused across time. Thus, while an
RNN with one hidden layer can be unfolded in time to having many layers, the weights and biases
between each of the unfolded layers are shared.

A limitation of the basic recurrent neural network described above is that it cannot retain information
over long sequences. If a key piece of information for predicting an output at the end of a long
sequence occurs at the very beginning of the sequence, the basic recurrent neural network will likely
fail as a result of training difficulties. A popular solution for this limitation is the Long Short-Term
Memory (LSTM) - essentially a highly capable, more complex type of recurrent neural network
(Hochreiter & Schmidhuber, 1997). An LSTM is composed of a memory cell, and input, output,
and forget gates that determine how to modify and reveal the contents of memory cell. Each of these
gates has its own set of weights and biases that are connected to the inputs. Therefore the number
of weights within a layer of an LSTM is quadrupled from that of a basic recurrent neural network
to 2n× 4n, where n is the number of hidden units in the layer and assumes each layer has the same
number of units. 2n is from the input being a concatenation of the output from the previous hidden
layer (in time) with the current input, as occurs for all RNNs, and the 4n is for the connections to
each of the three gates as well as to the memory cell input. More specifically, the equations for the
LSTM are as follows (Graves, 2013); (Zaremba et al., 2014): ifo

j

 =

sigm
sigm
sigm
tanh

T2n,4n

(
hl−1
t

hlt−1

)

clt = f � clt−1 + i� j

hlt = o� tanh(clt)

10

http://dx.doi.org/10.1162/089976601750399326

Under review as a conference paper at ICLR 2017

As both of our neural network models have only one hidden layer, hl−1
t merely refers to the current

input. T2n,4n refers to the weight and bias transformationWx+b applied to the concatenated hidden
layer inputs. The hyperbolic tangent and sigmoid functions are applied element-wise. The variables
i, f , o, and j refer to the input gate, forget gate, output gate, and cell input, respectively.

Another potential solution to the inability of the basic recurrent neural network to capture long-term
dependencies is the Gated Recurrent Unit (GRU) (Cho et al., 2014a), however, we had the most
success with the LSTM for our specific labeler and classifier tasks.

B CHOOSING THE RIGHT RNN CONFIGURATION

We selected the models for our RNNs by performing a grid search over the learning rate, the number
of units, and the number of layers. The results of the grid search for the the labeler recurrent network
are shown in Table 4 and the results for the classifier network are shown in Table 5. For each RNN,
we chose the most efficient model, in that it requires the least space and obtains the greatest accuracy
with the lowest training time.

Interestingly, for the classifier, we see that models with two or three layers and lower learning rates
achieve an equivalent accuracy as the one-layer model. However, they are inferior to the one layer
model in that the multi-layer models require more space and usually require longer to train.

Table 4: The chosen RNN network for the labeler has one layer of ten units with a learning rate
of 0.1. The notation x/y/z means x for overall accuracy, y for label accuracy, and z for question
accuracy, where accuracy is given as a proportion of correct predictions over total predictions. All
results shown use TensorFlow’s Adam Optimizer and LSTM cell.

Learning Rate
Layers Units 0.01 0.1 0.5

1 10 0.197/1.000/0.197 0.911/1.000/0.911 0.001/0.110/0.032
100 0.850/1.000/0.850 0.763/0.932/0.814 0.196/0.207/0.587

1000 0.048/0.281/0.525 0.882/0.907/0.955 0.225/0.230/0.975
2 10 0.000/0.000/0.000 0.037/0.099/0.048 0.005/0.009/0.354

100 0.096/0.337/0.096 0.000/0.000/0.000 0.000/0.000/0.000
1000 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000

3 10 0.000/0.000/0.015 0.021/0.132/0.059 0.000/0.000/0.000
100 0.076/0.442/0.091 0.000/0.000/0.000 0.000/0.000/0.000

1000 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000

Table 5: The chosen network for the labeler has one layer of 1,000 units. The values shown are
accuracies given as a proportion of the number of correctly predicted classifications over total clas-
sifications. All results use TensorFlow’s Gradient Descent Optimizer and LSTM cell.

Learning Rate
Layers Units 0.01 0.1 0.5

1 10 0.193 0.486 0.830
100 0.774 0.801 0.889

1000 0.980 0.997 1.000
2 10 0.163 0.424 0.637

100 0.833 0.875 0.819
1000 1.000 1.000 0.724

3 10 0.297 0.656 0.482
100 0.867 0.907 0.539

1000 1.000 1.000 0.695

11

Under review as a conference paper at ICLR 2017

C ERROR HANDLING

This section is included to illustrate examples of the the labeler network incorrectly extracting the
question. In each of these cases, the classifier receives as input the labeler’s incorrect output. The
classifier’s handling of these errors is shown in Figure 12.

(1) Labeler input: Let the acceleration due to gravity on Planet Watson be 65 ft/sˆ2. A ping pong
ball is released from the top of a 3 story building, where each story is 79 m. What is the maximum
speed the ping pong ball obtains?

Labeler output / classifier input: What is the maximum speed the
Classifier output: (speed : max)
Expected output: (speed : max)

(2) Labeler input:Assume the acceleration due to gravity is 49 m/sˆ2. A ping pong ball is
launched at a speed of 35 m/s and an elevation of 88 degrees. What is the magnitude of the velocity
of the ping pong ball just before it touches the ground?

Labeler output / classifier input: What is the magnitude of the velocity of the
Classifier output: (speed : max)
Expected output: (speed : x2=0)

(3) Labeler input:Let the acceleration due to gravity on Planet Watson be 71 ft/sˆ2. A ping pong
ball is thrown at a speed of 53 mph and an elevation of 52 degrees. What is the magnitude of the
velocity of the ping pong ball just before it touches the ground?

Labeler output / classifier input: What is the magnitude of the velocity of the
Classifier output: (speed : max)
Expected output: (speed : x2=0)

Figure 12: Examples of incorrectly extracted questions from the labeler and the classifier’s response
to them. In all three cases, the question is cut short. The classifier still makes the correct the
classification for the first case, but fails for the second and third cases.

D WORD EMBEDDINGS

To input the words into both RNNs, the words were first encoded as word embeddings. Word embed-
dings map words to a multi-dimensional space, providing the words with numerical representations
which expose relationships between words. The final embeddings for the labeler network are 10-
dimensional, and the embeddings for the classifier network are 1,000-dimensional. Rather than use
Word2Vec, we chose to train the embeddings simultaneously with the weights and biases. We were
interested in seeing if embeddings trained for a particular task could capture intuitive word features,
as can often be seen with embeddings trained with Word2Vec (Mikolov et al., 2013).

In order to explore the results of the trained embeddings, we used scikit-learn’s implementation of t-
SNE to map the high-dimensional embeddings down to two dimensions (van der Maaten & Hinton,
2008). The results from t-SNE are shown in Figure 13. Words appear exactly as they appear in the
word problem, and no stemmers are used.

The embeddings from the labeler network seem more intuitive, as numbers and similar units, such as
“m/s”, “mph”, and “ft/s”, are mapped to similar regions. We had hypothesized that the embedding
may capture some word function related to the task the embeddings were being trained to perform.
However, the objects seem to be distributed throughout the space and have no easily distinguishable
pattern, despite playing a similar functional role in each word problem. It is even more difficult to
discern any patterns from the embeddings from the classifier network. We do see that words such
as “traveling”, “traveled”, and “travels” map near each other, as well as question words “What” and
“How”. We predict that the limited vocabulary in the question space of only forty words may con-

12

Under review as a conference paper at ICLR 2017

Figure 13: Top: The embeddings from the labeler network for the top 100 most frequent words
in the word problems. Bottom: The embeddings from the classifier network for all words in the
questions.

tribute to these more perplexing results by reducing the effectiveness of which t-SNE can determine
the similarity between words.

13

Under review as a conference paper at ICLR 2017

E WORD PROBLEM GRAMMAR

We used the grammar below to generate our word problems with a problem generator.

Notation: “object” is used as a parameter in order to enforce consistency between parts of the prob-
lem. Within a word problem, the same object must appear wherever an object symbol occurs. As
used in the question part of the grammar, “x1” indicates horizontal displacement and “x2” indicates
vertical displacement. When used with numbers, “...” indicates the sequence of numbers continues
in between the bars.

〈word problem(object)〉 ::= 〈formulation(object)〉 〈question(object)〉

〈object〉 ::= 〈training object〉 | 〈val test object〉

〈training object〉 ::= golf ball | stone | chair | feather | soccer ball | rock
| cannonball

〈val test object〉 ::= pebble | ping pong ball | vacuum | tennis ball |
basketball | hat

〈formulation(object)〉 ::= 〈training formulation(object)〉 | 〈val test formulation(object)〉

〈training formulation(object)〉 ::= A object is 〈action〉. 〈Assumption〉.

〈val test formulation(object)〉 ::= 〈Assumption〉. A object is 〈action〉.

〈assumption〉 ::= Let the acceleration due to gravity on Planet Watson be
〈acceleration〉.

| Assume the acceleration due to gravity is
〈acceleration〉.

〈acceleration〉 ::= 〈accel value〉 〈accel unit〉

〈accel value〉 ::= 1 | 2 | 3 | ... | 100

〈accel unit〉 ::= m/s2 | ft/s2

〈action〉 ::= 〈moving〉 | 〈stationary〉

〈moving〉 ::= 〈descent〉 | 〈projectile〉

〈descent〉 ::= descending at a speed of 〈speed〉
| moving downwards at a speed of 〈speed〉

〈projectile〉 ::= 〈proj verb〉 at a speed of 〈speed〉 and an 〈angle word〉 of
〈angle〉 degrees

〈proj verb〉 ::= thrown | fired | launched

〈speed〉 ::= 〈speed value〉 〈speed unit〉

〈speed value〉 ::= 0 | 1 | 2 | ... | 99

〈speed unit〉 ::= m/s | ft/s | mph

〈angle word〉 ::= elevation | angle from the horizontal

〈angle〉 ::= 1 | 2 | 3 | ... | 89

〈stationary〉 ::= 〈stat verb〉 from 〈location〉

〈stat verb〉 ::= released | dropped | let go

14

Under review as a conference paper at ICLR 2017

〈location〉 ::= 〈height〉
| the top of a 〈num stories〉 story building, where each story is
〈height〉

〈height〉 ::= 〈height value〉 〈height unit〉

〈height value〉 ::= 〈training height〉 | 〈validation height〉 | 〈test height〉

〈training height〉 ::= 1 | 2 | 3 | ... | 50

〈validation height〉 ::= 51 | 52 | 53 | ... | 76

〈test height〉 ::= 77 | 78 | 79 | ... | 99

〈height unit〉 ::= m | ft

〈num stories〉 ::= 1 | 2 | 3 | ... | 10

〈question(object)〉 ::= 〈max question(object)〉 | 〈prop cond question(object)〉

〈max question(object)〉 ::= 〈max x1(object)〉 | 〈max x2(object)〉 | 〈max speed(object)〉

〈max x1(object)〉 ::= What is the maximum distance the object travels
| What is the greatest distance the object travels

〈max x2(object)〉 ::= 〈training max x2(object)〉 | 〈val test max x2(object)〉

〈training max x2(object)〉 ::= What is the maximum height the object reaches?

〈val test max x2(object)〉 ::= What is the greatest height the object reaches?

〈max speed(object)〉 ::= What is the maximum speed the object obtains?
| What is the greatest speed the object obtains?

〈prop cond question(object)〉 ::= 〈proposition(object)〉 〈condition〉

〈proposition(object)〉 ::= 〈unk time〉 | 〈unk x1(object)〉 | 〈unk speed(object)〉

〈unk time〉 ::= How much time has elapsed
| How much time has passed

〈unk x1(object)〉 ::= How far has the object traveled
| What distance has the object traveled

〈unk speed(object)〉 ::= How fast is the object traveling
| At what speed is the object traveling
| What is the magnitude of the velocity of the object

〈condition〉 ::= 〈distance condition〉 | when it reaches its maximum height?

〈distance condition〉 ::= 〈training distance condition〉 | 〈val test distance condition〉

〈training distance condition〉 ::= when it reaches the ground?
| when it strikes the ground?

〈val test distance condition〉 ::= just before it touches the ground?
| as it hits the ground?

Whenever the grammar dictates a choice of construct (for example, when selecting the object of a
word problem), a uniform random number generator is used to select one of the valid constructs.
Therefore, the frequency of a particular form in the training, validation and test sets ultimately

15

Under review as a conference paper at ICLR 2017

Table 6: Occurrence counts for different objects in word problems.

(a) training set (b) validation set (c) test set
object count
golf ball 1052
stone 1007
chair 987
feather 1020
soccer ball 965
rock 989
cannonball 980

object count
pebble 336
ping pong ball 342
vacuum 316
tennis ball 355
basketball 325
hat 326

object count
pebble 156
ping pong ball 159
vacuum 165
tennis ball 163
basketball 178
hat 179

Table 7: Occurrence counts for different question types.

(a) training set (b) validation set (c) test set
class count
(x1 : max) 1163
(speed : max) 1157
(x2 : max) 1120
(speed : max height) 610
(time : max height) 602
(x1 : x2=0) 598
(time : x2=0) 596
(speed : x2=0) 585
(x1 : max height) 569

class count
(x1 : max) 326
(speed : max) 349
(x2 : max) 325
(speed : max height) 160
(time : max height) 158
(x1 : x2=0) 160
(time : x2=0) 194
(speed : x2=0) 180
(x1 : max height) 148

class count
(x1 : max) 168
(speed : max) 180
(x2 : max) 166
(speed : max height) 64
(time : max height) 92
(x1 : x2=0) 88
(time : x2=0) 75
(speed : x2=0) 77
(x1 : max height) 90

depend on how many random choices are necessary to produce that form and how many variations
there are in each choice.

Table 6 illustrates the simple case of occurrence counts of the different objects in our word problems.
The training set uses seven different objects, while the validation and test sets use six objects. Not
surprisingly, each object in the training set appears in approximately 1/7 of the total number of
problems in that set. Meanwhile, each object in the validation and test sets appears in approximately
1/5 of the total number of problems in those sets.

A more interesting situation is illuatrated in Table 7 for the occurrence counts of question types.
As shown in Table 2, there are nine different question types. However, the grammar works by first
choosing one of two groups of questions: either max-type questions (the first three in Table 2) or
conditional-type questions (the last six in Table 2). Within each group, there is equal probability
for each question type. Consequently, as Table 7 shows, each of the max-type questions is approxi-
mately twice as common as each of the conditional-type questions.

16

	Introduction
	Related Work
	Problem Specification
	Machine Solver
	Neural Network Architectures
	Numerical Integrator
	Training, Validation, and Test Sets

	Experimental Results
	Learning Progress
	Analysis of Trained Variables

	Conclusions
	Recurrent Neural Networks
	Choosing the right RNN configuration
	Error Handling
	Word Embeddings
	Word Problem Grammar

