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ABSTRACT

It is challenging to train deep neural networks robustly on the industrial-level data,
since labels of such data are heavily noisy, and their label generation processes
are normally agnostic. To handle these issues, by using the memorization effects
of deep neural networks, we may train deep neural networks on the whole dataset
only the first few iterations. Then, we may employ early stopping or the small-loss
trick to train them on selected instances. However, in such training procedures,
deep neural networks inevitably memorize some noisy labels, which will degrade
their generalization. In this paper, we propose a meta algorithm called Pumpout
to overcome the problem of memorizing noisy labels. By using scaled stochastic
gradient ascent, Pumpout actively squeezes out the negative effects of noisy labels
from the training model, instead of passively forgetting these effects. We leverage
Pumpout to upgrade two representative methods: MentorNet and Backward Cor-
rection. Empirical results on benchmark vision and text datasets demonstrate that
Pumpout can significantly improve the robustness of representative methods.

1 INTRODUCTION

Learning from the industrial-level data is quite demanding, since labels of such data are heavily
noisy (i.e., 50% of noisy labels), and their label generation processes are usually agnostic (Xiao
et al., 2015; Jiang et al., 2018). Essentially, noisy labels of such data are corrupted from ground-
truth labels without any prior assumptions (i.e., class-conditional noise (Natarajan et al., 2013)),
which degrades the robustness of learning models. It is noted that industrial-level data is frequently
emerging in our daily life, such as social-network data (Cha & Cho, 2012), E-commerce data (Xiao
et al., 2015) and crowdsourcing data (Welinder et al., 2010; Han et al., 2018a).

Due to the large data volume, industrial-level data can be well handled by deep neural net-
works (Xiao et al., 2015). Thus, the key issue is how to train deep neural networks robustly on
noisy labels of such data, since deep neural networks have the high capacity to fit noisy labels even-
tually (Zhang et al., 2017). To handle noisy labels, one common direction focuses on estimating the
noise transition matrix (Goldberger & Ben-Reuven, 2017; Han et al., 2018b). For instance, Patrini
et al. (2017) first leveraged a two-step solution to estimate the noise transition matrix. Based on
this estimated matrix, they conducted backward loss correction, which is used for training deep neu-
ral networks robustly. However, the noise transition matrix is not easy to be estimated accurately,
especially when the number of classes is large.

Motivated by the memorization effects of deep neural networks (Arpit et al., 2017), one emerging
direction focuses on training only on selected instances (Jiang et al., 2018; Ren et al., 2018; Han
et al., 2018c), which does not require any prior assumptions on noisy labels. Specifically, deep
learning models are known to learn easy instances first, then gradually adapt to hard instances when
training epochs become large (Arpit et al., 2017). Therefore, in the first few iterations, we may train
deep neural networks on the whole dataset, and let them sufficiently learn clean instances in the
noisy dataset. Then we may later conduct early stopping (Goodfellow et al., 2016), which tries to
stop the training on noisy instances; or we may employ the small-loss trick (Jiang et al., 2018; Han
et al., 2018c), which tries to perform the training selectively on clean (small-loss) instances.

However, when noisy labels indeed exist, no matter using early stopping or small-loss trick, deep
networks inevitably memorize some noisy labels (Arpit et al., 2017), which will lead to the poor
generalization performance (Zhang et al., 2017). In this paper, we design a meta algorithm called
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Pumpout, which allows us to overcome the issue of memorizing noisy labels. The main idea of
Pumpout is to actively squeeze out the negative effects of noisy labels from the training model, in-
stead of passively forgetting these effects by further training. Specifically, on clean labels, Pumpout
conducts stochastic gradient descent typically; while on noisy labels, Pumpout conducts scaled
stochastic gradient ascent, instead of stopping gradient computation as usual. This aggressive pol-
icy can erase the negative effects of noisy labels actively and effectively.

We leverage Pumpout to upgrade two representative but orthogonal approaches in the area of “deep
learning with noisy labels”: MentorNet (Jiang et al., 2018) and Backward Correction (Patrini et al.,
2017; van Rooyen & Williamson, 2018). We conducted experiments on benchmark vision and text
datasets, namely simulated noisy MNIST, CIFAR-10 and NEWS datasets. Empirical results demon-
strated that, under both extremely noisy labels (i.e., 45% and 50% of noisy labels) and low-level
noisy labels (i.e., 20% of noisy labels), the robustness of two upgraded approaches (by Pumpout) is
obviously superior than that of original approaches.

2 PUMPOUT MEETS NOISY SUPERVISION

Meta algorithm. The original idea of Pumpout is to actively squeeze out the negative effects of
noisy labels from the training model, instead of passively forgetting these effects. Intuitively, take
“heart-broken” story as a supportive example. When you are disappointed in your former love, the
best way to recover is to embrace the new love, which actively squeezes out the hurt from your
mind, instead of repeatedly self-blaming. In the design of meta algorithm, we should consider how
our meta algorithm can simultaneously benefit multiple orthogonal approaches in the area of deep
learning with noisy labels, such as training on selected instances (Jiang et al., 2018), estimating the
noise transition matrix (Patrini et al., 2017) and designing regularization (Miyato et al., 2016).

For this purpose, we generalize noisy labels into “not-fitting” labels, and generalize clean labels into
“fitting” labels (details of the fitting condition will be discussed in Q1 below). In the high level, the
meta algorithm Pumpout is to train deep neural networks by stochastic gradient descent on “fitting”
labels, and train deep neural networks by scaled stochastic gradient ascent on “not-fitting” labels.
In the low level, the proposed Algorithm 1 is named Pumpout. Specifically, we maintain deep neural
network f (with parameter wf ). When a single point {xi, yi} is sequentially selected from noisy set
D (step 3), we first check whether {xi, yi} is fitting the discriminative condition or not. If yes, we
conduct stochastic gradient descent typically (step 4); otherwise, we conduct scaled (γ) stochastic
gradient ascent (step 5), which erases the negative effects of “not-fitting” labels. These “not-fitting”
labels hinder us to train a robust model. The abstract algorithm arises three important questions.

Algorithm 1 Meta Algorithm Pumpout.
1: Input network parameterwf , learning rate η, maximum epoch Tmax, hyper parameter 0 ≤ γ ≤ 1;
for t = 1, 2, . . . , Tmax do

2: Shuffle training set D; //noisy dataset
for i = 1, . . . , |D| do

3: Select {xi, yi} from D sequentially;
if {xi, yi} is fitting then

4: Update wf = wf − η∇f(xi, yi); //stochastic gradient descent
end
else

5: Update wf = wf + γη∇f(xi, yi); //scaled stochastic gradient ascent
end

end
end
6: Output wf .

Three important questions.

Q1. What is the fitting condition?
Q2. Why do we need gradient ascent on non-fitting data, in addition to gradient descent on

fitting data?
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Q3. Why do we need to scale the stochastic gradient ascent on non-fitting data?

To answer the first question, we need to emphasize a view that orthogonal approaches require differ-
ent fitting conditions. Intuitively, if a single point {xi, yi} satisfies a discriminative fitting condition,
it means that our training model will regard this data point as a useful knowledge, and fitting on this
point will benefit training the robust model. Conversely, if a single point {xi, yi} does not satisfy
the discriminative fitting condition, it means that, our training model will regard this data point as
useless knowledge, and want to erase the negative effects of this point actively. To instantiate the
fitting condition, we provide two concrete cases in Algorithm 2 and Algorithm 3, respectively.

The above answer motivates our second question: why cannot we only conduct stochastic gradient
descent on fitting data points (step 4). In other words, can we remove scaled stochastic gradient
ascent (step 5) in Algorithm 1? In this case (removing step 5), our algorithm degenerates to training
only on selected instances. However, once some of the selected instances are found to be false
positives 1, our training model will fit on them, and thus the negative effects will inevitably occur
(i.e., degrading the generalization (test accuracy)). Instead of passively forgetting these negative
effects (i.e., further training over many epochs), we hope to actively squeeze out the negative effects
from the training model by using scaled stochastic gradient ascent (step 5).

Lastly, the third question closely connects with the second one. Namely, why do we need scaled
instead of ordinary stochastic gradient ascent? The answer can be intuitively explained. Assume
that we view stochastic gradient ascent as correction to “not-fitting” labels, and view 0 ≤ γ ≤ 1
as a scale parameter. When γ = 1, our Pumpout will squeeze out the negative effects with full fast
rate; while when γ = 0, our Pumpout will not squeeze out any negative effects. Both cases are not
optimal, since we empirically find that the best performance is usually chosen when 0 < γ < 1 by
using the validation set (Section 4). For the first case, the fast squeezing rate will negatively affect
the convergence of our algorithm. For the second case, no squeezing rate will inevitably let deep
neural networks memorize some “not-fitting” labels, which degrades their generalization (Zhang
et al., 2017; Neyshabur et al., 2017).

3 PUMPOUT BENEFITS STATE-OF-THE-ART ALGORITHMS

In this section, we employ the idea of Pumpout to upgrade MentorNet and Backward Correction as
follows. First, we briefly introduce the background of MentorNet and Backward Correction. Then,
by using Pumpout, we propose upgraded MentorNet (PumpoutSL) and upgraded Backward Correc-
tion (PumpoutBC). Lastly, we explain the relations between MentorNet (Backward Correction) and
PumpoutSL (PumpoutBC).

3.1 UPGRADE MENTORNET

MentorNet. To handle noisy labels, an emerging direction focuses on training only on selected
instances (Jiang et al., 2018; Ren et al., 2018; Han et al., 2018c), which is free of estimating the
noise transition matrix, and also free of the class-conditional noise assumption (Natarajan et al.,
2013). These works try to select clean instances out of the noisy ones, and then use them to update
the network. Among those works, a representative method is MentorNet (Jiang et al., 2018), which
employs the small-loss trick. Specifically, MentorNet pre-trains an extra network, and then uses the
extra network for selecting small-loss instances as clean instances to guide the training. However,
the idea of MentorNet is similar to the self-training approach (Chapelle et al., 2009), thus MentorNet
inherits the same drawback of accumulated error caused by the sample-selection bias.

PumpoutSL. Algorithm 2 represents the upgraded MentorNet using Pumpout approach (denoted
as PumpoutSL), where MentorNet uses the small-loss trick. Specifically, we maintain deep neural
network f (with parameter wf ). When a mini-batch D̄ is formed (step 3), we first let f select a small
proportion of instances in this mini-batch D̄s that have small training losses (step 4). The number of
instances is controlled by R(T ), and f only samples R(T ) percentage of instances out of the mini-
batch. More importantly, we let f select a proportion of instances in this mini-batch D̄b that have
big training losses (step 5). The number of instances is controlled by 1−R(T ), and f only samples

1https://en.wikipedia.org/wiki/False_positives_and_false_negatives
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1−R(T ) percentage of instances out of the mini-batch. Then, we conduct stochastic gradient descent
on small-loss instances D̄s (step 6); while we conduct scaled stochastic gradient ascent on big-loss
instances D̄b (step 7), which actively erases the negative effects of big-loss instances. The update of
R(T ) (step 8) follows Han et al. (2018c), in which extensive discussion has been conducted.

Algorithm 2 PumpoutSL. The fitting condition is whether a point belongs to small-loss instances.
1: Input network parameter wf , learning rate η > 0, estimated noise rate τ , maximum epoch Tmax,
maximum iteration Nmax, hyper parameter 0 ≤ γ ≤ 1;
for T = 1, 2, . . . , Tmax do

2: Shuffle training set D; //noisy dataset
for N = 1, . . . , Nmax do

3: Draw mini-batch D̄ from D;
4: Sample D̄s = arg minD̄ `(f, D̄, R(T )); //sample R(T )% small-loss instances
5: Sample D̄b = arg maxD̄ `(f, D̄, 1−R(T )); //sample 1−R(T )% big-loss instances
6: Update wf = wf − η∇f(D̄s); //update wf by stochastic gradient descent on D̄s;
7: Update wf = wf + γη∇f(D̄b); //update wf by scaled stochastic gradient ascent on D̄b;

end
8: Update R(T ) = 1−min

{
T
Tk
τ, τ

}
;

end
9: Output wf .

Relations between MentorNet and PumpoutSL. If we remove step 5 and step 7 in Algo-
rithm 2, PumpoutSL algorithm will be reduced to the core version of MentorNet, namely self-paced
MentorNet. It means that PumpoutSL algorithm is more aggressive than MentorNet in essence.
Namely, PumpoutSL conducts not only stochastic gradient descent on small-loss instances (like Men-
torNet), but also scaled stochastic gradient ascent on big-loss instances.

3.2 UPGRADE BACKWARD CORRECTION

Backward Correction and its non-negative version. To handle noisy labels, the other popular
direction focuses on estimating the noise transition matrix (Goldberger & Ben-Reuven, 2017; Pa-
trini et al., 2017; Han et al., 2018b). Among those works, a representative method is Backward
Correction. Specifically, Patrini et al. (2017) leveraged a two-step solution to estimate the noise
transition matrix heuristically. Then they employed the estimated matrix to correct the original loss,
and robustly train a deep neural network based on the new loss function.

Theorem 1 (Backward Correction, Theorem 1 in (Patrini et al., 2017)) Suppose that the noise tran-
sition matrix T is non-singular, where Tij = Pr(ỹ = j|y = i) given that noisy label ỹ = j is
flipped from clean label y = i. Given loss ` and network parameter wf , Backward Correction is
defined as

`←(x, y;wf ) = T−1`(x, y;wf ). (1)

Then, corrected loss is unbiased, namely,

Eỹ|x`←(x, y;wf ) = Ey|x`(x, y;wf ),∀x. (2)

Remark 1 Backward Correction operates on the loss vector directly. It is unbiased. LHS of Eq. (2)
draws from noisy labels, and RHS of Eq. (2) draws from clean labels. Note that the corrected loss is
differentiable, but not always non-negative (van Rooyen & Williamson, 2018).

If the model being trained is flexible, such as a deep neural network, the backward loss correction
will lead to negative risks, and the hazardous aspect is to yield an over-fit issue. Motivated by Kiryo
et al. (2017), we should conduct a non-negative correction again based on the backward-corrected
loss. The reason is that the risk should always be greater than 0 or equal to (Kiryo et al., 2017).
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Theorem 2 (Non-negative Backward Correction) Suppose that the noise transition matrix T is non-
singular, where Tij = Pr(ỹ = j|y = i) given that noisy label ỹ = j is flipped from clean label
y = i. Given loss ` and network parameter wf , Non-negative Backward Correction is defined as

`←m (x, y;wf ) = max{0,1>T−1`(x, y;wf )}, (3)

where 1k×1. Then, the corrected loss `←m (x, y;wf ) is non-negative.

Remark 2 `←m (x, y;wf ) is a non-negative scalar. Our key claim is to overcome the over-fit issue by
non-negative correction.

However, the above non-negative correction is passive, since max operator means stopping gradient
computation on negative-risk instances. This correction may not achieve the optimal performance.
Namely, when 1>T−1`(x, y;wf ) ≥ 0, we conduct stochastic gradient descent; otherwise, we do
not perform the operation of stochastic gradient. To propose an aggressive non-negative correction,
we reverse the gradient computation at negative-risk instances. Specifically, we use the Pumpout
approach to improve Non-negative Backward Correction. Namely, when 1>T−1`(x, y;wf ) ≥ 0,
we conduct stochastic gradient descent typically; when 1>T−1`(x, y;wf ) ≤ 0, we conduct scaled
stochastic gradient ascent. This brings our Algorithm 3.

PumpoutBC. Algorithm 3 represents the upgraded Backward Correction using the Pumpout ap-
proach (denoted as PumpoutBC), where Backward Correction is defined in Theorem 1. If the model
being trained is flexible (i.e., a deep neural network), Backward Correction will lead to negative
risks (Patrini et al., 2017), which subsequently yields an over-fit issue. To mitigate this issue,
we maintain deep neural network f (with parameter wf ). When a single point {xi, yi} is se-
quentially selected from the j-th mini-batch D̄ (step 5), we first compute the temporary gradient
gt at this point (step 6). If Backward Correction produces a positive risk at this point, namely
1>T−1`(xi, yi;wf ) ≥ β ≥ 0 (definitions of T and ` are in Theorem 1), we accumulate gradient
Ga by the gradient descent (step 7); otherwise, we accumulate gradient Ga by the scaled gradient
ascent (step 8), and this step erases the negative effects of negative-risk instances. Lastly, we average
the accumulated gradient (step 9) and update parameter wf by stochastic optimization (step 10).

Algorithm 3 PumpoutBC. The fitting condition is whether a point satisfies 1>T−1`(xi, yi;wf ) ≥ β.
1. Input network parameter wf , learning rate η > 0, maximum epoch Tmax, hyper parameter β ≥ 0
and 0 ≤ γ ≤ 1;
for T = 1, 2, . . . , Tmax do

2. Shuffle training set D into n-mini batches with batch size k; //noisy dataset
for j = 1, . . . , n do

3. Reset Ga = 0; //gradient accumulator
4: Draw j-th mini-batch D̄ from D;
for i = 1, . . . , k do

5. Select {xi, yi} from D̄ as i-th data point;
6. Set gt = ∇wf

{1>T−1`(xi, yi;wf )}; //temp gradient
if 1>T−1`(xi, yi;wf ) ≥ β then

7. Update Ga = Ga + gt; //gradient descent
end
else

8. Update Ga = Ga − γgt; //scaled gradient ascent
end

end
9. Average ga = Ga/k;
10. Update wf = wf − ηga; //stochastic optimization

end
end
11. Output wf .

5



Under review as a conference paper at ICLR 2019

Relations between Non-negative Backward Correction and PumpoutBC. If we remove line 8 in
Algorithm 3, PumpoutBC algorithm will be reduced to Non-negative Backward Correction. It means
PumpoutBC algorithm is an aggressive version of Non-negative Backward Correction. Namely,
PumpoutBC conducts not only stochastic gradient descent on nonnegative-risk instances, but also
scaled stochastic gradient ascent on negative-risk instances to erase their negative effects.

4 EXPERIMENTS

Datasets. We verify the effectiveness of our Pumpout approach on three benchmark datasets, in-
cluding two vision datasets and one text dataset. MNIST, CIFAR-10 and NEWS are used here (Ta-
ble 1), as these data sets are popularly used for evaluation of noisy labels in the literature (Reed
et al., 2015; Goldberger & Ben-Reuven, 2017; Patrini et al., 2017; Kiryo et al., 2017).

Table 1: Summary of data sets used in the experiments.
# of training # of testing # of class size of image/text

MNIST 60,000 10,000 10 28×28
CIFAR-10 50,000 10,000 10 32×32

NEWS 11,314 7,532 2 300-D

Since all datasets are clean, following (Reed et al., 2015; Patrini et al., 2017), we need to corrupt
these datasets manually by the noise transition matrix T, where Tij = Pr(ỹ = j|y = i) given
that noisy ỹ is flipped from clean y. Assume that the matrix T has two representative structures
(Figure 1): (1) Pair flipping (Han et al., 2018b): a real-world application is the fine-grained classi-
fication, where you may make mistake only within very similar classes in the adjunct positions; (2)
Symmetry flipping (Van Rooyen et al., 2015). Their precise definition is in Appendix A.

(a) Pair (ε = 45%). (b) Symmetry (ε = 50%).

Figure 1: Transition matrices of different noise types (using 5 classes as an example).

This paper first verifies whether Pumpout can significantly improve the robustness of representative
methods on extremely noisy supervision, the noise rate ε is chosen from {0.45, 0.5}. Intuitively,
this means almost half of the instances have noisy labels. Note that, the noise rate > 50% for
pair flipping means over half of the training data have wrong labels that cannot be learned without
additional assumptions. In addition to extremely noisy settings, we also verify whether Pumpout
can significantly improve the robustness of representative methods on low-level noisy supervision,
where ε is set to 0.2. Note that pair case is much harder than symmetry case. In Figure 1(a), the
true class only has 10% more correct instances over wrong ones. However, the true has 37.5%
more correct instances in Figure 1(b). Meanwhile, similarly to (Reed et al., 2015; Goldberger &
Ben-Reuven, 2017; Jiang et al., 2018), we did not make any implicit assumption behind Pumpout.
Baselines. To verify the efficacy of Pumpout, we compare two orthogonal approaches in deep
learning with noisy labels. The first set (SET1) comparison is to check whether Pumpout can im-
prove the robustness of MentorNet. (i) MentorNet (Jiang et al., 2018). (ii) PumpoutSL (Algorithm 2).
The second set (SET2) comparison is to check whether Pumpout can improve the robustness of
Backward Correction. (i) Backward Correction (Patrini et al., 2017) (denoted as “BC”, Theorem 1).
(ii). Non-negative backward correction (denoted as “nnBC”, Theorem 2). (iii) PumpoutBC (Algo-
rithm 3). As a simple baseline, we also compare with the standard deep neural network that directly
learns on the noisy training set (denoted as “Standard”). Note that, the choice of two baselines is to
justify whether Pumpout can benefit representative state-of-the-art algorithms. The readers are en-
couraged to upgrade other methods, such as Reed et al. (2015), Goldberger & Ben-Reuven (2017),
and Kiryo et al. (2017) by using Pumpout.
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For the fair comparison, we implement all methods with default parameters by PyTorch, and conduct
all the experiments on a NVIDIA K80 GPU. Standard CNN is used with Leaky ReLU (LReLU)
activation function (Maas et al., 2013); ResNet is used with ReLU activation function; and MLP
is used with Softsign activation function (Glorot & Bengio, 2010). The detailed architectures are
in Appendix B. Namely, we used the 9-layer CNN (Miyato et al., 2016; Laine & Aila, 2017) with
dropout and batch-normalization for MNIST, ResNet-32 (He et al., 2016) with batch-normalization
for CIFAR-10, and 3-layer MLP (Kiryo et al., 2017) with batch-normalization for NEWS, since
the network structures we used here are standard test bed for weakly-supervised learning. For all
datasets, Adam optimizer (momentum=0.9) with an initial learning rate of 0.001, the batch size is
set to 128 and runs for 200 epoch. Note that, the focus of our paper is to explore the efficacy of
Pumpout. Therefore, we use Adam optimizer in all experiments for fair comparison without using
data augmentation trick (Zhang & Sabuncu, 2018; Ma et al., 2018).

Experimental setup. For SET1, the most important parameter of our PumpoutSL and MentorNet
is R(T ). Here, we assume the noise level ε is known and set R(T ) = 1 − τ · min (T/Tk, 1) with
Tk = 10 and τ = ε. If ε is not known in advanced, ε can be inferred using validation sets (Liu &
Tao, 2016). The choices of R(T ) and τ follows Han et al. (2018c). Note that R(T ) only depends
on the memorization effect of deep networks but not any specific datasets. For SET2, the most im-
portant parameters of our PumpoutBC and nnBC are β and γ respectively. Specifically, the degree of
tolerance is controlled by β (β ≥ 0), and the scale of gradient ascent is controlled by γ (0 ≤ γ ≤ 1).
The choices of β and γ follows Kiryo et al. (2017). Namely, for β, we directly set it to zero and γ is
chosen among {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} via a validation set.

This paper provides two upgraded approaches to train deep neural networks robustly under noisy la-
bels. Thus, our goal is to classify the clean instances as accurately as possible, and the measurement
for both SET1 and SET2 is the test accuracy, i.e., test accuracy = (# of correct predictions) / (# of test
dataset). Besides, for SET1, we also use the label precision in each mini-batch, i.e., label precision
= (# of clean labels) / (# of all selected labels). Specifically, we sampleR(T ) of small-loss instances
in each mini-batch, and then calculate the ratio of clean labels in the small-loss instances. Intuitively,
higher label precision means less noisy instances in the mini-batch after sample selection; and the
algorithm with higher label precision is also more robust to the label noise. All experiments are
repeated five times. In each figure, the error bar for standard deviation is highlighted as a shade.

Before delving into Section 4.1 and 4.2, there are two important points to be emphasized. First, the
memorization effects of deep networks (Arpit et al., 2017) means that standard deep networks will fit
clean instances first, then overfit noisy instances gradually. These effects will inevitably degrade the
generalization performance (i.e., test accuracy). Second, PumpoutSL may not suffer from or greatly
alleviate the accumulated error in MentorNet, since PumpoutSL actively squeezes out the negative
effects of noisy labels from the training model, instead of passively forgetting these effects.

4.1 RESULTS OF PUMPOUTSL AND MENTORNET

MNIST. In Figure 2, we show test accuracy (top) and label precision (bottom) vs number of epochs
on MINIST dataset. In all three plots, we can clearly see the memorization effects of deep net-
works (Arpit et al., 2017), i.e., test accuracy of Standard first reaches a very high level and then
gradually decreases. Thus, a good robust training method should stop or alleviate the decreasing
process. On this point, our PumpoutSL almost stops the decreasing process in the easier Symmetric-
50% and Symmetric-20% cases. Meanwhile, compared to MentorNet, our PumpoutSL alleviates the
decreasing process in the hardest Pair-45% case. Thus, PumpoutSL consistently achieves the higher
accuracy over MentorNet.

To explain such good performance, we plot label precision (bottom). Compared to Standard, we can
clearly see that both PumpoutSL and MentorNet can successfully pick clean instances out. How-
ever, our PumpoutSL achieves the higher label precision on not only the easier Symmetric-50% and
Symmetric-20% cases, but also the hardest Pair-45% case. This shows our approach is better at
finding clean instances due to the usage of scaled stochastic gradient ascent.

CIFAR-10. Figure 3 shows test accuracy and label precision vs number of epochs on CIFAR-10
dataset. Again, on test accuracy, we can see PumpoutSL strongly stops the memorization effects
of deep networks. More importantly, on the easier Symmetric-50% and Symmetric-20% cases, it
works better and better along with the training epochs. On label precision, while Standard fails to
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Figure 2: Results of PumpoutSL and MentorNet on MNIST dataset. Top: test accuracy vs number of
epochs; bottom: label precision vs number of epochs.

find clean instances, both PumpoutSL and MentorNet can do this. However, due to the usage of
scaled stochastic gradient ascent, PumpoutSL is stronger and find more clean instances.
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Figure 3: Results of PumpoutSL and MentorNet on CIFAR-10 dataset. Top: test accuracy vs number
of epochs; bottom: label precision vs number of epochs.

NEWS. Figure 4 shows test accuracy and label precision vs number of epochs on NEWS dataset.
On test accuracy, we can see PumpoutSL stops the memorization effects of deep networks to some de-
gree. Especially on the harder Pair-45% and Symmetric-50% cases, PumpoutSL obviously achieves
the higher accuracy over MentorNet along with the training epochs. On label precision, while Stan-
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dard fails to find clean instances again, PumpoutSL can achieve this especially on the hardest case
due to the usage of scaled stochastic gradient ascent.
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Figure 4: Results of PumpoutSL and MentorNet on NEWS dataset. Top: test accuracy vs number of
epochs; bottom: label precision vs number of epochs.

4.2 RESULTS OF PUMPOUTBC AND NNBC

MNIST. Figure 5 shows test accuracy vs number of epochs on MNIST dataset. In all three plots,
we can see the memorization effects of deep networks, i.e., test accuracy of Standard first reaches a
very high level and then gradually decreases. However, our PumpoutBC fully stops the decreasing
process in the hardest Pair-45% case. Meanwhile, in the easier Symmetric-50% and Symmetric-20%
cases, our PumpoutBC works better and better along with the training epochs though it fluctuates.
Moreover, our PumpoutBC finally achieves the higher accuracy over both BC and nnBC.
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Figure 5: Results of PumpoutBC and nnBC on MNIST dataset. Test accuracy vs number of epochs.

CIFAR-10. Figure 6 shows test accuracy vs number of epochs on CIFAR-10 dataset. Again, in all
three plots, we can see the memorization effects of deep networks. However, in the hardest Pair-45%
case and the easiest Symmetry-20% case, our PumpoutBC overcomes this issue and works better and
better along with the training epochs though it fluctuates slightly. Specifically, in the hardest case,
our PumpoutBC obviously achieves the higher accuracy over both BC and nnBC. Meanwhile, in the
Symmetric-50% case, our PumpoutBC becomes comparable with other methods.
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Figure 6: Results of PumpoutBC and nnBC on CIFAR-10 dataset. Test accuracy vs number of epochs.

NEWS. Figure 7 shows test accuracy vs number of epochs on NEWS dataset. In all three plots, we
can see the memorization effects of deep networks again. However, our PumpoutBC fully stops the
decreasing process in two harder Pair-45% and Symmetry-50% cases, and alleviates the decreasing
process in one easier Symmetry-20% case. Meanwhile, in the hardest Pair-45% case, our PumpoutBC
works better and better along with the training epochs. In this hardest case, our PumpoutBC finally
achieves the higher accuracy over both BC and nnBC, although its accuracy falls behind BC in the
first 90 epochs and nnBC in the first 50 epochs. Besides, in two symmetry cases, our PumpoutBC
obviously achieves the higher accuracy over both BC and nnBC.
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Figure 7: Results of PumpoutBC and nnBC on NEWS dataset. Test accuracy vs number of epochs.

5 CONCLUSION

This paper presents a meta algorithm called Pumpout, which significantly improves the robustness
of state-of-the-art methods under noisy labels. Our key idea is to squeeze out the negative effects
of noisy labels actively from the training model, instead of passively forgetting these effects. The
realization of Pumpout is to train deep neural networks by stochastic gradient descent on “fitting”
labels; while train deep neural networks by scaled stochastic gradient ascent on “not-fitting” labels.
To demonstrate the efficacy of Pumpout, based on MentorNet and Backward Correction, we design
two upgraded versions called PumpoutSL and PumpoutBC, respectively. The experimental results
show that, both updated approaches can train deep models more robustly over previous ones. In
future, we can extend our work in the following aspects. First, we can leverage Pumpout approach to
train deep models under another weak supervision, e.g., complementary labels (Ishida et al., 2017).
Second, we should investigate the theoretical guarantees for Pumpout approach. Third, we should
adapt our Pumpout approach to several much harder noise cases, for example, instance-dependent
noise datasets (i.e., Open Images (Veit et al., 2017) or Clothing1M (Xiao et al., 2015)).
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A DEFINITION OF NOISE

The definition of transition matrix T is as follow, where ε is the noise rate and n is the number of
the classes.

Pair flipping: T =


1− ε ε 0 . . . 0

0 1− ε ε 0
...

. . . . . .
...

0 1− ε ε
ε 0 . . . 0 1− ε

 ,

Symmetry flipping: T =


1− ε ε

n−1 . . . ε
n−1

ε
n−1

ε
n−1 1− ε ε

n−1 . . . ε
n−1

...
. . .

...
ε

n−1 . . . ε
n−1 1− ε ε

n−1
ε

n−1
ε

n−1 . . . ε
n−1 1− ε

 .

B NETWORK STRUCTURES

For MNIST, 28×28 gray image, the structure is as follows. We also summarize it into Table 2.

(1*28*28)-[C(3*3,128)]*2-maxpool(2*2,2)-dropout(0.25)-[C(3*3,256)]*3-maxpool(2*2,2)-
dropout(0.25)-C(3*3,512)-C(3*3,256)-C(3*3,128)-avgpool(1*1)-128-10, where the input is a
28*28 image, C(3*3,128) means 128 channels of 3*3 convolutions followed by LReLU (negative
slop=0.01), maxpool(2*2,2) means max pooling (kernel size=2, stride=2), avgpool(2*2) means
average pooling (kernel size=2), [.]*n means n such layers, etc. Batch normalization was applied
before LReLU activations.

Table 2: 9-layer CNN used in our experiments on MNIST.
CNN on MNIST

28×28 Gray Image
3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
2×2 max-pool, stride 2

dropout, p = 0.25
3×3 conv, 256 LReLU
3×3 conv, 256 LReLU
3×3 conv, 256 LReLU
2×2 max-pool, stride 2

dropout, p = 0.25
3×3 conv, 512 LReLU
3×3 conv, 256 LReLU
3×3 conv, 128 LReLU

avg-pool
dense 128→10

For CIFAR-10, 32×32 RGB image, the structure is ResNet-32.

For NEWS, the structure is 3-layer. Batch-normalization was applied before Softsign activations.
We also summarize it into Table 3.

Table 3: 3-layer MLP used in our experiments on NEWS.
MLP on NEWS

300-D Embedding
dense 300→300, Softsign
dense 300→300, Softsign

dense 300→2
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