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ABSTRACT

Memorization in over-parameterized neural networks can severely hurt general-
ization in the presence of mislabeled examples. However, mislabeled examples
are to hard avoid in extremely large datasets. We address this problem using
the implicit regularization effect of stochastic gradient descent with large learn-
ing rates. By the loss statistics, we are able to identify mislabeled examples with
remarkable success. Then, we discard the mislabeled examples on the fly and
continue training with the rest of the examples. This leads to ON-THE-FLY DATA
DENOISING (ODD), a simple yet effective algorithm that is robust to mislabeled
examples, while introducing almost zero computational overhead. Empirical re-
sults demonstrate the effectiveness of ODD on several datasets containing artifi-
cial and real-world mislabeled examples.

1 INTRODUCTION

Over-parametrized deep neural networks have remarkable generalization properties while achieving
near-zero training error (Zhang et al., 2016). However, the ability to fit the entire training set is
highly undesirable, as a small portion of mislabeled examples in the dataset could severely hurt
generalization (Zhang et al., 2016; Arpit et al., 2017). Meanwhile, an exponential growth in training
data size is required to linearly improve generalization in vision tasks (Sun et al., 2017); this progress
could be hindered if there are mislabeled examples within the dataset.

Mislabeled examples are to be expected in large datasets that contain millions of examples. Web-
based supervision produces noisy labels (Li et al., 2017a; Mahajan et al., 2018); whereas human
labeled datasets sacrifice accuracy for scalability (Krishna et al., 2016). Therefore, algorithms that
are robust to various levels of mislabeled examples are warranted in order to further improve gener-
alization for very large labeled datasets.

In this paper, we propose On-the-fly Data Denoising (ODD), a simple and robust method for training
with noisy examples based on the implicit regularization effect of stochastic gradient descent. First,
we train residual networks with large learning rate schedules and use the resulting losses to separate
clean examples from mislabeled ones. This is done by identifying examples whose losses exceed
a certain threshold. Reasonable thresholds can be derived from the loss distribution for uniform
label noise which does not depend on the amount of mislabeled examples in the dataset. Finally, we
remove these examples from the dataset and continue training until convergence.

plain forest cloud pear lion tiger camel train motorcycle leopard

Figure 1: Mislabeled examples in the CIFAR-100 training set detected by ODD.

Empirically, ODD performs significantly better than previous methods in datasets containing artifi-
cial noise (Sections 4.1 and 4.2) or real-world mislabeled examples (Section 4.3), while achieving
equal or better accuracy than the state-of-the-art on clean datasets (Sections 4.1 and 4.2). We fur-
ther conduct ablation studies to demonstrate that ODD is robust w.r.t hyperparameters and artificial

1



Under review as a conference paper at ICLR 2019

noise levels (Section 4.4). Our method is also able to detect mislabeled examples in the CIFAR-100
dataset without any additional supervision (Figure 1).

2 DENOISING DATASETS ON-THE-FLY

The goal of supervised learning is to find a function f ∈ F that describes the probability of a random
label vector Y ∈ Y given a random input vector X ∈ X , which has underlying joint distribution
P (X,Y ). Given a loss function `(y, ŷ), one could minimize the average of ` over P :

R(f) =
∫
`(y, f(x)) dP (x,y)

The joint distribution P (X,Y ) is usually unknown, but we could gain access to its samples via a
potentially noisy labeling process, such as crowdsourcing (Krishna et al., 2016) or web queries (Li
et al., 2017a). We denote the training dataset with N examples as D = (xi,yi)i∈[N ] = G ∪ B.
G represents correctly labeled (clean) examples sampled from P (X,Y ). B represents mislabeled
examples that are not sampled from P (X,Y ), but from another distribution Q(X,Y ); G ∩ B = ∅.
We aim to learn the function f from D without knowledge about B, G or their statistics (e.g. |B|).
A typical approach is to assume that B = ∅, i.e. all examples are i.i.d. from P (X,Y ), and mini-
mizing the following objective:

R̂(f) = − 1

N

N∑
i=1

`(y, f(x))

If B = ∅ is indeed true, then R̂(f) → R(f) as N → ∞. However, this is not true if B 6= ∅
since D is no longer an unbiased population of P (X,Y ). Moreover, when F is the space of large
neural networks with parameters exceeding N , f could fit the entire training dataset (Zhang et al.,
2016), including the mislabeled examples. This results in undesired behavior of f on inputs of the
mislabeled set, let alone outside the training data.

To illustrate the harm of mislabeled examples to generalization, we consider training on CIFAR-10
where some examples are mislabeled uniformly at random. Compared with training on D, training
only on G could decrease validation error from 11.53 to 4.25 if there are 20% mislabeled examples,
and from 15.57 to 5.06 if there are 40% mislabeled examples1. Therefore, if we are able to identify
examples that belong to G, we could vastly improve generalization on P (X,Y ).

2.1 SEPARATING MISLABELED EXAMPLES VIA IMPLICIT REGULARIZATION

Fortunately, in the case of classification with deep residual networks (He et al., 2015a), the implicit
generalization of stochastic gradient descent (SGD) with large learning rates (e.g. 0.1) can separate
examples from G and examples from B via the loss statistics. We demonstrate this in Figure 2, where
we train deep residual networks on CIFAR-100 and ImageNet with different percentages of uniform
label noise. In early stages of training, the loss distributions of clean examples and mislabeled ones
have notable statistical distance. The network starts to fit mislabeled examples when learning rate
starts to decrease, which is also crucial for achieving better generalization on clean datasets.

The working of the implicit regularization of gradient descent is by and large an open question that
attracts much recent attentions (Neyshabur, 2017; Li et al., 2017b; Du et al., 2018). Empirically,
it has been observed that large learning rates are beneficial for generalization (Kleinberg et al.,
2018). Recent work has shown that the stationary distribution of SGD iterates corresponds to an
Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930) with noise proportional to the learning
rate (Mandt et al., 2017). Training with large learning rates would then encourage solutions that
are more robust to large random perturbations in the parameter space and less likely to overfit to
mislabeled examples. Therefore, given these empirical and theoretical evidence on large learning
rate helps generalization, we propose to classify correct and mislabeled examples through the loss
statistics, and achieve better generalization by removing the examples that are potentially mislabeled
and training on clean examples only.

1Validation error is 3.73 for 0% mislabeled case. Additional details for CIFAR-100 in Table 1.
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Figure 2: Histogram of the distributions of losses, where “normal”, “noise”, and “simulated” denote
normal examples, examples corrupted with random labels and simulated losses respectively.

2.2 THRESHOLDS THAT CLASSIFY MISLABELED EXAMPLES

To improve generalization in practice, one critical problem is to select a reasonable threshold for
classification. High thresholds could include too many examples from B, whereas low thresholds
could prune too many examples from G; reasonable thresholds should also adapt to different un-
known ratios of mislabeled examples. Let us first consider the case where Q(Y |X) has the highest
entropy, which is the uniform distribution over labels. From Figure 2, the loss distribution for B
is relatively stable with different ratios of |B|/|D|; examples in B are making little progress when
learning rate is large. We propose to characterize the (negative log-likelihood) loss distribution of
uniform label noise pn(l) via the following generative procedure:

l = −ỹk + log

 ∑
i∈[N ]

exp(ỹi)

 ≡ − log softmax(ỹ)[k] (1)

ỹ = fc(relu(x̃)), x̃ ∼ N (0, I), k ∼ Uniform{0, . . . ,K}

where fc(·) is the final (fully connected) layer of the network, relu(x̃) = max(x̃,0) is the Rectified
Linear Unit, and k represents a random label from K classes. This represents the case where the
model’s prediction is uncorrelated with the labels. The actual noise distribution could skew to the left
if the model overfits to the noise, and skew to the right if the model predicts a label different from the
noisy one. We find that an identity covariance matrix for x̃ is able to explain the noise distribution;
this could result from well-conditioned objectives defined via deep residual networks (He et al.,
2015a) and careful initialization (He et al., 2015b). We qualitatively demonstrate the validity of our
characterization on CIFAR-100 and ImageNet datasets in Figure 2.

Therefore, we could define a threshold via the p-th percentile of pn(l); it relates to approximately
how much examples in B we would retain if Q(Y |X) is uniform. In Section 4.4, we show that this
method is able to identify different percentages of uniform label noise with high precision.

2.3 A PRACTICAL ALGORITHM FOR ROBUST TRAINING

We can utilize this implicit regularization effect to remove examples that might harm generalization,
leading to On-the-fly Data Denoising (ODD), a simple algorithm robust to mislabeled examples:

1. Train all examples with large learning rates for E epochs.

2. Compute the p-th percentile of the distribution in Eq. (1), denoted as Tp.

3. Remove examples whose average loss of the past h epochs exceeds T from the dataset.

4. Continue training the remaining examples from epoch E + 1.
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ODD introduces three hyperparameters: E determines the amount of training that separates clean
examples from noisy ones; p determines Tp that specifies the trade-off between less noisy examples
and more clean examples; h determines the window of averaged loss statistics to reduce variance
from data augmentation. We do not explicitly estimate the portion of noise in the dataset, nor do
we assume any specific noise model. In fact, the threshold Tp could be used to accurately predict
the portion of uniform noise in the dataset, and works quite well even on other types of label noise;
we will demonstrate this in Section 4. Moreover, ODD is compatible with existing practices for
learning rate schedules, such as stepwise (He et al., 2015a) or cosine (Loshchilov & Hutter, 2016).

3 RELATED WORK

Implicit Regularization of SGD The generalization of neural networks trained with SGD depend
heavily on learning rate schedules (Loshchilov & Hutter, 2016). It has been proposed that wide local
minima2 could result in better generalization (Hochreiter & Schmidhuber, 1995; Chaudhari et al.,
2016; Keskar et al., 2016). Several factors could contribute to wider local optima and better gener-
alization, such as smaller minibatch sizes (Keskar et al., 2016), reasonable learning rates (Kleinberg
et al., 2018), and longer training time (Hoffer et al., 2017). Moreover, solutions that are further away
from the initialization may lead to wider local minima and better generalization (Hoffer et al., 2017).
In the presence of mislabeled examples, changes in optimization landscape (Arpit et al., 2017) could
result in bad local minima (Zhang et al., 2016), although it is argued that larger batch sizes could
mitigate this effect (Rolnick et al., 2017).

Training with Mislabeled Examples One paradigm to robust training with noisy labels involves
estimating the noise distribution (Liu & Tao, 2014) or confusion matrix (Sukhbaatar et al., 2014).
Another line of methods propose to identify and clean the noisy examples through predictions of
auxillary networks (Veit et al., 2017) or via binary predictions (Northcutt et al., 2017); the noisy
labels are either pruned (Brodley et al., 1996) or replaced with model predictions (Reed et al., 2014).
Our method is comparable to these approaches, but the key difference is that we leverage the implicit
regularization effect of SGD to identify noisy examples. Other approaches propose to reweigh the
examples via a pretrained network (Jiang et al., 2017), meta learning (Ren et al., 2018), or surrogate
loss functions (Ghosh et al., 2017; Zhang & Sabuncu, 2018). Some methods require a set of trusted
examples (Xiao et al., 2015; Hendrycks et al., 2018).

ODD has several appealing properties compared to existing methods. First, the thresholds for clas-
sifying mislabeled examples from ODD do not rely on estimations of the noise confusion matrix.
Next, ODD does not require additional trusted examples. Finally, ODD removes potentially noisy
examples on-the-fly; it has little computational overhead compared to standard SGD training.

4 EXPERIMENTS

We evaluate our method on clean and noisy versions of CIFAR-10, CIFAR-100, ImageNet (Rus-
sakovsky et al., 2015) and WebVision (Li et al., 2017a) datasets. We use stochastic gradient descent
with momentum for training while following standard image preprocessing and data augmentation
practices. We do not consider dropout (Srivastava et al., 2014) or model ensembles (Huang et al.,
2017) in our experiments. We use h = 2 for all our ODD experiments; we observe that having
h ∈ [2, 5] yields similar results.

4.1 CIFAR-10 AND CIFAR-100

We first evaluate our method on the CIFAR-10 and CIFAR-100 datasets, which contain 50,000 train-
ing images and 10,000 validation images of size 32×32 with 10 and 100 labels respectively. During
training, we follow the data augmentations in (Zagoruyko & Komodakis, 2016), which performs
horizontal flips, takes random crops from 40× 40 images padded by 4 pixels on each side, and fills
missing pixels with reflections of the original images.

In our experiments, we train the wide residual network architecture (WRN-28-10) in (Zagoruyko &
Komodakis, 2016) for 200 epochs with a minibatch size of 128, momentum 0.9 and weight decay

2Although the notion of wideness is controversial (Dinh et al., 2017).
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5×10−4. We consider a cosine annealing schedule as described in (Loshchilov & Hutter, 2016) with
T0 = 200, Tmult = 1, ηmax = 0.1, ηmin = 10−5 (no warm restarts), as we observe this schedule
outperforms the traditional stepwise schedules on the clean dataset. We include results for two types
of stepwise schedules in Appendix A.1.

4.1.1 GENERALIZATION ON INPUT-AGNOSTIC LABEL NOISE

We first consider label noise that are agnostic to inputs. Following Zhang et al. (2016), We randomly
replace a 0%/20%/40%) of the training labels to uniformly random ones, and evaluate generaliza-
tion error on the clean validation set. We compare with the following baselines: ORACLE, where
the model knows the true identity of clean examples and only trains on them; Empirical Risk Min-
imization (ERM, Goyal et al. (2017)) which assumes all examples are clean; MENTORNET (Jiang
et al., 2017), which pretrains an auxiliary model that predicts weights for each example based on its
input features; REN (Ren et al., 2018), which optimizes the weight of examples via meta-learning;
mixup (Zhang et al., 2017), a data augmentation approach that trains neural networks on convex
combinations of pairs of examples and their labels; and Generalized Cross Entropy (GCE, Zhang &
Sabuncu (2018)) that includes cross-entropy loss and mean absolute error (Ghosh et al., 2017).

Table 1: Minimum validation error throughout training (in percentage).

CIFAR-10 CIFAR-100

Method % of Mislabeled Examples % of Mislabeled Examples
0 20 40 0 20 40

ORACLE - 4.25± 0.05 5.06± 0.05 - 20.42± 0.20 23.64± 0.27
ERM 3.73± 0.13 11.53± 0.06 15.57± 0.45 18.41± 0.17 30.38± 0.14 44.35± 0.53
ODD 3.80± 0.10 5.33± 0.04 7.16± 0.20 18.19± 0.10 22.79± 0.10 27.61± 0.38
mixup 3.04± 0.05 6.09± 0.27 9.26± 0.14 18.61± 0.33 28.78± 0.27 40.58± 0.35

GCE - 10.13± 0.20 12.87± 0.22 - 33.19± 0.42 38.23± 0.24

REN? - - 13.08± 0.19 - - 38.66± 2.06

MENTORNET - 9 23 - 28 44
MENTORNET? - 8 11 - 27 32

We report the top-1 validation error in Table 1, where ? denotes methods trained with knowledge of
1000 additional clean labels. Notably, ODD significantly outperforms all other algorithms (except
for the oracle) when there is artificial noise, and is on-par with ERM even when there is no artificial
noise. On the one hand, this suggests that ODD is able to distinguish the mislabeled examples and
improve generalization; on the other hand, it would seem that removing certain examples even in
the “clean” dataset does not seem to hinder generalization.

ODD-train
ODD-valid

ODD-train
ODD-valid

Figure 3: Training curves of ERM and ODD with 40% artificially corrupted labels.

ODD prevents overfitting to noise We compare the learning curves of ERM and ODD in Fig-
ure 3 with a stepwise schedule under 40% label corruption. ERM easily overfits the random labels
when learning rate decreases, whereas ODD manages to continue improving generalization.

Mislabeled examples in CIFAR-100 We run our methods on three random seeds, and find the
examples that are considered mislabeled by all the three instances (598 in total); we demonstrate
some examples3 in Figure 1, which contains ambiguous / wrong labels.

3We include more examples in Appendix A.4.
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Table 2: Results on input-dependent label noise experiments.

% of Corrupted Labels Method CIFAR10 CIFAR100 Network

10 ERM 4.31± 0.26 19.9± 0.12

WRN-28-10ODD 4.2± 0.02 18.79± 0.05

20 ERM 4.85± 0.23 24.69± 0.25
ODD 4.65± 0.19 18.05± 0.01

4.1.2 GENERALIZATION ON INPUT-DEPENDENT LABEL NOISE

Images from some classes could be harder to label correctly than that from other classes. To simulate
this, we perform experiments on settings where the label noise only comes from certain types of
input data. Specifically, we remove a portion of classes from the dataset (e.g. class 9 in CIFAR-10),
and assign the labels of all its examples to the remaining classes randomly (e.g. a class 9 example
has a class 0 – 8 random label). This reduces the total number of classes, so on the validation set we
only consider the classes that are not removed (e.g. classes 0 – 8). We compare ERM and ODD on
datasets with 10% or 20% of the examples mislabeled, and summarize the results in Table 2. ODD
is still able to significantly outperform ERM under such input-dependent noise.

4.1.3 GENERALIZATION ON NON-HOMOGENEOUS LABELS

We evaluate ERM and ODD on a setting without mislabeled examples, but the ratio of classes could
vary. To prevent the model from utilizing the number of examples in a class, we combine multiple
classes of CIFAR-100 into a single class, creating the CIFAR-20 and CIFAR-50 tasks. In CIFAR-50,
we combine an even class with an odd class while we remove c% of the examples in the odd class.
In CIFAR-20, we combine 5 classes in CIFAR-100 that belong to the same super-class4 while we
remove c% of the examples in 4 out of 5 classes. This is performed for both training and validation
datasets. Results for ERM and ODD with p = 10 and E = 75 are shown in Table 3, where ODD is
able to outperform ERM in these settings where the input examples are not uniformly distributed.

Table 3: Results on CIFAR-50 and CIFAR-20 tasks.

Task Method c% of Removed Labels Network30 50 70

CIFAR-50 ERM 21.52± 0.13 22.03± 0.05 22.45± 0.10

WRN-28-10ODD 21.05± 0.16 21.39± 0.18 21.87± 0.08

CIFAR-20 ERM 13.61± 0.20 14.86± 0.08 15.51± 0.32
ODD 13.37± 0.27 14.63± 0.26 15.44± 0.24

4.2 IMAGENET

We conduct additional experiments on the ImageNet-2012 classification dataset (Russakovsky et al.,
2015). The dataset contains 1.28 million training images and 50,000 validation images from 1,000
classes. Input-agnostic random noise of 0%, 20%, 40% are considered. We follow standard data
augmentation practices during training, including scale and aspect ratio distortions, random crops,
and horizontal flips. We only use the center 224× 224 crop for validation.

We train ResNet-50 and ResNet-152 models (He et al., 2015a) with the cosine schedule with initial
learning rate 0.1, momentum 0.9, weight decay 10−4, 90 training epochs, and report top-1 and top-5
validation errors in Table 4. ODD significantly outperforms ERM in terms of both top-1 and top-5
errors on the 20% and 40% mislabeled examples, while being competitive with the clean dataset.

4Super-class information is available at https://www.cs.toronto.edu/˜kriz/cifar.html.
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Table 4: Results on ImageNet validation set. MENTORNET results from (Jiang et al., 2017).

Method
% of Mislabeled Examples

Network0 20 40

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ERM 23.39 6.77 26.23 8.51 29.61 10.52 ResNet-50ODD (p = 10) 23.37 6.94 25.05 7.89 27.51 9.25
ERM 21.31 5.69 23.9 7.12 27.39 9.16 ResNet-152ODD (p = 10) 21.35 5.98 22.49 6.45 25.22 7.91
ERM 23 - - - - - Inception ResNet-v2MENTORNET - - - - 34.9 14.1

Table 5: Validation errors on WebVision / ImageNet validation sets while training on WebVision.

Method WebVision ImageNet NetworkTop-1 Top-5 Top-1 Top-5

ERM 27.90± 0.11 10.94± 0.08 34.71± 0.12 14.87± 0.05 ResNet-50ODD 27.49± 0.22 10.79± 0.09 34.48± 0.01 14.75± 0.01

ERM 25.71 9.30 33.62 13.97 Inception
ResNet-v2ODD 25.38 9.37 33.27 13.68

MENTORNET 29.2 12.0 37.5 17.0

4.3 WEBVISION – A REAL-WORLD NOISY DATASET

We further verify the effectiveness of our method on a real-world noisy dataset. The WebVision-
2017 dataset (Li et al., 2017a) contains 2.4 million of real-world noisy labels, that are crawled
from Google and Flickr using the 1,000 labels from the ImageNet-2012 dataset. We train two
architectures, ResNet-50 and Inception ResNet-v2 (Szegedy et al., 2016) with the same procedure
in the ImageNet experiments, except for Inception ResNet-v2 we train for 50 epochs and use input
images of size 299×299. We use both WebVision and ImageNet validation sets for 1-crop validation,
following the settings in Jiang et al. (2017). We do not use a pretrained model or additional labeled
data from ImageNet during training.

Our ODD method with p = 30 removes in the training set around 9.0% of the total examples
with ResNet-50 and 9.3% of the total examples with Inception ResNet-v2 (Szegedy et al., 2016).
Table 5 suggests that our method is able to outperform both ERM and MENTORNET when the
training dataset is noisy, even as we remove a notable portion of examples. We include more results
in Appendix A.3. In comparison, we removed around 1.1% of examples in ImageNet (Table 10,
Appendix A.2); this may suggest that WebVision labels are indeed much noisier.

4.4 ABLATION STUDIES

Sensitivity to p We first evaluate noisy ImageNet classification with ResNet-50 where p ∈
{1, 10, 30, 50, 80} and E = 60 in Table 6. A higher p includes more clean examples at the cost
of involving more noisy examples. In the 20% and 40% noisy cases, the optimal trade-off for gen-
eralization is at p = 10, yet even when p = 50, the validation errors are still significantly better
than ERM. When there is no artificial noise, generalization of ODD starts to match that of ERM as
p ≥ 10. Therefore, ODD is not very sensitive to p in these cases, and empirically p = 10 represents
the best trade-off. We include results for ResNet-152 in Appendix A.2.

Sensitivity to E We evaluate the validation error of ODD on CIFAR with 20% and 40% input-
agnoistic label noise where E ∈ {25, 50, 75, 100, 150, 200} (E = 200 is equivalent to ERM). The
results in Figure 4 suggest that our method is able to separate noisy and clean examples if E is
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Table 6: Ablation studies over the hyperparameter p on ImageNet.

Method
% of Mislabeled Examples

Network0 20 40

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ODD (p = 1) 23.74 7.17 25.33 8.13 27.96 9.89

ResNet-50

ODD (p = 10) 23.37 6.94 25.05 7.89 27.51 9.25
ODD (p = 30) 23.48 6.89 25.05 7.77 27.75 9.4
ODD (p = 50) 23.52 6.89 25.31 7.92 28.63 9.4
ODD (p = 80) 23.31 6.74 25.93 8.33 29.41 10.43

relatively small where the learning rate is high, but is unable to perform well when the learning rate
decreases at later stages of the training.
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Figure 4: Validation errors of ODD on CIFAR with different values of E.

Sensitivity to the amount of noise Finally, we evaluate the training error of ODD on CIFAR
under input-agnostic label noise of {1%, 5%, 10%, 20%, 30%, 40%} with p = 5, E = 50 or 75.
This reflects how much examples exceed the threshold and are identified as noise at epoch E. From
Figure 5, we observe that the training error is almost exactly the amount of noise in the dataset, which
demonstrates that the loss distribution of noise can be characterized by our threshold regardless of
the percentage of noise in the dataset.

0 10 20 30 40
Artificial Noise Level

0

10

20

30

40

Tr
ai

ni
ng

 E
rro

r (
%

)

E = 50, p = 5
cifar10
cifar100

0 10 20 30 40
Artificial Noise Level

0

10

20

30

40

Tr
ai

ni
ng

 E
rro

r (
%

)

E = 75, p = 5
cifar10
cifar100

Figure 5: Training errors of ODD on CIFAR with different values of E.

5 DISCUSSION

We have proposed ODD, a straightforward method for robust training with mislabeled examples.
ODD utilizes the implicit regularization effect of stochastic gradient descent to prune examples that
potentially harm generalization. Empirical results demonstrate that ODD is able to significantly
outperform related methods on a wide range of datasets with artificial and real-world mislabeled
examples, maintain competitiveness with ERM on clean datasets, as well as detecting mislabeled
examples automatically in CIFAR-100.

The implicit regularization of stochastic gradient descent opens up other research directions for im-
plementing robust algorithms. For example, we could consider using a smaller network to remove
examples, removing examples not only once but multiple times, retraining from scratch with the
denoised dataset, or other data-augmentation approaches such as mixup (Zhang et al., 2017). More-
over, it would be interesting to understand the implicit regularization over mislabeled examples from
a theoretical viewpoint.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 CIFAR INPUT-AGNOSTIC NOISE

In addition to the existing experiments, we include results for ORACLE, ERM, ODD with two
stepwise annealing schedules. In the stepwise schedules, the learning rate starts from 0.1 and is then
divided by 5 after 60, 120, 160 epochs (stepwise-i, which is used in Zagoruyko & Komodakis (2016))
or after 100, 150, 175 epochs (stepwise-ii). We consider cosine schedule in Section 4 because it
achieves better generalization performance on the clean dataset.

For the stepwise schedules, we set E to be the epoch at which learning rate begins to decay. For the
cosine schedule, we set E = 100 for CIFAR-10 and E = 50 for CIFAR-100. We set p = 20 and
p = 10 for CIFAR-10 and CIFAR-100 respectively for the clean datasets; p = 10 and p = 5 for
noisy datasets. This is motivated by the fact that CIFAR-10 has less labels, so the threshold has to
take into account random labels that happens to be correct.

Table 7: Minimum validation error throughout training (in percentage) on CIFAR10.

Method % of Mislabeled Examples Network0 20 40

ORACLE (cosine) - 4.25± 0.05 5.06± 0.05

WRN-28-10

ORACLE (stepwise-i) - 4.45± 0.06 5.29± 0.01
ORACLE (stepwise-ii) - 4.44± 0.03 5.14± 0.15

ERM (cosine) 3.73± 0.13 11.53± 0.06 15.57± 0.45
ERM (stepwise-i) 3.75± 0.02 8.39± 0.24 10.77± 0.26
ERM (stepwise-ii) 3.93± 0.10 7.79± 0.03 10.12± 0.27

ODD (cosine) 3.80± 0.10 5.33± 0.04 7.16± 0.20
ODD (stepwise-i) 3.92± 0.09 5.47± 0.16 7.50± 0.15
ODD (stepwise-ii) 4.06± 0.15 5.52± 0.08 7.42± 0.05

MIXUP (α = 1.0) 3.04± 0.05 10.55± 0.31 25.14± 0.08
MIXUP (α = 8.0) 3.39± 0.12 6.09± 0.27 9.26± 0.14

Tables 7 and 8 contain summary of the results. The cosine learning rate schedule generally out-
performs the stepwise schedules. We note that for the stepwise schedules in ERM, the optimal
validation error is achieved when the learning rate just starts to decay to 0.2, after that the model
starts to overfit to noise, as demonstrated in Figure 3.

Table 8: Minimum validation error throughout training (in percentage) on CIFAR100.

Method % of Mislabeled Examples Network0 20 40

ORACLE (cosine) - 20.42± 0.20 23.64± 0.27

WRN-28-10

ORACLE (stepwise-i) - 20.21± 0.22 24.18± 0.04
ORACLE (stepwise-ii) - 20.99± 0.25 23.79± 0.05

ERM (cosine) 18.41± 0.17 30.38± 0.14 44.35± 0.53
ERM (stepwise-i) 18.77± 0.33 28.81± 0.48 33.93± 0.26
ERM (stepwise-ii) 18.80± 0.15 29.28± 0.27 36.72± 0.49

ODD (cosine) 18.19± 0.10 22.79± 0.10 27.61± 0.38
ODD (stepwise-i) 18.82± 0.14 22.95± 0.19 28.01± 0.15
ODD (stepwise-ii) 18.53± 0.10 23.27± 0.34 28.79± 0.03

MIXUP (α = 1.0) 18.61± 0.33 28.78± 0.27 44.43± 0.31
MIXUP (α = 8.0) 20.50± 0.27 28.86± 0.17 40.58± 0.35
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We evaluate precision and recall for examples classified as noise on CIFAR10 and CIFAR100 for
different noise levels (1, 5, 10, 20, 30, 40) in Figure 6. The recall values are around 0.84 to 0.88
where as the precision values range from 0.88 to 0.92. This demonstrates that ODD is able to
achieve good precision/recall with default hyperparameters even at different noise levels.
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Figure 6: Recall and precision for ODD on CIFAR10 and CIFAR100 with different levels of uniform
random noise.

A.2 IMAGENET ABLATION RESULTS ON RESNET-152

We include the ImageNet ablation experiments on the hyperparameter p on the ResNet-152 archi-
tecture in Table 9. Compared to the ResNet-50 experiments, we can draw similar conclusions here:
p = 10 generally represents the best trade-off. We show the percentage of examples discarded by
NOISE CLASSIFIER in Table 10; the percentage of discarded examples by p = 10 is very close to
the actual noise level. Moreover, the percentage of discarded examples does not vary significantly
when we change our architecture from ResNet-50 to ResNet-152.

Table 9: Ablation studies over the hyperparameter p on ImageNet-2012.

Method
% of Mislabeled Examples

Network0 20 40

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ERM 21.31 5.69 23.9 7.12 27.39 9.16

ResNet-152
ODD (p = 1) 21.50 6.08 22.87 6.61 25.6 8.42
ODD (p = 5) 21.40 5.98 22.67 6.54 25.43 8.01
ODD (p = 10) 21.35 5.98 22.49 6.45 25.22 7.91
ODD (p = 30) 21.45 5.78 22.68 6.52 25.77 8.24
ODD (p = 50) 21.04 5.7 22.78 6.5 26.73 8.9

Table 10: Percentage of example discraded by ODD on ImageNet-2012.

% Mislabeled Hyperparameter p Network1 10 30 50 80

0% 6.2 2.6 1.1 0.7 0.5
ResNet-5020% 24.4 21.1 19.3 17.6 11.5

40% 44.8 40.3 36.2 28.1 7.8

0% 5.5 2.3 1.1 0.7 0.4
ResNet-15220% 23.8 20.8 19.2 17.5 0.7

40% 44.1 40.2 36.2 27.6 0.6
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A.3 WEBVISION ABLATION RESULTS

We include the WebVision ablation experiments on the hyperparameter p on the ResNet-50 and In-
ception ResNet-v2 architecture with E = 60 in Tables 11 and 12, where we report top-1 and top-5
validation errors on WebVision and ImageNet validation sets respectively, as well as how many ex-
amples are discarded by our method at epoch 60. Similar to the results in ImageNet, generalization
performance is generally insensitive to the hyperparameter p, except for p = 1, which discarded
25.3% of the examples. We use 2 seeds for each experiment setting. Notice that at each p, WebVi-
sion has more examples discarded compared to ImageNet (with 0% artificial noise), which further
suggests that it has more mislabeled examples than ImageNet. Again, the percentage of discarded
examples does not vary significantly across different architectures.

Table 11: Ablation studies on WebVision with ResNet-50.

Method WebVision ImageNet
% DiscardedTop-1 Top-5 Top-1 Top-5

ERM 27.90± 0.11 10.94± 0.08 34.71± 0.12 14.87± 0.05 -
ODD (p = 1) 28.03± 0.03 11.45± 0.05 34.68± 0.03 15.05± 0.08 25.3
ODD (p = 10) 27.45± 0.01 11.07± 0.01 34.47± 0.01 14.80± 0.01 15.1
ODD (p = 30) 27.49± 0.22 10.79± 0.09 34.48± 0.01 14.75± 0.01 9.0
ODD (p = 50) 27.59± 0.01 10.77± 0.01 34.40± 0.03 14.81± 0.02 5.8
ODD (p = 80) 27.53± 0.02 10.82± 0.01 34.27± 0.04 14.81± 0.02 2.5

Table 12: Ablation studies on WebVision with Inception ResNet-v2.

Method WebVision ImageNet
% DiscardedTop-1 Top-5 Top-1 Top-5

ERM 25.71 9.3 33.62 13.97 -
ODD (p = 1) 25.99 10.07 34.23 14.6 25.7
ODD (p = 10) 25.69 9.45 33.91 14.14 15.2
ODD (p = 30) 25.38 9.37 33.27 13.68 9.3
ODD (p = 50) 25.57 9.22 33.42 13.79 6.1
ODD (p = 80) 25.50 9.21 33.27 13.76 2.8
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A.4 IMAGES IN CIFAR-100 CLASSIFIED AS NOISE

We display the examples in CIFAR-100 training set for which our ODD methods identify as noise
across 3 random seeds. One of the most common label such examples have is “leopard”; in fact,
21 of 50 “leopard” examples in the training set are perceived as hard, and we show some of them
in Figure 7. It turns out that a lot of the “leopard” examples contains images that clearly contains
tigers and black panthers (CIFAR-100 has a label corresponding to “tiger”).

Figure 7: Examples with label “leopard” that are classified as noise.

We also demonstrate random examples from the CIFAR-100 that are identified as noise in Figure 8
and those that are not identified as noise in Figure 9. The examples identified as noise often con-
tains multiple objects, and those not identified as noise often contains only one object that is less
ambiguous in terms of identity.

shark beetle forest squirrel leopard flatfish beaver tiger rocket tank

wardrobe crab table forest table plain forest camel flatfish skyscraper

skyscraper seal shrew wolf bowl shrew girl bottle ray kangaroo

Figure 8: Random CIFAR-100 examples that are classified as noise.

cattle boy train elephant sunflower keyboard squirrel pine_tree pine_tree oak_tree

bicycle rabbit streetcar table mountain skyscraper tractor butterfly sea chair

hamster lion sweet_pepper orange camel caterpillar forest possum cloud snail

Figure 9: Random CIFAR-100 examples that are not classified as noise.
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