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ABSTRACT

The Differentiable Neural Computer (DNC) can learn algorithmic and question
answering tasks. An analysis of its internal activation patterns reveals three prob-
lems: Most importantly, the lack of key-value separation makes the address dis-
tribution resulting from content-based look-up noisy and flat, since the value in-
fluences the score calculation, although only the key should. Second, DNC’s de-
allocation of memory results in aliasing, which is a problem for content-based
look-up. Thirdly, chaining memory reads with the temporal linkage matrix expo-
nentially degrades the quality of the address distribution. Our proposed fixes of
these problems yield improved performance on arithmetic tasks, and also improve
the mean error rate on the bAbI question answering dataset by 43%.

1 INTRODUCTION

Although Recurrent Neural Networks (RNNs) such as LSTM (Hochreiter & Schmidhuber, 1997;
Gers et al., 2000) are in theory capable of solving complex algorithmic tasks (Siegelmann & Sontag,
1992), in practice they often struggle to do so. One reason is the large amount of time-varying mem-
ory required for many algorithmic tasks, combined with quadratic growth of the number of trainable
parameters of a fully connected RNN when increasing the size of its internal state. Researchers have
tried to address this problem by incorporating an external memory as a useful architectural bias for
algorithm learning (Das et al., 1992; Mozer & Das, 1993; Graves et al., 2014; 2016).

Especially the Differentiable Neural Computer (DNC; Graves et al. (2016)) has shown great promise
on a variety of algorithmic tasks – see diverse experiments in previous work (Graves et al., 2016;
Rae et al., 2016). It combines a large external memory with advanced addressing mechanisms such
as content-based look-up and temporal linking of memory cells. Unlike approaches that achieve
state of the art performance on specific tasks, e.g. MemNN (Sukhbaatar et al., 2015) or Key-Value
Networks (Miller et al., 2016) for the bAbI dataset (Weston et al., 2015), the DNC consistently
reaches near state of the art performance on all of them. This generality makes the DNC worth of
further study.

Three problems with the current DNC revolve around the content-based look-up mechanism, which
is the main memory addressing system, and the temporal linking used to read memory cells in the
same order in which they were written. First, the lack of key-value separation negatively impacts
the accuracy of content retrieval. Second, the current de-allocation mechanism fails to remove de-
allocated data from memory, which prevents the network from erasing outdated information without
explicitly overwriting the data. Third, with each write, the noise from the write address distribution
accumulates in the temporal linking matrix, degrading the overall quality of temporal links.

Here we propose a solution to each of these problems. We allow for dynamic key-value separation
through a masking of both look-up key and data that is more general than a naive fixed key-value
memory, yet does not suffer from loss of accuracy in addressing content. We propose to wipe the
content of a memory cell in response to a decrease of its usage counter to allow for proper memory
de-allocation. Finally, we reduce the effect of noise accumulation in the temporal linking matrix
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through exponentiation and re-normalization of the links, resulting in improved sharpness of the
corresponding address distribution.

These improvements are orthogonal to other previously proposed DNC modifications. Incorporation
of the differentiable allocation mechanism Ben-Ari & Bekker (2017) or certain improvements to
memory usage and computational complexity (Rae et al., 2016) might further improve the results
reported in this paper. Certain bAbI-specific modifications Franke et al. (2018) are also orthogonal
to our work.

We evaluate each of the proposed modifications empirically on a benchmark of algorithmic tasks
and on bAbI (Weston et al., 2015). In all cases we find that our model outperforms the DNC. In
particular, on the bAbI task we observe a 43% relative improvement in terms of mean error rate.
We find that improved de-allocation together with sharpness enhancement leads to zero error and 3x
faster convergence on the large repeated copy task, while DNC is not able to solve it at all.

Section 2 provides a brief overview of the DNC. Section 3 discusses identified problems and pro-
posed solutions in more detail. Section 4 analyzes these modifications one-by-one, demonstrating
their positive effects.

2 DIFFERENTIBLE NEURAL COMPUTER

Here we provide a brief overview of the Differentiable Neural Computer (DNC). More details can
be found in the original work of Graves et al. (2016).

The DNC combines a neural network (called controller) with an external memory that includes
several supporting modules (subsystems) to do: read and write memory, allocate new memory cells,
chain memory reads in the order in which they were written, and search memory for partial data. A
simplified block diagram of the memory access is shown in Fig. 1.

External memory A main component is the external fixed 2D memory organized in cells (Mt ∈
RN×W , where N is the number of cells, W is the cell length). N is independent of the number of
trainable parameters. The controller is responsible for producing the activations of gates and keys
controlling the memory transactions. The memory is accessed through multiple read heads and a
single write head. Cells are addressed through a distribution over the whole address space. Each cell
is read from and written to at every time step as determined by the address distributions, resulting in
a differentiable procedure.

Memory addressing The DNC uses three addressing methods. The most important one is content-
based look-up. It compares every cell to a key (k∗

t ∈ RW ) produced by the controller, resulting in a
score, which is later normalized to get an address distribution over the whole memory. The second
is the temporal linking, which has 2 types: forward and backward. They show which cell is being
written after and before the one read in the previous time step. They are useful for processing
sequences of data. A so-called temporal linkage matrix (Lt ∈ RN×N ) is used to project any address
distribution to a distribution that follows (f it ∈ [0, 1]N ) or precedes it (bit ∈ [0, 1]N ). The third is
the allocation mechanism, which is used only for write heads, and used when a new memory cell is
required.

Memory allocation Memory allocation works by maintaining usage counters for every cell. These
are incremented on memory writes and optionally decremented on memory reads (de-allocation).
When a new cell is allocated, the one with the lowest usage counter is chosen. De-allocation is
controlled by a gate, which is based on the address distribution of the previous read and decreases
the usage counter of each cell.

Read / Write The memory is first written to, then read from. A write address is generated as a
weighted average of the write content-based look-up and the allocation distribution. The update is
done in a gated way by erasing vector et ∈ [0, 1]W . Parallel to the write, the temporal linkage matrix
is also updated. Finally the memory is read from. The final read address distribution (wr,i

t ∈ [0, 1]N )
is generated as the weighted average of the read content-based look-up distribution and forward and
backward temporal links. Memory cells are averaged based on this address, resulting in a single
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vector, which is the retrieved data. This data is combined with the output of the controller to produce
the model’s final output.

Figure 1: Simplified block diagram of DNC’s memory access module with single read head. Yellow
boxes denote the inputs from the previous time step, orange boxes are the corresponding outputs to
the next time step. Green boxes are the control inputs from the controller. Blue, rounded boxes are
modules responsible for a specific function. ww

t denotes the write address, wr
t the read address, Lt

the temporal linkage matrix. Mt is the memory. Arrow ”r” denotes the output of the memory read.

3 METHOD

3.1 MASKED CONTENT-BASED ADDRESSING

The goal of content-based addressing is to find memory cells similar to a given key. The query key
contains partial information (it is a partial memory), and the content-based memory read completes
its missing (unknown) part based on previous memories. However, controlling which part of the key
vector to search for is difficult because there is no key-value separation: the entire key and entire
cell value are compared to produce the similarity score. This means that the part of the cell value
that is unknown during search time and should be retrieved is also used in the normalization part of
the cosine similarity, resulting in an unpredictable score. The shorter the known part and the longer
the part to be retrieved, the worse the problem. This might result in less similar cells having higher
scores, and might make the resulting address distribution flat because of the division by the length
of the data before the softmax acts as an increased temperature parameter. Imagine a situation when
the network has to tag some of the data written into the memory (for example because it is the start
of the sequence in the repeated copy task, see Section 4). For tagging it can use only a single element
of the memory cell, using the rest for the data that has to be stored. Later, when the network has to
find this tag, it searches for it, specifying only that single element of the key. But the resulting score
is also normalized by the data that is stored along with the tag, which takes most of the memory cell,
hence the resulting score will almost completely be dominated by it.

The problem can be solved by providing a way of explicitly masking the part that is unknown and
should not be used in the query. This is more general than key-value memory, since the key-value
separation can be controlled dynamically and does not suffer from the incorrect score problem.
We achieve this by producing a separate mask vector m∗

t ∈ [0 − 1]W through the controller, and
multiplying both the search key and the memory content by it before comparing (β is the write key
strength controlling the temperature of the softmax):

C(M ,k, β,m)[i] = softmax(D
(
k�m,M � 1mT )β

)
cwt = C (Mt−1,k

w
t , β

w
t ,m

w
t ) cr,it = C

(
Mt,k

r,i
t , β

r,i
t ,mr,i

t

)
Fig. 2 shows how the masking step is incorporated in the address generation of the DNC.

3.2 DE-ALLOCATION AND CONTENT-BASED LOOK-UP

The DNC tracks allocation states of memory cells by so-called usage counters which are increased
on memory writes and optionally decreased after reads. When allocating memory, the cell with the
lowest usage is chosen. Decreasing is done by element-wise multiplication with a so-called retention
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vector (ψt), which is a function of previously read address distributions (wr,i
t−1) and scalar gates.

Vector ψt indicates how much of the current memory should be kept. The problem is that it affects
solely the usage counters and not the actual memory Mt. But memory content plays a vital role
in both read and write address generation: the content based look-up still finds de-allocated cells,
resulting in memory aliasing. Consider the repeated copy task (Section 4), which needs repetitive
allocation during storage of a sequence and de-allocation after it was read. The network has to store
and repeat sequences multiple times. It has to tag the sequence beginning to know from where the
repetition should start from. This could be done by content-based look-up. During the repetition
phase, each cell read is also de-allocated. However when the repetition of the second sequence starts,
the search for the tagged cell can find both the old and the new marked cell with equal score, making
it impossible to determine which one is the correct match. We propose to zero out the memory
contents by multiplying every cell of the memory matrix Mt with the corresponding element of the
retention vector. Then the memory update equation becomes:

Mt = Mt−1 � ψt1T � (E −ww
t e

ᵀ
t ) +ww

t v
ᵀ
t (1)

where � is the element-wise product, 1 ∈ RN is a vector of ones, E ∈ RN×W is a matrix of ones.
Note that the cosine similarity (used for comparing the key to the memory content) is normalized by
the length of the memory content vector which would normally cancel the effect of Eq. 1. However,
in practice, due to numerical stability, cosine similarity is implemented as

D(u,v) =
u · v

|u||v|+ ε

where ε is a small constant. In practice, free gates f it tend to be almost 1, so ψt is very close to 0,
making the stabilizing constant ε dominant with respect to the norm of the erased memory content
vector. This will assign a low score to the erased cell in the content addressing: the memory is totally
removed.

3.3 SHARPNESS OF TEMPORAL LINK DISTRIBUTIONS

With temporal linking, the model is able to sequentially read memory cells in the same or reverse
order as they were written. For example, repeating a sequence is possible without content-based
look-up: the forward links f it can be used to jump to the next cell. Any address distribution can
be projected to the next or the previous one through multiplying it by a so-called temporal link
matrix (Lt) or its transpose. Lt can be understood as a continuous adjacency matrix. On every
write all elements of Lt are updated to an extent controlled by the write address distribution (ww

t ).
Links related to previous writes are weakened; the new links are strengthened. If ww

t is not one-
hot, sequence information about all non-zero addresses will be reduced in Lt and the noise from
the current write will also be included repeatedly. This will make forward (f it ) and backward (bit)
distributions of long-term-present cells noisier and noisier, and flatten them out. When chaining
multiple reads by temporal links, the new address is generated through repeatedly multiplying by
Lt, making the blurring effect exponentially worse.

We propose to add the ability to improve sharpness of the link distribution (f it and bit). This does not
fix the noise accumulation in the link matrix Lt, but it significantly reduces the effect of exponential
blurring behavior when following the temporal links, making the noise in Lt less harmful. We
propose to add an additional sharpness enhancement step S(d, s)i to the temporal link distribution
generation. By exponentiating and re-normalizing the distribution, the network is able to adaptively
control the importance of non-dominant elements of the distribution.

f it = S
(
Ltw

r,i
t−1, s

f,i
t

)
bit = S

(
Lᵀ
tw

r,i
t−1, s

b,i
t

)
S(d, s)i =

(di)
s∑

j(dj)
s

(2)

Scalars sf,it ∈ R and sb,it ∈ R should be generated by the controller (ŝf,it and ŝb,it ). The oneplus
nonlinearity is used to bound them in range [0,∞): sf,it = oneplus(ŝf,it ) and sb,it = oneplus(ŝb,it ).
Note that S(d, s)i in Eq. 2 can be numerically unstable. We propose to stabilize it by:

S(d, s)i =

(
di+ε

max (d+ε)

)s
∑
j

(
dj+ε

max (d+ε)

)s
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Fig. 2 shows the block diagram of read address generation in DNC with key masking and sharpness
enhancement. The sharpness enhancement block is inserted into the forward and backward link
generation path right before combining them with the content-based look-up distribution.

Figure 2: Block diagram of read address generation in DNC with key masking and sharpness
enhancement. Blue parts indicate new components absent in standard DNC. CMP is a cosine
similarity-based comparator. Memory and key are compared after a novel masking step. Be-
fore combining temporal links and content-based address distribution, sharpness enhancement takes
place.

4 EXPERIMENTS

To analyze the effects of our modifications we used simple synthetic tasks designed to require most
DNC parts while leaving the internal dynamics somewhat human interpretable. The tasks allow
for focusing on the individual contributions of specific network components. We also conducted
experiments on the much more complex bAbI dataset (Weston et al., 2015).

We tested several variants of our model. For clarity, we use the following notation: DNC is the orig-
inal network Graves et al. (2016), DNC-D has modified de-allocation, DNC-S has added sharpness
enhancement, DNC-M has added masking in content based addressing. Multiple modifications (D,
M, S) can be present.

Copy Task A sequence of length L of binary random vectors of length W is presented to the
network, and the network is required to repeat them. The repeat phase starts with a special input
token, after all inputs are presented. To solve this task the network has to remember the sequence,
which requires allocating and recalling from memory. However, it does not require memory de-
allocation and reuse. To force the network to demonstrate its de-allocation capabilities, N instances
of such data are generated and concatenated. Because the total length of the N sequences exceeds
the number of cells in memory, the network is forced to reuse its memory cells. An example is
shown in Fig. 4a.

Associative Recall Task In the associative recall task (Graves et al. (2014))B blocks ofWb words
of length W are presented to the network sequentially, with special bits indicating the start of each
block. After presenting the input to the network, a special bit indicates the start of the recall phase
where a randomly chosen block is repeated. The network needs to output the next block in the
sequence.

Key-Value Retrieval Task The key-value retrieval task demonstrates some properties of memory
masking. L words of length 2W are presented to the network. Words are divided in two parts of
equal length, W1 and W2. All the words are presented to the network. Next the words are shuffled,
parts W1 are fed to the network, requiring it to output the missing part W2 for every W1. Next, the
words are shuffled again,W2 is presented and the correspondingW1 is requested. The network must
be able to query its memory using either part of the words to complete this task.

4.1 IMPLEMENTATION DETAILS

Our PyTorch implementation is available on https://github.com/xdever/dnc. We pro-
vide equations for our DNC-DMS model in Appendix A. Following Graves et al. (2016), we trained
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all networks using RMSProp (Tieleman & Hinton (2012)), with a learning rate of 10−4, momentum
0.9, ε = 10−10, α = 0.99. All parameters except the word embedding vectors and biases have a
weight decay of 10−5. For task-specific hyperparameters, check Appendix B.

4.2 THE EFFECT OF MODIFICATIONS

Masking Fig. 3a shows the performance of various models on the associative recall task. The two
best performing models use memory masking. From the standard deviation it can be seen that many
seeds converge much faster with masking than without. Sharpening negatively impacts performance
on this task (see Section 4.3 for further discussion). Note that δ > 0 (we used δ = 0.1) is essential
for good performance, while δ = 0 slows down convergence speed (see Equation 4 in Appendix A).

To demonstrate that the system learns to use masking dynamically instead of learning a static weight-
ing, we trained DNC-M on the key-value retrieval task. Fig. 3b shows how the network changes the
mask when the query switches from W1 to W2. Parts of the mask activated during the W1 period
almost complement the part activated during the W2 period, just like the query keys do.
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Figure 3: (a) Mean training loss on the associative recall task. The shaded area shows the±2σ mark
(12 seeds/model). Masking improves convergence speed. (b) An example read mask of DNC-M in
the key-value retrieval task. Yellow values indicate parts of the key the network searches for, the
blue values indicate parts that need to be retrieved form memory. When the query switches from
W1 to W2, the mask changes. In the bottom third (in) the input is stored (look-up is not used). For
in middle third (q1) W1 is presented in random order and W2 is retrieved. In the last third (q2) W2

is presented in random order and W1 is retrieved.

De-allocation Graves et al. (2016) successfully trained DNC on the repeat copy task with a small
number of repeats (N ) and relatively short length (L). We found that increasing N makes DNC
fail to solve the task (see Fig. 4a). Fig. 4b shows that our model solves the task perfectly. Its
outputs are clean and sharp. Furthermore it converges much faster than DNC, reaching near-zero
loss very quickly. We hypothesize that the reason for this is the modified de-allocation: the network
can store the beginning of every sequence with similar key without causing look-up conflicts, as it
is guaranteed that the previously present key is wiped from memory. DNC seems able to solve the
short version of the problem by learning to use different keys for every repeat step, which is not a
general solution. This hypothesis, however, is difficult to prove, as neither the write vector nor the
look-up key is easily human-interpretable.

Sharpness enhancement To analyze the problem of degradation of temporal links after successive
link matrix updates, we examined the forward and backward link distributions (f it and bit) of the
model with modified deallocation (DNC-D). The forward distribution is shown in Fig. 5a. The
problem presented in Section 3.3 is clearly visible: the distribution is blurry; the problem becomes
worse with each iteration. Fig. 5c shows the read mode (π1

t ) of the same run. It is clear that only
content based addressing (middle column) is used. When the network starts repeating a block, the
weight of forward links (last column) is increased a bit, but as the distribution becomes more blurred,
a pure content-based look-up is preferred. Probably it is easier for the network to perform a content-
based look-up with a learned counter as a key rather than to learn to restore the corrupted data from
blurry reads. Fig. 5b shows the forward distributions of the model with sharpness enhancement as
suggested in Section 3.3 for the same input. The distribution is much sharper, staying sharp until the
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Figure 4: (a) Input (top), ground truth (middle), and network output (bottom) of DNC on big repeat
copy tasks. DNC fails to solve the task; the output is blurry. The problem is especially apparent
starting from t = 50. (b) De-allocating and sharpness enhancement substantially improves conver-
gence speed. The improvement by the masking is marginal, probably because the task uses temporal
links.

very end of the repeat block. The read mode (π1
t ) for the same run can be seen in Fig. 5d. Obviously

the network prefers to use the links in this case.
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Figure 5: (a), (b) Example forward link distribution. Each row is an address distribution across
all memory cells. Blue cells are not read, yellow cells are read with a large weight. (a) DNC-D:
without sharpness enhancement the distributions are blurred, rarely having peaks near 1.0. The
problem becomes worse over time. 3 repeats are shown. Notice the more intense blocks for t ∈
[9, 18], [34, 46] and [54, 62]. (b) Sharpness enhancement (DNC-DS) makes the distribution sharp
during the read, peaking near 1.0. Note that (a) and (b) have identical input data. (c), (d) The π1

t
distribution for (a) and (b). Columns are the weighting of the backward links, the content based
look up, and the forward links, respectively. (c) The forward links are barely used without sharpness
enhancement. (d) With sharpness enhancement the forward links are used for every block.

4.3 BABI EXPERIMENTS

bAbI (Weston et al. (2015)) is an algorithmically generated question answering dataset containing
20 different tasks. Data is organized in sequences of sentences called stories. The network receives
the story word by word. When a question mark is encountered, the network must output a single
word representing the answer. A task is considered solved if the error rate (number of correctly
predicted answer words divided by the number of total predictions) of the network decreases below
5%, as usual for this task.

Manually analyzing bAbI tasks let us to believe that some are difficult to solve within a single time-
step. Consider the sample from QA16: “Lily is a swan. Bernhard is a lion. Greg is a swan. Bernhard
is white. Brian is a lion. Lily is gray. Julius is a rhino. Julius is gray. Greg is gray. What color
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Table 1: bAbI error rates of different models after 0.5M iterations of training [%]

Task DNC (ours) DNC-MDS DNC-DS DNC-MS DNC-MD Graves et al

1 2.5± 4.4 0.4± 1.2 0.7± 1.6 0.0± 0.1 0.0± 0.0 9.0± 12.6
2 29.0± 19.4 8.6± 10.1 18.6± 15.1 7.8± 5.9 6.9± 4.7 39.2± 20.5
3 32.3± 14.7 10.8± 9.5 16.9± 13.0 7.9± 7.8 12.4± 5.1 39.6± 16.4
4 0.8± 1.5 0.8± 1.5 6.4± 10.0 0.8± 1.0 0.1± 0.2 0.4± 0.7
5 1.5± 0.6 1.6± 1.0 1.3± 0.5 1.7± 1.1 1.3± 0.7 1.5± 1.0
6 5.2± 6.8 1.1± 2.1 2.4± 3.8 0.0± 0.1 0.1± 0.1 6.9± 7.5
7 8.8± 5.8 3.4± 2.3 7.6± 5.1 2.5± 2.0 3.0± 5.0 9.8± 7.0
8 11.6± 9.4 4.6± 4.5 10.9± 7.9 1.8± 1.6 2.5± 2.1 5.5± 5.9
9 4.5± 5.8 0.8± 1.9 2.0± 3.3 0.1± 0.2 0.1± 0.2 7.7± 8.3
10 9.1± 11.5 2.6± 3.9 4.1± 5.9 0.6± 0.6 0.5± 0.5 9.6± 11.4
11 11.6± 9.4 0.1± 0.1 0.1± 0.2 0.0± 0.0 0.0± 0.0 3.3± 5.7
12 1.1± 0.8 0.2± 0.2 0.5± 0.4 0.3± 0.4 0.2± 0.2 5.0± 6.3
13 1.1± 0.8 0.1± 0.1 0.2± 0.2 0.2± 0.2 0.1± 0.1 3.1± 3.6
14 24.8± 22.5 8.0± 13.1 20.0± 19.4 1.8± 0.9 2.0± 1.6 11.0± 7.5
15 40.8± 1.4 26.3± 20.7 42.1± 6.3 33.0± 15.1 23.6± 18.6 27.2± 20.1
16 53.1± 1.2 54.5± 1.8 53.5± 1.4 53.2± 2.3 53.9± 1.2 53.6± 1.9
17 37.8± 2.5 39.9± 3.2 40.1± 2.0 41.2± 3.0 39.8± 1.2 32.4± 8.0
18 7.0± 3.0 6.3± 4.1 9.4± 0.9 3.3± 2.2 2.0± 2.6 4.2± 1.8
19 67.6± 8.6 48.6± 32.8 67.6± 7.9 48.1± 26.7 40.7± 34.9 64.6± 37.4
20 0.0± 0.0 0.9± 0.9 1.5± 1.0 5.3± 12.5 0.1± 0.1 0.0± 0.1
mean 16.9± 5.2 11.0± 3.8 15.3± 3.5 10.5± 1.9 9.5± 1.6 16.7± 7.6

is Brian? A: white” The network should be able to “think for a while” about the answer: it needs
to do multiple memory searches to chain the clues together. This cannot be done in parallel as the
result of one query is needed to produce the key for the next. One solution would be to use adaptive
computation time (Schmidhuber (2012), Graves (2016)). However, that would add an extra level
of complexity to the network. So we decided to insert a constant T = 3 blank steps before every
answer of the network—a difference to what was done previously Graves et al. (2016). We also use
a word embedding layer, instead of one-hot input representation, as is typical for NLP tasks. The
embedding layer is a learnable lookup-table that transforms word indices to a learnable vector of
length E.

In Table 1, we present experimental results of multiple versions of the network after 0.5M iterations
with batch size 2. The performance reported by Graves et al. (2016) is also shown (column Graves
et al). Our best performing model (DNC-MD) reduces the mean error rate by 43%, while having
also a lower variance. This model does not use sharpness enhancement, which penalizes mean
performance by only 1.5% absolute. We hypothesize this is due to the nature of the task, which
rarely needs step-to-step transversal of words, but requires many content-based look-ups. When
following a path of an object, many words and even sentences might be irrelevant between the clues,
so the sequential linking in order of writing is of little to no use. Compare Franke et al. (2018)
where the authors completely removed the temporal linking for bAbI. However, we argue that for
other kinds of tasks the link distribution sharpening might be very important (see Fig. 4b, where
sharpening helps and masking does not).

Mean test error curves are shown on Fig. 6 in Appendix C. Our models converge faster and have
both lower error and lower variance than DNC. (Note that our goal was not to achieve state of the
art performance (Santoro et al., 2017; Henaff et al., 2016; Dehghani et al., 2018) on bAbI. It was to
exhibit and overcome certain shortcomings of DNC.)

5 CONCLUSION

We identified three drawbacks of the traditional DNC model, and proposed fixes for them. Two of
them are related to content-based addressing: (1) Lack of key-value separation yields uncertain and
noisy address distributions resulting from content-based look-up. We mitigate this problem by a
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special masking method. (2) De-allocation results in memory aliasing. We fix this by erasing mem-
ory contents in parallel to decreasing usage counters. (3) We try to avoid the blurring of temporal
linkage address distributions by sharpening the distributions.

We experimentally analyzed the effect of each novel modification on synthetic algorithmic tasks.
Our models achieved convergence speed-ups on all them. In particular, modified de-allocation and
masking in content-based look-up helped in every experiment we performed. The presence of sharp-
ness enhancement should be treated as a hyperparameter, as it benefits some but not all tasks. Unlike
DNC, DNC+MDS solves the large repeated copy task. DNC-MD improves the mean error rate on
bAbI by 43%. The modifications are easy to implement, add only few trainable parameters, and
hardly affect execution time.

In future work we’ll investigate in more detail when sharpness enhancement helps and when it is
harmful, and why. We also will investigate the possibility of merging our improvements with related
work (Ben-Ari & Bekker, 2017; Rae et al., 2016), to further improve the DNC.
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A IMPLEMENTATION DETAILS

Here we present the equations for our full model (DNC-MDS). The other models can be easily
implemented in line with details of Section 3. We also highlight differences to the DNC by Graves
et al. (2016).

The memory at step t is represented by matrix Mt ∈ RN×W , where N is the number of cells, W
is the word length. The network receives an input xt ∈ RX and produces output yt ∈ RY . The
controller of the network receives input vector xt concatenated with all R (number of read heads)
read vectors r1t−1, ..., r

R
t−1 from the previous step, and produces output vector ht. The controller

can be an LSTM or feedforward network, and may have single or multiple layers. The controller’s
output is mapped to the interface vector ξt by matrix Wξ ∈ R2(W∗R)+4W+7R+3 by ξt = Wξht.
An immediate output vector vt ∈ RY is also generated: vt = Wyht. The output interface vector is
split into many sub-vectors controlling various parts of the network:

ξt = [kr,1t ..kr,Rt ; β̂r,1t ..β̂r,Rt ;kwt ; β̂
w
t ; êt;vt; f̂

1
t ..f̂

R
t ; ĝat ; ĝ

w
t ; π̂

1
t ..π̂

R
t ;

m̂w
t ; m̂

r,1
t ..m̂r,R

t , ŝf,1t ..ŝf,Rt , ŝb,1t ..ŝb,Rt ] (3)

Notation: 1 ≤ i ≤ R is the read head index; kr,it are the keys used for read content-based address
generation; βr,it = oneplus(β̂r,it ) are the read key strengths (oneplus(x) = 1 + log(1 + ex));
kwt is the query key used for content-based address generation for writes; βwt = oneplus(β̂wt ) is
the write key strength; et = σ(êt) is the erase vector which acts as an in-cell gate for memory
writes; vt is the write vector which is the actual data being written; f it = σ(f̂ it ) are the free gates
controlling whether to de-allocate the cells read in the previous step; gat = σ(ĝat ) is the allocation
gate; gwt = σ(ĝwt ) is the write gate; πit = softmax(π̂it) are the read modes (controlling whether to
use temporal links or content-based look-up distribution as read address); sf,it = oneplus(ŝf,it ) are
the forward sharpness enhancement coefficients; sb,it = oneplus(ŝb,it ) are the backward sharpness
enhancement coefficients.

Special care must be taken of the range of lookup masks mw
t and mr,i

t . It must be limited to (δ, 1),
where δ is a small real number. A δ close to 0 might harm gradient propagation by blocking gradients
of masked parts of key and memory vector.

mw
t = σ(m̂w

t ) ∗ (1− δ) + δ mr,i
t = σ(m̂r,i

t ) ∗ (1− δ) + δ (4)

We suggest initializing biases for m̂w
t and m̂r,i

t to 1 to avoid low initial gradient propagation.

Content-based look-up is used to generate an address distribution based on matching a key against
memory content:

C(M ,k, β,m)[i] = softmax(D
(
k�m,M � 1mT )β

)
(5)

Compare this to the C(M ,k, β,m)[i] = softmax(D (k,M)β) of Graves et al. (2016).

Where D is the row-wise cosine similarity with numerical stabilization:

D(u,M)[i] =
u ·M [i, ·]

|u||M [i, ·]|+ ε
(6)

The memory is first written to, then read from. To write the memory, allocation and content-based
lookup distributions are needed. Allocation is calculated based on usage vectors ut. These are
updated with the help of memory retention vector ψt:

ψt =

R∏
i=1

(
1− f itw

r,i
t−1

)
(7)

ut =
(
ut−1 +ww

t−1 − ut−1 �ww
t−1

)
� ψt. (8)
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Operation � is the element-wise multiplication. Free list φt is the list of indices of sorted memory
locations in ascending order of their usage ut. So φt[1] is the index of the least used location. Then
allocation address distribution at is

at[φt[j]] = (1− ut[φt[j]])

j−1∏
i=1

ut[φt[i]]

The write address distribution wwt ∈ [0, 1]N is:

cwt = C (Mt−1,k
w
t , β

w
t ,m

w
t ) (9)

wt = gwt [gat at + (1− gat )cwt ]
Memory is updated by (1 ∈ RN is a vector of ones, E ∈ RN×W is a matrix of ones):

Mt = Mt−1 � ψt1T � (E −ww
t e

ᵀ
t ) +ww

t v
ᵀ
t (10)

Compare this to the Mt = Mt−1 � (E −ww
t e

ᵀ
t ) +ww

t v
ᵀ
t of Graves et al. (2016).

To track the temporal distance of memory allocations, a temporal link matrix Lt ∈ [0, 1]N×N is
maintained. It is a continuous adjacency matrix. A helper quantity called precedence weighting is
defined: p0 = 0 and

pt =

(
1−

∑
i

ww
t [i]

)
pt−1 +ww

t

L0[i, j] = 0 ∀i, j Lt[i, i] = 0 ∀i
Lt[i, j] = (1−ww

t [i]−ww
t [j])Lt−1[i, j] +ww

t [i]pt−1[j] (11)
Forward and backward address distributions are given by f it and bit:

f it = S
(
Ltw

r,i
t−1, s

f,i
t

)
bit = S

(
Lᵀ
tw

r,i
t−1, s

b,i
t

)
S(d, s)i =

(
di+ε

max (d+ε)

)s
∑
j

(
dj+ε

max (d+ε)

)s (12)

Compare this to the f it = Ltw
r,i
t−1 and bit = Lᵀ

tw
r,i
t−1 of Graves et al. (2016).

The read address distribution is given by:

cr,it = C
(
Mt,k

r,i
t , β

r,i
t ,mr,i

t

)
(13)

wr,i
t = πit[1]b

i
t + πit[2]c

r,i
t + πit[3]f

i
t (14)

Finally, memory is read, and the output is calculated:

yt = vt +Wr

[
r1t ; ...; r

R
t

]
rit = Mᵀ

t w
r,i
t

B HYPERPARAMETERS FOR THE EXPERIMENTS

Copy Task. We use an LSTM controller with hidden size 32, memory of 16 words of length 16,
1 read head. W is 8, with the 9th bit indicating the start of the repeat phase. L is randomly chosen
from range [1, 8], N from range [2, 14]. Batch size is 16.

Associative Recall Task. We use a single-layer LSTM controller (size 128), memory of 64 cells
of length 32, 1 read head. Wb = 3, B ∈ [2, 16], Wb = 8, batch size of 16.

Key-Value Retrieval Task. We use a single-layer LSTM controller of size 32, 16 memory cells
of length 32, 1 read head. W = 8, L ∈ [2, 16].

bAbI. Our network has a single layer LSTM controller (hidden size of 256), 4 read heads, word
length of 64, and 256 memory cells. Embedding size is E = 256, batch size is 2.
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C ADDITIONAL BABI RESULTS
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Figure 6: Mean test error of various models during the training. Shadowed area shows ±2σ.
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