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ABSTRACT

Empirical evidence suggests that neural networks with ReLU activations general-
ize better with over-parameterization. However, there is currently no theoretical
analysis that explains this observation. In this work, we study a simplified learning
task with over-parameterized convolutional networks that empirically exhibits the
same qualitative phenomenon. For this setting, we provide a theoretical analysis
of the optimization and generalization performance of gradient descent. Specifi-
cally, we prove data-dependent sample complexity bounds which show that over-
parameterization improves the generalization performance of gradient descent.

1 INTRODUCTION

Most successful deep learning models use a number of parameters that is larger than the num-
ber of parameters that are needed to get zero-training error. This is typically referred to as over-
parameterization. Indeed, it can be argued that over-parameterization is one of the key techniques
that has led to the remarkable success of neural networks. However, there is still no theoretical
account for its effectiveness.

One very intriguing observation in this context is that over-parameterized networks with ReLL.U ac-
tivations, which are trained with gradient based methods, often exhibit better generalization error
than smaller networks (Neyshabur et al.,[2014; [2018; Novak et al.,|2018). This somewhat counter-
intuitive observation suggests that first-order methods which are trained on over-parameterized net-
works have an inductive bias towards solutions with better generalization performance. Understand-
ing this inductive bias is a necessary step towards a full understanding of neural networks in practice.

Providing theoretical guarantees for this phenomenon is extremely challenging due to two main rea-
sons. First, to show a generalization gap, one needs to prove that large networks have better sample
complexity than smaller ones. However, current generalization bounds that are based on complex-
ity measures do not offer such guarantees. Second, analyzing the dynamics of first-order methods
on networks with ReLU activations is a major challenge. Indeed, there do not exist optimization
guarantees even for simple learning tasks such as the classic XOR problem in two dimensions. []_-]

To advance this issue, we focus on a particular learning setting that captures key properties of the
over-parameterization phenomenon. We consider a high-dimensional extension of the XOR prob-
lem, which we refer to as the “XOR Detection problem (XORD)”. The XORD is a pattern recogni-
tion task where the goal is to learn a function which classifies binary vectors according to whether
they contain a two-dimensional binary XOR pattern (i.e., (1,1) or (—1,—1)). This problem con-
tains the classic XOR problem as a special case when the vectors are two dimensional. We consider
learning this function with gradient descent trained on an over-parameterized convolutional neural
network (i.e., with multiple channels) with ReLU activations and three layers: convolutional, max
pooling and fully connected. As can be seen in Fig. [I] over-parameterization improves generaliza-
tion in this problem as well. Therefore it serves as a good test-bed for understanding the role of
over-parameterization.

"We are referring to the problem of learning the XOR function given four two-dimensional points with
binary entries, using a moderate size one-hidden layer neural network (e.g., with 50 hidden neurons). Note that
there are no optimization guarantees for this setting. Variants of XOR have been studied in|Lisboa & Perantonis
(1991); |Sprinkhuizen-Kuyper & Boers| (1998) but these works only analyzed the optimization landscape and
did not provide guarantees for optimization methods. We provide guarantees for this problem in Sec. E}
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Figure 1: Over-parameterization improves generalization in the XORD problem. The network in Eq.|1|and
Fig. @]is trained on data from the XORD problem (see Sec.[3). The figure shows the test error obtained for
different number of channels k. The blue curve shows test error when restricting to cases where training error
was zero. It can be seen that increasing the number of channels improves the generalization performance.
Experimental details are provided in Section[8.2.T}

In this work we provide an analysis of optimization and generalization of gradient descent for
XORD. We show that for various input distributions, ranges of accuracy and confidence parame-
ters, sufficiently over-parameterized networks have better sample complexity than a small network
which can realize the ground truth classifier. To the best of our knowledge, this is the first example
which shows that over-paramaterization can provably improve generalization for a neural network
with ReLU activations.

Our analysis provides a clear distinction between the inductive bias of gradient descent for over-
parameterized and small networks. It reveals that over-parameterized networks are biased towards
global minima that detect more patterns in the data than global minima found by small networks. E]
Thus, even though both networks succeed in optimization, the larger one has better generalization
performance. We provide experiments which show that the same phenomenon occurs in a more gen-
eral setting with more patterns in the data and non-binary input. We further show that our analysis
can predict the behavior of over-parameterized networks trained on MNIST and guide a compression
scheme for over-parameterized networks with a mild loss in accuracy (Sec. [6).

2 RELATED WORK

In recent years there have been many works on theoretical aspects of deep learning. We will refer to
those that are most relevant to this work. First, we note that we are not aware of any work that shows
that generalization performance provably improves with over-parameterization. This distinguishes
our work from all previous works.

Several works study convolutional networks with ReLU activations and their properties (Du et al.,
2017a:b; Brutzkus & Globerson, 2017). All of these works consider convolutional networks with
a single channel. Daniely| (2017) and [Li & Liang| (2018)) provide guarantees for SGD in general
settings. However, their analysis holds for over-parameterized networks with an extremely large
number of neurons that are not used in practice (e.g., the number of neurons is a very large poly-
nomial of certain problem parameters). Furthermore, we consider a 3-layer convolutional network
with max-pooling which is not studied in these works.

Soltanolkotabi et al.| (2018)), |Du & Lee| (2018) and |Li et al.| (2017) study the role of over-
parameterization in the case of quadratic activation functions. [Brutzkus et al.| (2018) provide gen-
eralization guarantees for over-parameterized networks with Leaky ReLU activations on linearly
separable data. [Neyshabur et al.[|(2018) prove generalization bounds for neural networks. However,
these bounds are empirically vacuous for over-parameterized networks and they do not prove that
networks found by optimization algorithms give low generalization bounds.

2See Definition for a formal definition of detection of a pattern.
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3  PROBLEM FORMULATION

We begin with some notations and definitions. Let d > 4 be an integer. We consider a classification
problem in the space {4-1}%?. Namely, the space of vectors of 2d coordinates where each coordinate
canbe +1 or —1. Given a vector € {£1}24, we consider its partition into d sets of two coordinates
as follows = (1, ..., z4) where z; € {31}2. We refer to each such x; as a pattern in .

Neural Architecture: We consider learning with the following three-layer neural net model. The
first layer is a convolutional layer with non-overlapping filters and multiple channels, the second
layer is max pooling and the third layer is a fully connected layer with 2k hidden neurons and
weights fixed to values 4-1. Formally, for an input = (x1,...,z4) € R?? where z; € R2, the
output of the network is given by:

)= 3 [ (w02} s fo (w02} ] 0

where W € R2?**2 is the weight matrix whose rows are the w(*) vectors followed by the u(?)
vectors, and o(z) = max{0,z} is the ReLU activation applied element-wise. See Figure {4 for an
illustration of this architecture.

Remark 3.1. Because there are only 4 different patterns, the network is limited in terms of the
number of different rules it can implement. Specifically, it is easy to show that its VC dimension is at
most 15 (see Sec.[I0). Despite this limited expressive power, there is a generalization gap between
small and large networks in this setting, as can be seen in Figure[l| and in our analysis below.

Data Generating Distribution: Next we define the classification rule we will focus on. Let
Pxor correspond to the following two patterns: Pxor = {(1,1),(—1,—1)}. Define the clas-

sification rule:
% N 1 3i€{17...,d}:$iEPXOR
f@) = { -1 otherwise

2)

Namely, f* detects whether a pattern in Pxop appears in the input. In what follows, we refer to
Pxor as the set of positive patterns and {4-1}2 \ Pxor as the set of negative patterns.

Let D be a distribution over X’ x {41} such that for all (x,y) ~ D we have y = f*(x). We say
that a point (x, y) is positive if y = 1 and negative otherwise. Let D be the marginal distribution
over {£1}2? of positive points and D_ be the marginal distribution of negative points.

In the following definition we introduce the notion of diverse points, which will play a key role in
our analysis.

Definition 3.2 (Diverse Points). We say that a positive point (x, 1) is diverse if for all z € {+1}?
there exists 1 < i < d such that x; = z. We say that a negative point (x,—1) is diverse if for all
z € {£1}2\ Pxor there exists 1 < i < d such that x¢; = z.

For ¢ € {—,+} define p, to be the probability that x is diverse with respect to Dy,. For example,
if both D4 and D_ are uniform, then by the inclusion-exclusion principle it follows that p, =

d d
R L L Y
For each set of binary patterns A C {+1}? define p4 to be the probability to sample a point which
contains all patterns in A and no patterns in A¢ (the complement of A). Let A; = {2}, A; = {4},
Az ={2,4,1} and Ay = {2, 4, 3}.The following quantity will be useful in our analysis:

p* = min pa, &)

Learning Setup: Our analysis will focus on the problem of learning f* from training data with a
three layer neural net model. The learning algorithm will be gradient descent, randomly initialized.
As in any learning task in practice, f* is unknown to the training algorithm. Our goal is to analyze
the performance of gradient descent when given data that is labeled with f*. We assume that we are

given a training set S = S, U S_ C {£1}2¢ x {£1}? where S, consists of m IID points drawn
from D and S_ consists of m IID points drawn from D_

3For simplicity, we consider this setting of equal number of positive and negative points in the training set.
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Importantly, we note that the function f* can be realized by the above network with k£ = 2. Indeed,
the network N defined by the filters w) = (3,3), w® = (=3, -3), u™) = (-1,1), u? =
(1, —1) satisfies sign (N (x)) = f*(=) for all & € {£1}2¢. It can be seen that for k = 1, f* cannot
be realized. Therefore, any k£ > 2 is an over-parameterized setting.

Training Algorithm: We will use gradient descent to optimize the following hinge-loss function.

1
LW) = — Z max{v—NW(:ci),O}—i—E Z max{l+ Ny (x;),0} 4)
(zi,y:)€Syy;i=1 (Ti,y:)€ES_ty;=—1

forv > 1. E]We assume that gradient descent runs with a constant learning rate 1 and the weights
are randomly initiliazed with IID Gaussian weights with mean 0 and standard deviation o,. Further-

more, only the weights of the first layer, the convolutional filters, are trained. E]

We will need the following notation. Let W, be the weight matrix in iteration ¢ of gradient descent.
For 1 < i < k, denote by w!” € R? the ith convolutional filter at iteration ¢. Similarly, for

1 < ¢ < k we define ugi) € R? to be the k + 17 convolutional filter at iteration ¢. We assume that each

wéi) and ug') is initialized as a Gaussian random variable where the entries are IID and distributed

as N'(0, 02). In each iteration, gradient descent performs the update Wiy 1 = W; — N2 (Wy).

4 MAIN RESULT

In this section we state our main result that demonstrates the generalization gap between over-
parameterized networks and networks with k& = 2. Define the generalization error to be the differ-
ence between the 0-1 test error and the 0-1 training error. For any ¢, § and training algorithm let
m(e, &) be the sample complexity of a training algorithm, namely, the number of minimal samples
the algorithm needs to get at most € generalization error with probability at least 1 — 6. We consider
running gradient descent in two cases, when & > 120 and £ = 2. In the next section we exactly
define under which set of parameters gradient descent runs, e.g., which constant learning rates.

Fix parameters p, and p_ of a distribution D and denote by ¢ < 10710 a negligible constant.
Assume that gradient descent is given a sample of points drawn from D, and D_. We denote the
sample complexity of gradient descent in the cases k£ > 120 and k = 2, by m; and meo, respectively.
The following result shows a data dependent generalization gap (recall the definition of p* in Eq. [3).

Theorem 4.1. Let D be a distribution with paramaters py, p— and p*. Let 6 > 1 — pyp_(1 —c—

16 -8 * 5 5 21°g(33?§ic))

e ®)and 0 < € < p*. Then m1(e,d) < 2 whereas ma(e,0) > “Tograr )

The proof follows from Theorem[5.2]and Theorem[5.3] which we state in the next section. The proof
is given in Sec. One surprising fact of this theorem is that m;(0,d) < 2. Indeed, our analysis
shows that for an over-parameterized network and for sufficiently large p, and p_, one diverse
positive point and one diverse negative suffice for gradient descent to learn f* with high probability.
We note that even in this case, the dynamics of gradient descent is highly complex. This is due to the
randomness of the initialization and to the fact that there are multiple weight filters in the network,
each with different dynamics. See Sec. [§|for further details.

We will illustrate the guarantee of Theorem with several numerical examples. In all of the

examples we assume that for the distribution D, the probability to sample a positive point is % and

*In practice it is common to set 7 to 1. In our analyis we will need v > 8 to guarantee generalization. In
Section8.3|we show empirically, that for this task, setting -y to be larger than 1 results in better test performance
than setting v = 1.

Note that [Hoffer et al[(2018) show that fixing the last layer weights to &1 does not degrade performance
in various tasks. This assumption also appeared in other works (Brutzkus et al.| 2018} |Li & Yuan, 2017).

SWe note that this generalization gap holds for global minima (0 train error). Therefore, the theorem can be
read as follows. For & > 120, given 2 samples, with probability at least 1 — ¢, gradient descent converges to
a global minimum with at most € test error. On the other hand, for £ = 2 and given number of samples less
than 2oe\sstig) ng(ﬁi“))

og(p4+p-)
greater than e. See SectionE] for further details.

, with probability greater than J, gradient descent converges to a global minimum with error
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p* = min { 1_4” +, 1_f = } (it is easy to constuct such distributions). In the first example, we assume

thatp, = p_ = 0.98and § = 1 — 0.98%(1 — ¢ — 16e78) < 0.05. In this case we get that for
any 0 < e < 0.005, mq(e,d) < 2 whereas mz(e,d) > 129. For the second example consider the
case where p, = p_ = 0.92. It follows that for § = 0.16 and any 0 < € < 0.02 it holds that
m1(e,d) < 2and ma(e, ) > 17.

For e = 0 and any 6 > 0, by setting p4 and p_ to be sufficiently close to 1, we can get an arbitrarily
large gap between m (¢, d) and ma (€, 0). In contrast, for sufficiently small p4 and p_, e.g., in which
P+,p— < 0.7, our bound does not guarantee a generalization gap.

5 PROOF SKETCH AND INSIGHTS

In this section we sketch the proof of Theorem .1 The theorem follows from two theorems: The-
orem [5.2] for over-parameterized networks and Theorem [5.3] for networks with k& = 2. We formally
show this in Sec.[8.8] In Sec.[5.T| we state Theorem [5.2] and outline its proof. In Sec.[5.2] we state
Theorem and shortly outline its proof. Finally, for completeness, in Sec. [J] we also provide a
convergence guarantee for the XOR problem with inputs in {£1}, which in our setting is the case
of d = 1. In what follows, we will need the following formal definition for a detection of a pattern
by a network.

Definition 5.1. Let ¢4 > 0 be a constant. For each positive pattern v, define D, =

Zle o (w(i) . 'Up) and for each negative pattern v,, define D,, = Zle o (u(i) . vn). We say

that a pattern v (positive or negative) is detected by the network Nyy with confidence cq if Dy > cg.

The above definition captures a desired property of a network, namely, that its filters which are
connected with a positive coefficient in the last layer, have high correlation with the positive patterns
and analogously for the remaining filters and negative patterns. We note however, that the condition
in which a network detects all patterns is not equivalent to realizing the ground truth f*. The former
can hold without the latter and vice versa.

Theorem [5.2] and Theorem [5.3] together imply a clear characterization of the different inductive
biases of gradient descent in the case of small (¢ = 2) and over-parameterized networks. The
characterization is that over-parameterized networks are biased towards global minima that detect
all patterns in the data, whereas small networks with £ = 2 are biased towards global minima that
do not detect all patterns (see Definition [5.1)). In Sec. we show this empirically in the XORD
problem and in a generalization of the XORD problem.

In the following sections we will need several notations. Define x; = (1,1), 23 = (1, —1), x5 =
(=1,-1),24 = (—1, 1) to be the four possible patterns in the data and the following sets:

W) = {j | argmaxng) Sx = i}, Ut (i) = {j | argmaxugj) S = z}
1<i<4 1<i<4

W, (i) = {j | argmaxng) cxp = z} , U (1) = {j | argmaxuij) TS z} (5)
le{2,4} le{2,4}

We denote by ™ a positive diverse point and &~ a negative diverse point. Define the following
sum:
S = Z [max {a ('w(j) mf) ey O (w(j) :c;r) H
JEW (HUW(3)

Finally, in all of the results in this section we will denote by ¢ < 10~'° a negligible constant.

5.1 SAMPLE COMPLEXITY UPPER BOUND FOR OVER-PARAMETERIZED NETWORKS

The main result in this section is given by the following theorem.

Theorem 5.2. Let S = S U S_ be a training set as in Sec. |3| Assume that gradient descent runs

with parameters n = %’ where ¢, < < 1;:3 , k > 120 and v > 8. Then, with probability
2

1
110’ %9
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iterations,

at least (pyp_ )" (1 —c— 166’8) after running gradient descent for T' > 28(%?86")

it converges to a global minimum which satisfies:
1. sign (Ny,.(x)) = f*(x) for all x € {+1}2%

k _5¢n
2. Leta(k) = % i_zﬁ Then for cq < ;(T)jl:l all patterns are detected with confidence cg.

This result shows that given a small training set size, and sufficiently large p, and p_, over-
parameterized networks converge to a global minimum which realizes the classifier f* with high
probability and in a constant number of iterations. Furthermore, this global minimum detects all
patterns in the data with confidence that increases with over-parameterization. The full proof of

Theorem [5.2]is given in Sec.

We will now sketch its proof. With probability at least (p;p_)™" all training points are diverse and
we will condition on this event. From Sec. [I0] we can assume WLOG that the training set consists
of one positive diverse point 1 and one negative diverse point &~ (since the network will have the
same output on all same-label diverse points). We note that empirically over-parameterization im-
proves generalization even when the training set contains non-diverse points (see Fig.[T|and Sec.[8.2).

Now, to understand the dynamics of gradient descent it is crucial to understand the dynamics of the
sets in Eq.[5] This follows since the gradient updates are expressed via these sets. Concretely, let
j € W (i1) N W[ (i) then the gradient update is given as follows:

wy = w4 0@ Iy @<y — 120 Ly @ )<1 (6)
Similarly, for j € U, (i1) N U, (i2) the gradient update is given by:

uﬁfl =uf) —nz;, Ly (@t)<y T 1%is Iy, (2-)<1 (N
Furthermore, the values of Ny (z+) and Ny (™) depend on these sets and their corresponding
weight vectors, via sums of the form S.F, defined above.

The proof consists of a careful analysis of the dynamics of the sets in Eq.[5]and their corresponding
weight vectors. For example, one result of this analysis is that for all ¢ > 1 and ¢ € {1,3} we have

W, (i) = W (i) and the size of W, (i) is at least & — 21/k with high probability.
There are two key technical observations that we apply in this analysis. First, with a small initial-
ization and with high probability, forall 1 < j < k and 1 < i < 4 it holds that ‘wg” : sc‘ < Zand

< . This allows us to keep track of the dynamics of the sets in Eq. |5 more easily. For

example, by this observation it follows that if for some j* € W,"(2) it holds that j* € W, (4),
then for all j such that j € W, (2) it holds that j € W,",(4). Hence, we can reason about the
dynamics of several filters all at once, instead of each one separately. Second, by concentration of
measure we can estimate the sizes of the sets in Eq.[5at iteration ¢ = 0. Combining this with results
of the kind W;" (i) = W, (i) for all ¢, we can understand the dynamics of these sets throughout the
optimization process.

The theorem consists of optimization and generalization guarantees. For the optimization guarantee
we show that gradient descent converges to a global minimum. To show this, the idea is to char-
acterize the dynamics of S;" using the characterization of the sets in Eq. [5|and their corresponding
weight vectors. We show that as long as gradient descent did not converge to a global minimum,
S;“ cannot decrease in any iteration and it is upper bounded by a constant. Furthermore, we show
that there cannot be too many consecutive iterations in which S;~ does not increase. Therefore, after
sufficiently many iterations gradient descent will converge to a global minimum.

We will now outline the proof of the generalization guarantee. Denote the network learned by
gradient descent by Ny .. First, we show that the network classifies all positive points correctly.

"Note that with probability 1, o’ (w - @;,) = 1, o/ (w'? - @,,) = 1 for all ¢, and therefore we omit these

from the gradient update. This follows since a’(wt(j ). x;,) = 0 for some ¢ only if w(()j ). ;, is an integer
multiple of 7.
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Define the following sums for all 1 < ¢ < 4:

X;H(i) = Z max o ('w(j) mi) , Y (i) = Z max o (u(j) wﬁ) (8)

FJEWL (3) JEUL (i)

First we notice that for all positive z we have Ny, (z) £ min{ X} (1), X (3)} = Y7 (2) — Y (4).
Then by the fact that Nyy,. () > v at the global minimum, we can show that X (1) + X (3)
is sufficiently large. As mentioned previously, by concentration of measure, |W," (z)| is sufficiently
large. Then by a symmetry argument we show that this implies that both X% (1) and X (3) are
sufficiently large. This shows that patterns x; and x3 are detected. Finally, we show that Y; (2) +

Y, (4) is not too large due to an upper bound on — Ny, (z~). Hence, we can show that each
positive point is classified correctly. The proof that all negative points are classified correctly and
patterns & and x4 are detected is similar but slightly more technical. We refer the reader to Sec.[3.6]
for further details.

5.2 SAMPLE COMPLEXITY LOWER BOUND FOR SMALL NETWORKS (k = 2)

The following theorem provides generalization lower bounds of global minima in the case that k = 2
and in a slightly more general setting than the one given in Theorem 5.2}

Theorem 5.3. Let S = S U S_ be a training set as in Sec.[3| Assume that gradient descent runs

with parameters n = % where ¢, < ﬁ, o4 < 1601;’;, k =2 and v > 1. Then the following holds:
2

1. With probability at least (p.p_)" (1 — ¢) %, gradient descent converges to a global min-
imum that has non-zero test error. Furthermore, for cq > 2c,, there exists at least one

pattern which is not detected by the global minimum with confidence cg.

2. The non-zero test error above is at least p*.

The theorem shows that for a training set that is not too large and given sufficiently large p4 and
p—, with constant probability, gradient descent will converge to a global minimum that is not the
classifier f*. Furthermore, this global minimum does not detect at least one pattern. The proof of
the theorem is given in Sec.

We will now provide a short outline of the proof. Let w(T1 ), wg? ), u(T1 ) and u(T2 ) be the filters
of the network at the iteration 7" in which gradient descent converges to a global minimum. The
proof shows that gradient descent will not learn f* if one of the following conditions is met: a)
Wi (1) =0. ) Wi (3)=0.c)ul -zo > 0and ul? -y > 0. d)ull -y > 0and u'P -y > 0.
Then by using a symmetry argument which is based on the symmetry of the initialization and the
training data it can be shown that one of the above conditions is met with high constant probability.
Finally, it can be shown that if one of these conditions hold, then at least one pattern is not detected.

6 EXPERIMENTS

We perform several experiments that corroborate our theoretical findings. In Sec.[8.5|we empirically
demonstrate our insights on the inductive bias of gradient descent. In Sec.[6.2] we evaluate a model
compression scheme implied by our results, and demonstrate its success on the MNIST dataset.

6.1 PATTERN DETECTION

In this section we perform experiments to examine the insights from our analysis on the inductive
bias of gradient descent. Namely, that over-parameterized networks are biased towards global min-
ima that detect more patterns in the data than global minima found by smaller networks. We check
this both on the XORD problem which contains 4 possible patterns in the data and on an instance
of an extension of the XORD problem, that we refer to as the Orthonormal Basis Detection (OBD)
problem, which contains 60 patterns in the data. In Sec. [8.5] we provide details on the experimental
setups.
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Figure 2: Inductive bias in XORD and OBD problems. (a) Over-parameterization improves generalization in
the OBD problem (b) Pattern detection phenomenon in the XORD problem (c) Pattern detection phenomenon
in the OBD problem. In both (b) and (c) we see that as the number of channels increase, gradient descent is
biased towards %0 training error solutions with more detected patterns.
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Figure 3: Model compression in MNIST. The plot shows the test error of the small network (4 channels) with
standard training (red), the small network that uses clusters from the large network (blue), and the large network
(120 channels) with standard training (green). It can be seen that the large network is effectively compressed
without losing much accuracy.

Due to space considerations, we will not formally define the OBD problem in this section. We
refer the reader to Sec. [8.5] for a formal definition. Informally, The OBD problem is a natural
extension of the XORD problem that contains more possible patterns in the data and allows the
dimension of the filters of the convolutional network to be larger. The patterns correspond to a set of
orthonormal vectors and their negations. The ground truth classifier in this problem can be realized
by a convolutional network with 4 channels.

In Fig. 2] we show experiments which confirm that in the OBD problem as well, overparameteri-
zation improves generalization. We further show the number of patterns detected in %0 training
error solutions for different number of channels, in both the XORD and OBD problems. It can be
clearly seen that for both problems, over-parameterized networks are biased towards %0 training
error solutions that detect more patterns, as predicted by the theoretical results.

6.2 NETWORK COMPRESSION

By inspecting the proof of Theorem [5.2] one can see that the dynamics of the filters of an over-
parameterized network are such that they either have low norm, or they have large norm and they
point to the direction of one of the patterns (see, e.g., Lemma [8.4)and Lemma [8.6). This suggests
that by clustering the filters of a trained over-parameterized network to a small number of clusters,
one can create a significantly smaller network which contains all of the detectors that are needed for
good generalization performance. Then, by training the last layer of the network, it can converge
to a good solution. Following this insight, we tested this procedure on the MNIST data set and a
3 layer convolutional network with convolutional layer with multiple channels and 3 x 3 kernels,
max pooling layer and fully connected layer. We trained an over-parameterized network with 120
channels, clustered its filters with k-means into 4 clusters and used the cluster centers as initialization
for a small network with 4 channels. Then we trained only the fully connected layer of the small
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network. In Fig.[3]we show that for various training set sizes, the performance of the small network
improves significantly with the new initialization and nearly matches the performance of the over-
parameterized network.

7 CONCLUSIONS

In this paper we consider a simplified learning task on binary vectors and show that over-
parameterization can provably improve generalization performance of a 3-layer convolutional
network trained with gradient descent. Our analysis reveals that in the XORD problem over-
parameterized networks are biased towards global minima which detect more relevant patterns in
the data. While we prove this only for the XORD problem and under the assumption that the train-
ing set contains diverse points, our experiments clearly show that a similar phenomenon occurs in
other settings as well. We show that this is the case for XORD with non-diverse points (Figure [I))
and in the more general OBD problem which contains 60 patterns in the data and is not restricted
to binary inputs (Figure [2). Furthermore, our experiments on MNIST hint that this is the case in
MNIST as well (Figure[3).By clustering the detected patterns of the large network we could achieve
better accuracy with a small network. This suggests that the larger network detects more patterns
with gradient descent even though its effective size is close to that of a small network.

We believe that these insights and our detailed analysis can guide future work for showing similar
results in more complex tasks and provide better understanding of this phenomenon. It would also be
interesting to further study the implications of such results on model compression and on improving
training algorithms.
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8 APPENDIX

8.1 NETWORK ARCHITECTURE IN THE XORD PROBLEM
8.2 EXPERIMENTAL SETUPS

8.2.1 EXPERIMENT IN FIGURE[I]

We tested the generalization performance in the setup of Section3] We considered networks with
number of channels 4,6,8,20,50,100 and 200. The distribution in this setting has p, = 0.5 and
p— = 0.9 and the training sets are of size 12 (6 positive, 6 negative). Note that in this case the
training set contains non-diverse points with high probability. The ground truth network can be
realized by a network with 4 channels. For each number of channels we trained a convolutional
network 100 times and averaged the results. In each run we sampled a new training set and new
initialization of the weights according to a gaussian distribution with mean 0 and standard deviation
0.00001. For each number of channels ¢, we ran gradient descent with learning rate % and stopped
it if it did not improve the cost for 20 consecutive iterations or if it reached 30000 iterations. The
last iteration was taken for the calculations. We plot both average test error over all 100 runs and

10
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Figure 5: Higher confidence of hinge-loss results in better performance in the XORD problem.
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Figure 6: Demonstration of generalization gap for values not included in Theorem The experimental
setup is the same as in Section mwith the following exceptions. For all number of channels we changed the
standard devation o4 and only for £ = 2 we changed the learning rate 7, as described next for each subfigure.
Furthermore, the number of runs is 40 for each channel (instead of 100). (a) Experiments for n = 0.1 and
o4y = 0.01. (b) Experiments for n = 0.1 and o, = 0.1. Finally, we note that there is a genereliazation gap
for gradient descent when comparing the performance for kK = 2 in these experiments and for larger k& in the
experiments in Figure m

average test error only over the runs that ended at 0% train error. In this case, for each number of
channels 4,6,8,20,50,100,200 the number of runs in which gradient descent converged to a 0% train
error solution is 62, 79, 94, 100, 100, 100, 100, respectively.

8.3 HINGE L0oSs CONFIDENCE

Figure[5|shows that setting v = 5 gives better performance than setting v = 1 in the XORD problem.
The setting is similar to the setting of Section[8.2.1] Each point is an average test error of 100 runs.

8.4 EXPERIMENTS FOR SECTION[3.2]

Theoremholds forany n < 8% and 0 < ﬁ. Because the result is a lower bound, it is desirable
to understand the behaviour of gradient descent for values outside these ranges. In Figure [6] we
empirically show that for values outside these ranges, there is a generalization gap between gradient

descent for k = 2 and gradient descent for larger k.

11
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8.5 EXPERIMENTAL SETUP IN SECTIONI[6]

We will first formally define the OBD problem. Fix an even dimension parameter d; > 2. In this
problem, we assume there is an orthonormal basis B = {vy,...,v4, } of R%. Divide B into two
equally sized sets By and Bs, each of size %1. Now define the set of positive patterns to be P =
{v|ve B} U{—v|v e By} and negative patterns tobe N = {v |v € Bo} U{—v | v € By}.
Let Popp = P U N. For dy > 0, we assume the input domain is X C R%192 gpd each & € X is
a vector such that x = (1, ..., x4,) where each x;, € Popp. We define the ground truth classifier
foep : X — {£1} such that fopp(x) = 1 if and only there exists at least one x; such that
x; € P. Notice that for d; = 2 and by normalizing the four vectors in {i1}2 to have unit norm, we
get the XORD problem. We note that the positive patterns in the XORD problem are defined to be
Pxor and the negative patterns are {£1}?\ Pxor.

Let D be a distribution over X2¢ x {41} such that for all (z,y) ~ D,y = fopp(x). As in the
XORD problem we define the distributions D4 and D_. We consider the following learning task
which is the same as the task for the XORD problem. We assume that we are given a training set S =
S, US_ C {£1}%92 x {41} where S, consists of m IID points drawn from D, and S_ consists
of m IID points drawn from D_. The goal is to train a neural network with randomly initialized
gradient descent on S and obtain a network N : R%92 — R such that sign (N (x)) = fopp(z) for
all z € {£1}%dz,

We consider the same network as in the XORD problem (Eq.[I)), but now the filters of the convolution
layer are d;-dimensional. Formally, for an input = (x4, ...,x4) € X the output of the network is
given by

Nw(z) =

-

@) . (@) .
3 [ {or () 22) o (- 22))
—max{a (u(i) -scl) ,...,a(u(i) -:cd)}] 9)

where W € R2¥%%1 is the weight matrix which contains in the first k rows the vectors w*) € R,
in the next k rows the vectors (¥ € R% and o(z) = max{0,x} is the ReLU activation applied
element-wise. We performed experiments in the case that d; = 30, i.e., in which there are 60
possible patterns.

In Figure for each number of channels we trained a convolutional network given in Eq. [9] with
gradient descent for 100 runs and averaged the results. The we sampled 25 positive points and 25
negative points in the following manner. For each positive point we sampled with probability 0.25
one of the numbers [4,6,8,10] twice with replacement. Denote these numbers by m4 and mo. Then
we sampled m; different positive patterns and mo different negative patterns. Then we filled a 60d; -
dimensional vectors with all of these patterns. A similar procedure was used to sample a negative
point. We considered networks with number of channels 4,6,8,20,100 and 200 and 500. Note that
the ground truth network can be realized by a network with 4 channels. For each number of channels
we trained a convolutional network 100 times and averaged the results. For each number of channels
¢, we ran gradient descent with learning rate 0—02 and stopped it if it did not improve the cost for 20
consecutive iterations or if it had 0% training error for 200 consecutive iterations or if it reached
30000 iterations. The last iteration was taken for the calculations.

We plot both average test error over all 100 runs and average test error only over the runs that
ended at 0% train error. For each number of channels 4,6,8,20,100,200,500 the number of runs in
which gradient descent converged to a 0% train error solution is 96, 99, 100, 100, 100, 100, 100,
respectively. For each 0% train error solution we recorded the number of patterns detected with
cq = 0.0001 according to the Definition [5.1] (generalized to the OBD problem). In the XORD
problem we recorded similarly the number of patterns detected in experiments which are identical
to the experiments in Section[8.2.1] except that in this case p; = p_ = 0.98.

12
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8.6 PROOF OF THEOREM[5.2]

We will first need a few notations. Define 1 = (1,1), @2 = (1, —1),xz3 = (=1, —-1), x4 = (—1,1)
and the following sets:

W) = {j | argmaxng) Sx = i}, Ut (i) = {j | argmaxuij) ST = z}
1<i<4 1<i<4

W (1) =<7 argmaxng) =iy, U (i)=47]| argmaxugj) cxp =1
le{2,4} le{2,4}

We can use these definitions to express more easily the gradient updates. Concretely, let j €
Wt (i1) N W, (i2) then the gradient update is given as followsﬁ

wii)l = ng) +0%i, Ly (@) <y — %0 Ly (@) <1 (10)

Similarly, for j € U;" (i) N U; (i) the gradient update is given by:

ugi)l = ugj) = NZi Ly (@t)<y + 1%i Lny (2-)<1 (11)

We denote by & a positive diverse point and £~ a negative diverse point. Define the following
sums for ¢ € {+,—}:

Sf’ = Z [ max {a (w(j) m‘f) ey O (w(j) . :cﬁ) H
JEWF(HUWF(3)

P Y [maxfo (w9 af) oo (u0f) )]

JEUF (HUT (3)

R Y [max{o (09 a?) o (w0 af) )]

FEW, (2)UW,F(4)

R e e )

JEUSF (2)UUL (4)

Note that R;" = R; since for z € {&*, x ™} there exists i1, i5 such that z;, = x, 2;, = x4.

By the conditions of the theorem, with probability at least (p4p_)"" all the points in the training set
are diverse. From now on we will condition on this event. Furthermore, without loss of generality,
we can assume that the training set consists of one diverse point £+ and one negative points x .
This follows since the network and its gradient have the same value for two different positive diverse
points and two different negative points. Therefore, this holds for the loss function defined in Eq. ]
as well.

We will now proceed to prove the theorem. In Section [8.6.1] we prove results on the filters at ini-
tialization. In Section [8.6.2] we prove several auxiliary lemmas. In Section [8.6.3] we prove upper
bounds on S;”, P;" and P;~ for all iterations ¢. In Sectionwe characterize the dynamics of .S;"
and in Section we prove an upper bound on it together with upper bounds on Ny, (™) and
— Ny, (&™) for all iterations ¢.

We provide an optimization guarantee for gradient descent in Section[8.6.6] We prove generalization
guarantees for the points in the positive class and negative class in Section and Section [8.6.8]
respectively. We complete the proof of the theorem in Section [8.6.9]

$Note that with probability 1, o’ (w - @;,) = 1, o' (w'? - @,,) = 1 for all ¢, and therefore we omit these

from the gradient update. This follows since o’ (wij ) -3, ) = 0 for some ¢ if and only if w(()j )
multiple of 7.

-4, 1S an integer

13
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8.6.1 INITIALIZATION GUARANTEES

Lemma 8.1. With probability at least 1 — 4e~8, it holds that
k
‘|w0+<1) UWS(3)] - 2‘ <ok

and
k
‘|U5“(1) Uy (3)] - 2‘ < 2Vk

Proof. Without loss of generality consider [W;" (1) U Wy (3)]. Since P [j € W (1) UW (3)] =
1, we get by Hoeffding’s inequality

2(22k)

k
P H|WO+(1) UWs(3)] - 2‘ < 2\/4 <2 T F =278

The result now follows by the union bound. O
Lemma 8.2. With probability > 1 — \/‘7/72:1&, foralll < 5 < kand 1l < i < 4 it holds that
‘wéj) x| < 7} and uéj) x| < L

Proof. Let Z be a random variable distributed as NV'(0, 2). Then by Proposition 2.1.2 in|Vershynin
(2017), we have

e 202
V 27 1’:

Therefore, forall 1 < j < kand1 <i</4,

j n 1 —8k
P me szl > f} < e
’ 41 = /3ork
and )
j n —8k
]PHu(J)-aci 27} < e
0 41 = 327k
The result follows by applying a union bound over all 2k weight vectors and the four points x;,
1<i <4 O

From now on we assume that the highly probable event in Lemma 8.2] holds.
Lemma 8.3. Ny, (%) < 1land —Nw,(x7) < 1for0 <t <2

Proof. By Lemma[8.2] we have

k
Ny, (zh) = Z {max {a (wéz) : a:f) s O (w(()l) wj)} — max {a (uél) :cf) yees O (uél) wj) H
i=1
nk
< —
S0

and similarly — Ny, (™) < 1. Therefore, by Eq. and Eq. we get:
1. Fori € {1,3},1 € {2,4}, j € W, (i) N W, (1), it holds that ng) = wéj) — nx; + nx;.
2. Fori € {2,4} and j € W (i), it holds that w{) = w{’.
3. Fori € {1,3}.1€{2,4},j € Uj (i) N Uy (1), it holds that u'?) = u) — na; + na.

4. Fori € {2,4} and j € Uy (i), it holds that u$) = u{).

14
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&= we have Ny, (™) < ~ and

Applying Lemma again and using the fact that n < g

—Nw, (™) < 1. Therefore we get,

1. Fori € {1,3},1 € {2,4}, j € Wi (i) " W (1), it holds that w§’ = w$ + 2na;.

2. Fori € {2,4} and j € W (i), it holds that w’ = w{’.

3. Fori € {1,3}.1 € {2,4}, j € Uy (i) N Uy (1), it holds that u) = ul) — na; + na;.
4. Fori € {2,4} and j € Uy (4), it holds that u$) = u{).

As before, by Lemmal8.2] we have Ny, (z¥) < v and — Ny, (z7) < 1. O

8.6.2 AUXILIARY LEMMAS

Lemma 8.4. Forallt > 1 we have W;t (i) = W (i) fori € {1,3}.

Proof. We will first prove that W, (i) € W, (i) for all t > 1. To prove this, we will show by
induction on ¢ > 1, that for all j € W (i) N W (1), where | € {2,4} the following holds:

1. j € W, (4).

2. wij) - X :wéj)-xl —norw,ﬁj) - X :wgo)-a:l.

3. w(J) x; > 1.

The claim holds for ¢ = 1 by the proof of Lemma[8.3] Assume it holds for ¢ = T'. By the induction
hypothesis there exists an I’ € {2, 4} such that j € W, (i) N W, (I'). By Eq.we have,

'wg,z)ﬂ = wg,f) + anx; + bnxy (12)

where a € {0,1} and b € {—1, 0}.

Ifwgpn) -x; = wé‘) -y then!’ = [ and either wgﬂil -xy = w( 7) -x;ifb=0or wgfjrl -x; = (J) - —1n

1fb = —1. Otherwise, assume that w - @, = w{’’ -, — 7. By Lemma|8.2)we have 0 < w(J) oz <
Xy — N if

. Therefore —7n < 'wg,f) x; < 0and !’ # [. Tt follows that either 'wTJrl x = 'w( 7)

b =0or 'w(Tj)+1 -xp = wéj) -x; if b = —1. In both cases, we have ‘w(Tjil . ml’ < 7. Furthermore, by

Eq. . wT+1 T; > (-) -x; > 1. Hence, arg max; ;<4 wgpll -2; = ¢ which by definition implies
that j € Wi, ,(i). ThlS concludes the proof by induction which shows that W (i) C W," (i) for
allt > 1.

In order to prove the lemma, it suffices to show that W' (2) U W, (4) € W, (2) U W, (4). This
follows since U?Zl W, (i) = {1,2,...,k}. We will show by induction on ¢ > 1, that for all j €
Wi (2) U W, (4), the following holds:

1. j € W,7(2) nW,;F(4).

@) éj)—l—ma:gformEZ.

2. wy =w
The claim holds for ¢ = 1 by the proof of Lemma[8.3] Assume it holds for ¢ = 7'. By the induction
hypothesis j € W (2) N W (4). Assume without loss of generality that j € W, (2). This implies

that j € W (2) as well. Therefore, by Eq..we have

w) | = wd + anzs + by, (13)

15
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where a € {0,1} and b € {0, —1}. By the induction hypothesis, w%}rl = 'wéj) + may form € Z.
If a = 1 or b = 0 we have for i € {1, 3},

w(Tj)+1 - Lo > wgz) s &Ly > 'wg) S = wéz)ﬂ ST
where the first inequality follows since j € ij (2) and the second by Eq. This implies that
J € Wi (2) N WL, (4).

1
J € WT+ (2), it follows by the induction hypothesis that wgz = 'wéj ) 4 maxg, where m € Z and
m > 0. To see this, note that if m < 0, then wgf) ‘xog < 0andj ¢ W;f(?), which is a contradiction.
Leti € {1,3}. If m = 0, then 'w%)_l = w(()j) — I, 'w%)_l x4 > 5 and 'w%)_l S, = 'wéj) xy <
by Lemma Therefore, j € Wi, | (4).

Otherwise, if m > 0, then wgzil STy > w(()j) S Lo > wéj) cx; = wgfil -x;. Hence, j € W;fﬂ(2),
which concludes the proof.

Otherwise, assume that a = 0 and b = —1. By Lemma we have wéj) -2y < . Since

Lemma 8.5. Forallt > 0 we have Uy (2) U U, (4) C U (2) U U, (4).

Proof. Let j € Uj (2) U U (4). Tt suffices to prove that ul’) = u$ + ayna, for oy € Z. This
follows since the inequalities ’u((f ) ~m1‘ < ‘ugj ) -acg‘ < 7 imply that in this case j € U;"(2) U
U,t(4). Assume by contradiction that there exist an iteration ¢ for which ugj ) = uéj )+ T +
Binx; where 8y € {—1,1}, ay € Z, 1 € {1,3} and uij_)l = u((f) + ay_1nxo where ay_1 € Z.

Since the coefficient of x; changed in iteration ¢, we have j € U," (1) U U;",(3). However,

this contradicts the claim above which shows that if ugﬂ)l = uéj )+ o—1mT2, then j € U;” | (2) U

Ut (4). O

Lemma 8.6. Leti € {1,3} andl € {2,4}. Forallt >0, if j € Uy (i) N Uy (1), then there exists
a; € {0,—1}, b; € N such that uij) = uéj) + ainx; + bynxy.

Proof. First note that by Eq. we generally have ) = u(()j ) 4 anx; + fnx; where o, 8 € Z.
Since )uéj) . xl‘ < 7, by the gradient update in Eq.|11|it holds that a; € {0, —1}. Indeed, ap = 0
and by the gradient update if a;_1 =0 or a;_; = —1 then a; € {—1,0}.

Assume by contradiction that there exists an iteration ¢ > 0 such that b, = —1 and b;_; = 0.
Note that by Eq. |E|this can only occur if j € U;”(I). We have uij_)l = uéj) + ay_1nx; where
a;—1 € {0,—1}. Observe that () > ’u(()j) T < 7. Since

Uy "1 " Ty
ul) g =ul), @ wehave j € Ut (1) UU;T,(3), a contradiction. O

by the fact that ‘u[()j )z

‘T, > U

Lemma 8.7. Let

S S W)

JEW (1)
and
YtJr = Z [max{a (w(i) :Bf) sy O (w(i) wz{) }]
JEW(3)
X -Xg Yoy
Then for all t, W[~ W)

“Note that in each iteration 5; changes by at most 7.
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Proof. We will prove the claim by induction on ¢. For ¢ = 0 this clearly holds. Assume it holds for
t =T. Let j; € W;(1) and jo € W;(3). By Eq. |10, the gradient updates of the corresponding
weight vector are given as follows:

wg.lz-li-)l = 'wgrjl) + anxi + binxs

and

'wgfi)l = wgfé) + anxs + banxs

where a € {0,1} and by,by € {—1,0,1}. By Lemma j1 € Wi (1) and jo € Wi, (3).
Therefore,

max {O’ (wgﬁ)l . :cf) s O (wgﬁ)l . :cj)} = max {O’ (wgzl) . :cf) sy O (wgzl) . w;)} +an
and
max {a (w(h) . :c+> o (w(jz) . m+)} = max {o ('w(jz) . :c+> o (w(jz) . w+)} +a
T41 L1 ) ooy T+1 " L4 = T 1) T d n
By Lemmawe have W, (1)| = [W"(1)] and |W,"(3)| = |[W,(3)] for all ¢. It follows that
Xfo =X an| W )] X - X
(Wi (1) [Wo (1)
an + 7YT+ — YO+
[Wo (3)]
W) v Y
[Wo" (3)]
_ Y:}:_l B YO+
(W1 (3)]

where the second equality follows by the induction hypothesis. This proves the claim. O

8.6.3 BOUNDING P;t, P AND S,

Lemma 8.8. The following holds
1Sy <|\WHA)UW(3)|nforallt > 1.
2. P <|UN () UUS(3)|nforallt > 1.

3P < |UF()UUS3)|nforallt > 1.

Proof. In Lemma we showed that for all ¢ > 0 and j € W,F(1) U W,"(3) it holds that
‘wij ). 213‘2‘ < n . This proves the first claim. The second claim follows similarly. Without loss

of generality, let j € U;"(1). By Lemmait holds that U} (1) C Uy (1) U U (3) forall ¢/ < ¢.

Therefore, by Lemma m we have ’uﬁj )ml < n, from which the claim follows.

For the third claim, without loss of generality, assume by contradiction that for j € U, (1) it holds
that ‘uﬁj) ~m2‘ > 7. Since ‘uij) -:1:1‘ < 1 by Lemma it follows that j € U;"(2) U U;" (4),

a contradiction. Therefore, ugj ) -mg‘ < nforall j € U (1)U U; (3), from which the claim
follows. O

8.6.4 DYNAMICS OF S;"

Lemma 8.9. The following holds:

L If Nw, (") < vand —Nw, (™) <1, then S}, = S; +n |W;H (1) UWH(3)].

17
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2. If Nw,(x%) > vy and —Nw, (x~) < 1, then S}, ; = S}

3. If Nw,(z") < yand —Nw,(x~) > 1, then S}, | = S} + n|W," (1) UW;"(3)|.

Proof. 1. The equality follows since for each i € {1,3},1 € {2,4} and j € W, (i) N W, (1)
we have wgi)l = ng) + na; — nx; and Wik (1) U W2, (3) = W, (1) U W (3) by
Lemma

2. In this case for each i € {1,3},1 € {2,4} and j € W, (i) N W, (I) we have wg)l =
wﬁj) — na; and Wtj—l(l) U Wt-:-l(?)) = Wt+(1) U Wt+(3) by Lemma

3. This equality follows since for each i € {1,3},1 € {2,4} and j € W, (i) N W, (I) we
have wgi)l = ng) + nax; and W, (1) UW,,(3) = WiH(1) UWF(3) by Lemma
O

8.6.5 UPPER BOUNDS ON Ny, (z 1), — Ny, (z~) AND S}
Lemma 8.10. Assume that Ny, (x") > v and —Nw,(x~) < 1forT <t < T + b where b > 2.
Then Ny, (") < Nw, () — (b= 1)c, +n |[Wy (2) U W (4)].

Proof. Define R =Y,;" — Z;" where

v 3 fmax{e () af) o (w7 ) ]

JEWT (2UWF (4)

7 = Z [max {0 (u(i) azf) e (u(i) wj) }]

JEUS (2)UUL (4)

and

Letl € {2,4},t =T and j € U, ;(I). Then, either j € U;* (2)UU; (4) or j € U (1) UU; (3). In

the first case, ugi)l = u?) + nx,. Note that this implies that U;" (2) UU;" (4) C U1 (2UUf(4)
(since @; will remain the maximal direction). Therefore,

> max {o (w1 ) e (w1 )]
J€(Uf, @UUL, (@) N(UF 2)uUf(4))
=Y [maxfo () oo (- 0f) )]
JEUS (2)UU (4)

= 1| (UA(2) VUL () ) (U7 (2) LU ()|
=n|U(2) VU (4)| (14)

In the second case, where we have j € U;" (1) UU," (3), it holds that ugﬂr)l = ugj) +nx,j €U, (1)

and ugi)l - x; > 7. Furthermore, by Lemma ugj) -x; < nfori € {1,3}. Note that by Lemma

any j1 € U;F (1) UU;(3) satisfies j1 € U,y 1(2) UU,L ; (4). By all these observations, we have

5 mas {o (- ot) oo (w224 ]

je(U, (@uUt, (0) N(UF (UuU(3))

— Z [max {a (uij) :L'f) e O (ugi)l :Jc;{) H
JEUF (1UU(3)
>0 (15)
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By Eq. [14]and Eq. [13] it follows that, Z;}, + P, > ZjH > Z+ + P+ |UF2)u Uj(

By induction we have Z;",, + P, 2 Z+ + P+ n|Uf(2) U (4)]. By Lemma

forany 1 < i < b— 1 we have |U,, )UU;fH( )| = {1,...,k;}. Therefore, Z,",, + P, >
ZF + P+ (b—1)cy,.

Now, assume that j € W (1) for l € {2,4}. Then wg,z}rl = w(j) nx;. Thus either

max{ (w(TJi_l :cf) ) (w(TJil a:j)} - max{ (w(T]) a:f) (w(Tj) a:j[)} =7
in the case that j € Wi, (1), or
max {a (wgil mi") , (wgfil m(‘j)} <n

it j ¢ Wiy, (0).
Applying these observations b times, we see that Y1, , — Y, is at most n |[W;,, (2) UW,, (4)] =
n |VV0Jr (2) U Wt (4)| where the equality follows by Lemma By Lemma we have S,
Sy
Hence, we can conclude that

Nwyy, (@) = Ny () = S7, + R;er T+b ~ 87 — Ry + P

=Y, — 2y — Py — Y7 +Z7 + Pf

—(b—1)ey + 0| W (2) U (4)]

+b —

O

Lemma 8.11. Assume that Ny, (") < v and —Nw,(x~) > 1for T <t < T + b where b > 1.
Then 7NWT+b (wi) < 7NWT (wi) - b77 |VV(;~_(2) U W(;F(4)| + ¢y

Proof. Define

D S T I

FEW (2)UW, (4)

25 =3 oo (w907 o0 (w9 |

Jj=1

and

First note that by Lemma [3.4| we have W, (2) U W, (4) = W;"(2) U W,"(4). Next, for any
I €{2,4} and j € W, (I) we have 'wgi)l = wg D4 nx;. Therefore,

Y, = Yo +bn|WiE(2)UW;(4)| =Yy + by [WiH(2) U (4)]
where the second equality follows by Lemma 8.4]

Assume that j € U (1) for I € {1,3}. Then uéfil — uY) — na; and

max{ (ugz)ﬂ :Bf) , <u§2)+1 :B;)} —max{a (ugf) -:Bf) , <u§2> d:d)} =0
. . (16)
To see this, note that by Lemma and Lemma it holds that ugf ) = (] )+ aTn:cl where

ar € {—1,0}. Hence, “523-1 = ué]) + aryi1nx; where apyq € {—1,0}. Smce ‘u a:2’ < 71it

follows that ugz)H Sxg = ugf) Sxg = u(j) x5 and thus Eq. .holds

Now assume that j € U (1) for I € {2,4}. Then
max{ (ugfj_l x; ) (u%)_l T, )} - max{a <u§3) oa;1_> N (ug) a:(;)} =-n
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ifl € {2,4} and j € Uf (1), or
max {a (ugz)ﬂ . wf) sy O (ugz)ﬂ w;)} <n
ifl € {2,4} and j ¢ U;, (1).

Applying these observations b times, we see that Z7.., — Z7 is at most n |Uf,(2) U UL, (4)].
Furthermore, for j € Wt (1), 1 € {1, 3}, it holds that '“’523-1 = 'wg,z) + nx;. Therefore

max{a (wgi_l ~:c1_) y ey O (wgzil . m(;)} = max {a (wgz) . mf) y ey O (wg,z) :cJ)}
and since W7, (1) UW;,(3) = Wi (1) U W, (3) by Lemma we get Sy, = S7. Hence,
we can conclude that

_NWT+b($_) + NWT (3'5_) = _S;+b - YT_er + ZT_‘er + SI_" + YT_ - ZY_“
—bn ‘WOJFQ) U Wo+(4)‘ +7 |U1f+b(2) U Uzt+b(4)|
o W@ UWE W) +

N

IN

Lemma 8.12. Forallt, Ny, (z") <+ 3c,, —Nw,(x~) <1+ 3¢, and S;” < v+ 1+ 8c,.

Proof. The claim holds for ¢ = 0. Consider an iteration T'. If Ny, (1) < ~ then Ny, (z*) <
Ny, (x)+2nk < v+2c,. Now assume that Ny, () > v forT < ¢ < T+band Ny, , (1) <
v. By Lemma it holds that Nyy,.,, (%) < Ny, (xT) + nk < Nw, (1) + ¢, < v+ 3¢y,
where the last inequality follows from the previous observation. Hence, Ny, (™) < v + 3¢, for
all ¢.

The proof of the second claim follows similarly. It holds that —Ny,. (7)) < 1+ 2¢, if
—Nw,.(x7) < 1. Otherwise if —Ny,(x~7) > 1for T <t < T+band —Ny,_,(z7) < 1
then — Ny, (£7) < 1+ 3¢, by Lemma3.11]

The third claim holds by the following identities and bounds Ny, (2) — Ny, (27) = S — P +

Pr = S7. Py >0, |Pf| < ¢, |S7| < ¢ and Ny, (2F) — Ny, (27) < v+ 1+ 6¢;, by the
previous claims. O

8.6.6 OPTIMIZATION

We are now ready to prove a global optimality guarantee for gradient descent.

Proposition 8.13. Let k > 16 and v > 1. With probabaility at least 1 — -2k — 4e=8, after

/me8k
14+8c,) - . . .
T = % iterations, gradient descent converges to a global minimum.
E_

Proof. First note that with probability at least 1 — V2 4e=8 the claims of Lemma and

mesk
Lemma [8.2) hold. Now, if gradient descent has not reached a global minimum at iteration ¢ then
either Ny, () < v or =Ny, (7)) < 1. If =Ny, (z*) <  then by Lemma 8.9it holds that

k
Sty = S+ |Wih () uW(3)] = S+ <2—2\/E>n (17)

where the last inequality follows by Lemma[81]

If Ny, (%) > v and —Nw, (z~) < 1 we have S;,; = 5" by Lemma However, by Lemma
8.10L it follows that after 5 consecutive iterations ¢t < ¢ < ¢ + 6 in which Ny, (x™) > ~ and

—Nw,, (x~) < 1, we have Ny, (™) < ~. To see this, first note that for all ¢, Ny, (™) < v+3¢,
by Lemma[8:12] Then, by Lemma [8.10| we have

N, ,o(®F) < N, (x) = 5¢, + 1 |[Wi (2) U W (4)]
< v+ 3¢, —5¢c, + ¢y
<7
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where the second inequality follows by Lemma(8.1|and the last inequality by the assumption on k.
Assume by contradiction that GD has not converged to a global minimum after 7' = %
E_

iterations. Then, by the above observations, and the fact that SS' > ( with probability 1, we have
k T
SH>85+ (= —2VE)nz
2 7
>v+1+38c,
However, this contradicts Lemma [8.12] O

8.6.7 GENERALIZATION ON POSITIVE CLASS

We will first need the following three lemmas.
Lemma 8.14. With probability at least 1 — 4e~8, it holds that

’ng(1)|_’i|g2¢%

and
3] - 5| <2V

Proof. The proof is similar to the proof of Lemma 8.1] O

Lemma 8.15. Assume that gradient descent converged to a global minimum at iteration T. Then
there exists an iteration Ty < T for which S;' >y +1—=3c, forallt > T, and for all t < T,
_NWt (iL'_) <1

Proof. Assume that for all 0 < ¢ < T7 it holds that Ny, (z1) < v and —Nyw,(x~) < 1. By
continuing the calculation of Lemma|8.3| we have the following:

1. Fori € {1,3},1 € {2,4}, j € W (i) N Wy (1), it holds that w) = w + Tinz; -
31— (1)) .

2. Fori € {2,4} and j € Wy (4), it holds that w) = w.
3. Fori € {1,3},1 € {2,4}, j € U (i) N Uy (1), it holds that uf) = uf) — na; + nay.
4. Fori € {2,4} and j € Uy (i), it holds that u%) =ul).

Therefore, there exists an iteration 7y such that Ny,. (%) > v and —Nw,, (z~) < 1 and for

all t < Ty, Ny, (") < vand —Np,(x~) < 1. Let T, < T be the first iteration such that
—Nwy, (x~) > 1. We claim that for all Ty <t < Ty we have Ny, (") > v — 2¢,. It suffices to
show that for all 77 <t < T5 the following holds:

1. If Ny, (%) > ~ then Ny, , () > v — 2¢,.

2. If Ny, () < 7 then Ny, , () > Ny, (™).

The first claim follows since at any iteration Ny, (z1) can decrease by at most 2nk = 2¢,. For
the second claim, let ' < t be the latest iteration such that NWt, (w+) > ~. Then at iteration ¢’
it holds that —Nw,, (£7) < 1 and Ny, (™) > ~. Therefore, for all i € {1,3}, 1 € {2,4} and
j € Uf (3)NU, (1) it holds that ugj_l = uEf) +nzx;. Hence, by Lemma|8.5(and Lemmait holds
that Utﬁl(l) U U;+1(3) = (). Therefore, by the gradient update in Eq. , forall 1 < j <k, and
allt’ < ¢ <t we have ug,],)ﬂ = ug,), which implies that NWf,'/+1($+) > Ny, (). Fort" =t
we get Ny, () > Ny, (™).
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The above argument shows that Nyy,, (x*) > v — 2¢, and — Ny, (™) > 1. Since Ny, () —
Nw,, (®7) = Sf, =P}, +P;, =S7.. Pp,, S, > 0and | Py, | < ¢, it follows that Sf, > y+1—3c,,.
Finally, by Lemmawe have Sf >+ 1—3c,forallt > Ts. O

Lemma 8.16. Let

X = 3 [max {U (wm .w;) o (wu) --’BI) H

JEWT (2)UWT(4)

vioY [maX {0_ (u(j> .m;‘) e (u(j) : ﬂ?;) H

JEUF (2)UUF (4)

and

Assume that k > 64 and gradient descent converged to a global minimum at iteration T. Then,
XF < 34c,and Y& <1+ 38c,,

Proof. Notice that by the gradient update in Eq.|10|and Lemma X" can be strictly larger than
max { X;" 1, n |[W;"(2) U W, (4)|} only if Nw,_, (&) < v and —Nyw,_, (x~) > 1. Furthermore,
in this case X, — X;", = n|W (2)UW;"(4)|. By Lemma S, increases in this case by
n|WiH (1) UWH(3)]. We know by Lemmathat there exists T» < T such that Sﬂ > y+1-3c¢,
and that Ny, (z+) < v and —Ny, (z~) > 1only for ¢t > Tb. Since S;" < v + 1 + 8¢, for all ¢
by Lemma [8.12] there can only be at most Licy

Wi (HUWE (3)]
—Nyw, (™) > 1. It follows that

iterations in which Ny, () < v and

Leyn | W7 (2) U W (4)]

X <n|Whr@uwi@)]|+

(12247
=0

< ¢, + g,

< 34c,
where the second inequality follows by Lemma 8.1 and the third inequality by the assumption on k.

At convergence we have Ny, (z7) = Sy + X} — Y, — P > —1 — 3¢, by Lemma|8.12| (recall
that R, = R} = X;” — Y,"). Furthermore, P, > 0 and by Lemma we have S < ¢,
Therefore, we get Y; <1+ 38c,. O

We are now ready to prove the main result of this section.

2
Proposition 8.17. Define 3(y) = 7321?0-%61”' Assume that v > 2 and k > 64 (gggﬂ) . Then
n

with probability at least 1 — \/\7/72:’& — 8e~8, gradient descent converges to a global minimum which

classifies all positive points correctly.

Proof. With probability at least 1 — 7”252“ — 8¢~8 Proposition [8.13] and Lemma|8.14{hold. It suf-

e 2
fices to show generalization on positive points. Assume that gradient descent converged to a global
minimum at iteration 7. Let (z, 1) be a positive point. Then there exists z; € {(1,1),(—=1,—1)}.

Assume without loss of generality that z; = (—1, —1) = 3. Define

X (i) = Z [max {O’ (w(j) wf) e (w(j) :cd+) H

JEWE (4)

Y, (i) = Z [max {a (u(j) :cf) e (u(j) . a:j) H

JEUS (i)

fori € [4].
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Notice that

Nw, (&%) = X1 (1) + X7 (3) = P + Ry
= X7 (1) + X7 (3) = P + Ry
=X} (1) +XFf3) - Pf +Nw,(x7) - Sp + Pp
1 P_| <c byLemmaandP;,S > 0, we obtain

Xt +XFB)>v+1—¢, (18)
Furthermore, by Lemma|[8.7] we have
Xr() - Xg(1) _ X7(3) - Xi (3)
(Wi ()] (Wi (3)]

19)

and by Lemma SIE],
Y k + k
Z—NE< |Wi ()] _ E4ovk
Epovk ~ [WEB)| T E—avk

4
Let a(k) = 4+2§ By Lemmawe have | X (1)] < ’77"“ < 2. Combining this fact with Eq.

and Eq.[20| we get

(20)

XF(1) < a(k)XF(3) + X5 (1) < a(R)XF(3) +
which implies together with Eq. [18|that X} (3) > % Therefore,
Nw,(2) > X7(3) = Pf = Y7 (2) = Y/ (4)
> m — ¢y —1—3(8¢,) — ldc,
JLQ(; 3¢, — 1> 0 e

where the first inequality is true because

5~ [ {o (4 22) o (420 ] € 3 [ fo (6908 o (9 -27) )]

Jj=1 j=1
(22)
=Pl +YF(2)+YF(4) (23)
The second inequality in Eq. .follows since PJr < ¢, and by appyling Lemmam Finally, the
last inequality in Eq. .follows by the assumption on k. |§| Hence, z is classified correctly. O

8.6.8 GENERALIZATION ON NEGATIVE CLASS

We will need the following lemmas.
Lemma 8.18. With probability at least 1 — 8¢, it holds that

U (2)] - Z’ <2vk

’!Uo*(4)|—i’ <2V
"(UJ(U Uy (3))NUy (2)] - IZ‘ <ok

‘|(Uo+(1) Uy (3)) NUG (4)] — Z‘ <2k

9The inequality ~

B(v)+1
s (33)°

W 39¢, — 1 > 0 is equivalent to a(k) < [(vy) which is equivalent to k& >
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Proof. The proof is similar to the proof of Lemma[8:T]and follows from the fact that
P[j € U (2)] =B [j € U5 (4]
=Plje U (HUUF ) NTy (2)]
=Plje (U (HUUF ) NTy (4)]

=] =

Lemma 8.19. Let

X S el () 07) o (s 57))]

J€US (2)
and '
o= 3 fma{o (W ai) e (w2 ) ]
J€UG (4)
Then for all t, there exists X,Y > 0 such that | X| < n ’UO+ (2) 4)| and \)I(ﬁ ;)<|
Y. -Y
U @]’

Proof. First, we will prove that for all ¢ there exists a; € Z such that for j; € U, (2) and jo € U, (4)

it holds that ugh) = (()Jl) + atnx and ’UJEM) = éh)

ont.

anTa. l We will prove this by induction

For t = 0 this clearly holds. Assume it holds for an iteration ¢. Let j; € U (2) and jo € U (4).

(1) 2 (G2) _

By the induction hypothesis, there exists ar € Z such that u; ) 4+ atnxo and u,

(()]2) — agsnxy. Since for all 1 < j < k it holds that (j) mz’ < 7, it follows that either

Uy (2) C U, (2)and U, (4) C U; (4) or Uy (2) € Uy (4) and Uy (4) € U, (2). In either
case, by Eq.[I1] we have the following update at iteration ¢ + 1:

ugﬂ = u1(£ Y+ anwy

and

ugfl) = ug 2) — anxs

where a € {—1,0,1}. Hence, ugill) = uy 1) 4 (at + a)nxs and u%h) = u(()j2)
concludes the proof by induction.

— (a¢ + a)nxe. This

Now, consider an iteration t, j; € Ui (2), jo € Uy (4) and the integer a, defined above. If a; > 0
then

max {a (ugjl) : :r,f) yeey O (ugﬁ) w;)} — max {o (uéjl) ~acf) yees O (ugjl) : x;)} = nay

and

max{o (uib) . :cl_) s O (ugh) a:(;)} — max{a (uéjz) '“31_) s O (ugjz) . w;)} = nay

Define X = X and Y =Y then |X| < n|Uy (2)|,|Y] < n|U; (4)] and

Xp =X _ U @lnar _ U W]nae Y —Y
Us (2)] Uy (2)] Ug )] U5 (4)]

which proves the claim in the case that a; > 0.

If a; < 0 it holds that

""Recall that by Lemmawe know that U (2) U U (4) C U (2) U U, (4).
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max {0 (ugjl) : 371_) e <u§j1) w;)} — max{a ((ugjl) - .’132) ‘a:l_) e ((ugjl) - .’132) m;)} =n(—a; —1)

and
max {0’ (ugh) : :cf) yeeey O (u,(:jé) m;)} — max{a ((u(()h) + :cg) ~wf) yeeey O ((u(()h) + :cg) w;)} =n(—a;—1)
Define
X = Z [max {O’ ((u(()j) — :c2> ~w;) s O ((u(()j) — a:2> w;)H
JEUy (2)
and
Y = Z [max {0 ((uéj) + IBQ) . azf) — ((u(()j) + (Bg) -w;) H
JEUF (4)
Since for all 1 < j < k it holds that ’ug)ﬂ , mQ‘ <2, wehave [X| < U5 )], [V] < n|Us 4)].
Furthermore,
Xp —X _ Uy @)n(=a—1) _ n(—ar— 1) = Ug @|n(-ac—1) _ Yy Y
U5 2)] U5 )] t [Us (4)] U5 (4]
which concludes the proof. O

Lemma 8.20. Let

o= Y o (o at) e (o))

Je(UF (UUF (3))nUy (2)

and 4 ,
Y, = Z [max{a (uij) ~a:1_) ,...,0<u§j) a:g)}]
Je(UF UUS (3)nUg (4)
X, =X, _ Y, Y
Then for all t, (U HuUg 3)nU; @] ~ (U moug 3)nug @]

Proof. We will first prove that for all ¢ there exists an integer a; > 0 such that for j; €
(U () UUS(3)) N Uy (2) and jo € (Ug (1) UUG(3)) N Uy (4) it holds that u™ - @y =

ugjl) - &9 + nay and ugh) STy = ué”) - x4 + nay. We will prove this by induction on ¢.

For ¢ = 0 this clearly holds. Assume it holds for an iteration ¢. Let j; € (U™ (1) U Uy (3))NU, (2)
and j, € (Uy" (1) UU; (3)) N Uy (4). By the induction hypothesis, there exists an integer a; > 0
such that ufﬂl) o u(()m - &5 + na; and ugh) T u(()”) -4 +nag. Since forall 1 < j < kit

holds that ’uéj ). :1:1‘ < z, it follows that if a; > 1 we have the following update at iteration 7" + 1:

'u’gﬁ-ll) = ul" + ana,

and ] .
uﬁf} = uV?) 1 ana,

wherea € {—1,0,1}. Hence, 'U,Eill)ﬂfg = uéjl)«acz+7](at+a) and ugfl)ow4 = u(()ﬁ)-a:4+77(at+a).
Otherwise, if a; = 0 then ‘ ‘
ugﬁf = uﬁjl) + anzs + b1y

and

uifl) = u§j2) + anxy + ngl
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such that @ € {0,1} and b;,b2 € {—1,0,1}. Hence, ugﬂ Sy = uéjl) -2 + n(a; + a) and

ugfl) Ty = uém - x4 + n(as + a). This concludes the proof by induction.

Now, consider an iteration ¢, j; € (U (1) U U (3))NUy (2) and j2 € (Ug (1) U U (3))NU, (4)
and the integer a; defined above. We have,

max {O’ (uéjl) : a:f) e (ugjl) w;)} - max{a (u(()jl) 'mf) e (ugjl) : w;)} = nay

and

max{a (ung) . 1:1_) sy O (u,gh) -:L';)} - max{a (uéjz) ~a:1_) sy O (uff” : sc;)} = na;

It follows that
X —Xg _|wya (3)) NUqy (2)] nar
(U UULB)nU, 2] (U < ) U (3)) nU; (2)]
= nag
(U ) u U (3)) N Uy (4)] ae
(U (1) UUS (3)) N Ty (4)]
_ Y, =Yy
CUF W)U B) NU; (4)

which concludes the proof. O

We are now ready to prove the main result of this section.

Proposition 8.21. Define § =

least 1— \/‘g;k —8e~8, gradient descent converges to a global minimum which classifies all negative

points correctly.

1-361 1Cn
35¢y

2
. Assume that k > 64 (BH) . Then with probability at

Proof. With probability at least 1 — \/*g';k — 16e~8 Proposition [8.13| and Lemma |8.18| hold. It

suffices to show generalization on negative points. Assume that gradient descent converged to a
global minimum at iteration 7. Let (z, —1) be a negative point. Assume without loss of generality
that z; = @9 for all 1 < i < d. Define the following sums for [ € {2,4},

X Y [maxfo (w9 o), o (w0 27)}]

JEWF (2UWT(4)
Y, ()= Z [max {0 (uij) . xl_) yoes O (u%j) : x;)H
JEUS ()

Z(0) = 3 [max{a(um -wf) ’“_70(uu).x;)}}

i€(UF (UUg (3))nUg ()

First, we notice that
Nwp(@7)=Sr + X7 = Yr (2) =Y (4) = Z7(2) — Z7(4)
X5,8: >0
and
NWT (:137) < -1

imply that
Yr @)+ Yy )+ Zp(2)+Zp(4) 2 11 24)
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We note that by the analysis in Lemma 8.18] it holds that for any ¢, j; € U (2) and j» € Uy (4),
either j; € U;"(2) and j, € U, (4), or j; € U, (4) and jo € U,;"(2). We assume without loss of
generality that j; € U (2) and j2 € U (4). It follows that in this case Ny, (2) < S + X —
Z7(2) = Y5 (2). Eptherwise we would replace Y (2) with Y- (4) and vice versa and continue
with the same proof.

E+2vk
k_ovEk’

Let a(k) = By Lemma(8.20/and Lemma|3.18

c
Zp(4) <ak)Zr(2) + Zy (2) < k) Zp(2) + Zn
and by Lemma@ and Lemma@ there exists Y < ¢, such that:

Y (4) < a(k)Yy (2) +Y < a(k)¥5 (2) +

Plugging these inequalities in Eq. 24] we get:

a(k)Z5 (2) + S + a(k)Yr (2) + ¢ + Vi (2) + Z7(2) > 1

4

which implies that
5cyy

Y5 (2)+ Z5(2) > ————

By Lemma we have X ;. < 34c,. Hence, by using the inequality S < ¢, we conclude that
_ 5ey
Nw,(2) < Sp + X5 — Z57(2) — Y5 (2) < 35¢, — le <0
2

where the last inequality holds for & > 64 (%) .|"’| Therefore, z is classified correctly. O

8.6.9 FINISHING THE PROOF

First, for k& > 120, with probability at least 1 — Vok 16e~8, Proposition [8.13] Lemma [8.14

Jmesk
and Lemma [8.18|hold. Also, for the bound on 7', note that in this case 28(7+cl+é cn) > 7((Z+;\+/%’;) )
n 2

401 _361

Define 8; = 739?31017] and By = 335601% and let 8 = max{f1, B2}. Fory > 8and ¢, < {5 it
2

holds that 64 (%) < 120. By Proposition 8.17|and Proposition|8.21} it follows that for &k > 120

gradient descent converges to a global minimum which classifies all points correctly.

We will now prove pattern detection results. In the case of over-paramterized networks, in Propo-

5¢cy

sition [8.17| we proved that X+(1),X*+(3) > XE"1 Since for i € {1,3} it holds that

1+a(k)
Dy, > XT(i), it follows that patterns @1 and x3 are detected. Similarly, in Proposition
our analysis implies that, without loss of generality, Y- (2) + Z5(2), Y (4) + Z7 (4) > ;(_kiﬁll

Since, for [ € {2,4}, Dy, > Y, (1) + Z; (1) (under the assumption that we assumed without loss

of generality), it follows that patterns x5 and x4 are detected. The confidence of the detection is at

5¢

least Oc(ki)il .

8.7 PROOF OF THEOREM[5.3]

1. We refer to Eq. [T7] in the proof of Proposition [8:13] To show convergence and provide
convergence rates of gradient descent, the proof uses Lemma|[8.1] However, to only show

"2The fact that we can omit the term —Zr (4) from the latter inequality follows from Lemma

5c

13 1——* . . . . . B+1 2
Itholds that 35¢, — 7547 < Oif and only if (k) < 8 which holds if and only if k > 64 ( 575 ) .
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convergence, it suffices to bound the probability that W, (1) U W, (3) # 0 and that the
initialization satisfies Lemma Given that Lemma [8.2] holds (with probability at least

1—/2e7), then W (1) U W' (3) # 0 holds with probability &.

By the argument above, with probability at least (p p_ )™ (1 - §e*32) 3 all training

points are diverse, Lemma|8.2|holds with & = 2 and W (1) U W, (3) # 0 which implies
that gradient descent converges to a global minimum. For the rest of the proof we will
condition on the corresponding event. Let T be the iteration in which gradient descent
converges to a global minimum. Note that 7" is a random variable. Denote the network at
iteration 7' by N. For all z € R?? denote

N(z) = JE::I [max{a (w(j) . zl) s O (w(j) . zd>} — max {0’ (u(j) ~z1> sy O (u(j) . zd> }]

Let I denote the event for which at least one of the following holds:

(@) W;(1) = 0.

(b) Wi (3)=0.

() uM - xy >0and u® - x5 > 0.

(d u® - x4 >0andu® - x4 > 0.

Our proof will proceed as follows. We will first show that if E' occurs then gradient descent
does not learn f*, i.e., the network NV does not satisfy sign (N(z)) = f*(x) forall z €
{£1}%4. Then, we will show that P [E] > 1. This will conclude the proof.
Assume that one of the first two items in the definition of the event E occurs. Without
loss of generality assume that W; (1) = 0 and recall that =~ denotes a negative vector
which only contains the patterns @2, x4 and let 2z € R2? be a positive vector which

only contains the patterns x1, 2, 4. By the assumption W;I (1) = 0 and the fact that
x1 = —ag it follows that for all j = 1,2,

max {a ('w(j) zf) sy O (w(j) . zj)} = max{a (w(j) . :cf) sy O ('w(j) :1:5)}

Furthermore, since zT contains more distinct patterns than =, it follows that for all j =
1,2,

max {a <u(j) - zf) s O (u(j) - zZ{)} > max{a (u(j) -acl_) s O (u(j) - sc;)}

Hence, N(zT) < N(z™). Since at a global minimum N (z~) < —1, we have N(z1) <
—1 and 25 is not classified correctly.

Now assume without loss of generality that the third item in the definition of E occurs. Let
2z~ be the negative vector with all of its patterns equal to a4. It is clear that N(27) > 0
and therefore z~ is not classified correctly. This concludes the first part of the proof. We
will now proceed to show that P [E] > 1.

Denote by A; the event that item ¢ in the definition of E occurs and for an event A denote by
A€ its complement. Thus E¢ = N}_; AS and P [E°] = P[A§ N A§ | AF N AS]P[AS N AS).
We will first calculate P[A§ N AS]. By Lemma we know that for i € {1,3}, W, (i) =
W (i). Therefore, it suffices to calculate the probabilty that W (1) # () and W, (3) # 0,
provided that W™ (1) U W™ (3) # (). Without conditioning on W™ (1) U W (3) # 0, for
eachl < ¢ <4and1 < j < 2the event that j € WJ () holds with probability %. Since

the initializations of the filters are independent, we have P[A§ N A§] = 1. E]

We will show that P[A5NAS | ASNAS] = 3 by a symmetry argument. This
will finish the proof of the theorem. For the proof, it will be more convenient
to denote the matrix of weights at iteration ¢ as a tuple of 4 vectors, ie, W, =
(w(()l),wé2),u(()l),u62)). Consider two initializations Wo(l) = ('wél),wgf),uél),ugf))

and WO(Z) = (w(()l)7w82), —u(()l),u(()z)) and let Wt(l) and Wt(z) be the corresponding
weight values at iteration ¢. We will prove the following lemma:

"“Note that this holds after conditioning on the corresponding event of Lemma
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Lemma 8.22. For all t > 0, if W = (wi”,w?),ui”,u?)) then W» =
(wgl), w,EQ), —ugl), uff)).

Proof. We will show this by induction on ¢. his holds by definition for ¢ = 0. Assume

it holds for an iteration ¢. Denote Wt(i)l = (21,292, v1,v2). We need to show that z; =

wﬁr)l, Zo = wgi)l, v = —uifgl and vy = uﬁ)l By the induction hypothesis it holds that
NWt(l) (xT) = NWfQ) (%) and Nth (x7) = NWt@) (z ™). This follows since for diverse
points (either positive or negative), negating a neuron does not change the function value.

Thus, according to Eq.|10/and Eq. we have z; = wgi)l, Z9 = wg_)l and vy = ug_)l

We are left to show that v = fug_)l. This follows from Eq. (1 1|and the following facts:
(a) x3 = —x.

(b) Ty = —x4.

(c) argmax; ;<4 u-x; = 1if and only if arg max; ;<4 —u - x; = 3.

(d) argmax; ;<4 u-x; = 2if and only if argmax; ;<4 —u -z, = 4.

(e) arg maX;eo 43 U - T = 2 if and only if arg maX;c o 4y —U - T = 4.
To see this, we will illustrate this through one case, the other cases are similar. Assume,
for example, that arg max; <; <, ugl) ~xp = 3 and argmax;¢ g 4y ugl) -x; = 2 and as-
sume without loss of generality that N 3.« (xt) = Ny (xt) < v and Nyo(xz™) =

t t
N, .2 (x~) > —1. Then, by Eq. “§1+)1 = ugl) — @3 + 2. By the induction hypothesis

Wt
and the above facts it follows that v = —u,(gl) — T+ Ty = —ugl) + T3 —xo = —u&)l.

This concludes the proof.

Consider an initialization of gradient descent where wgl) and w((f) are fixed and the event
that we conditioned on in the beginning of the proof and A{ N AS hold. Define the set B;
to be the set of all pair of vectors (vy,vs) such that if u(()l) = v; and uél) = v, then at
iteration 7, u(") - &5 > 0 and u(® - 25 > 0. Note that this definition implicitly implies
that this initialization satisfies the condition in Lemma 8.2 and leads to a global minimum.
Similarly, let By be the set of all pair of vectors (v, vs3) such that if u(()l) = v; and
u(()l) = v, then at iteration T, u») - &4 > 0 and ©(? - &5 > 0. First, if v1,V2) € By then
(—v1,vy) satisfies the conditions of Lemma|[8.2} Second, by Lemma[8.22] it follows that
if (v1,v2) € By then initializating with (—v1, v3), leads to the same values of Ny, (™)
and Ny, () in all iterations 0 < ¢ < T'. Therefore, initializing with (—v1,v3) leads
to a convergence to a global minimum with the same value of T as the initialization with
(v1,v2). Furthermore, if (v1,v3) € B, then by Lemma , initializing with uél) =
—v; and uél) = vy results in u) -y < 0and u? -5 > 0. It follows that (v1,vs) € By
if and only if (—vq,vs) € Bs.

Forly, Iy € {2, 4} define Py, , = P [u<1> x> 0Au? -z, > 0] AS N AS, wl, wg2>]
Then, by symmetry of the initialization and the latter arguments it follows that P o = Py ».
By similar arguments we can obtain the equalities Py o = Py o = Py 4 = Po 4.

Since all of these four probabilities sum to 1, each is equal to i. []E]Taking expectations of

these probabilities with respect to the values of w(()l) and wgf) (given that Lemmam and

Af N A$ hold) and using the law of total expectation, we conclude that

P[AgmAz|A§mA;]:P[u<1>-x4>om<2>-x2>0\A;mAg}

1
+]P’[u(1)~a:2>0/\u(2)~:v4>0|AE‘OAS} =5

I5Recall that we condition on the event corresponding to Lemma By negating a weight vector we still
satisfy the bounds in the lemma and therefore the claim that will follow will hold under this conditioning.

'%Note that the probablity that u® .z ; = 01s 0 for all possible ¢ and j.
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Finally, we show results for detection of a pattern. To see this, we will show that if one of
the four conditions of the event £ defined above is met, then for ¢4 > 2¢;), the network
does not detect all patterns. If one of the last two conditions hold, then this is true even for
cq > 0. Now, assume without loss of generality that W; (1) = 0. In this case by Lemma
and Lemma|8.2} it follows that

Dy, = Z [U (wg) . ml)] < 2¢,

JEWL (2)UW S (4)
and therefore, ; cannot be detected with confidence greater than 2c,,.

2. Let Z; be the set of positive points which contain only the patterns 1, 2, 4, 25 be the
set of positive points which contain only the patterns xs, 2, 4. Let Z3 be the set which
contains the negative point with all patterns equal to 2 and Z,4 be the set which contains
the negative point with all patterns equal to x4. By the proof of the previous section, if
the event F holds, then there exists 1 < 4 < 4, such that gradient descent converges to a
solution at iteration T" which errs on all of the points in Z;. Therefore, its test error will be
at least p* (recall Eq.[3).

8.8 PROOF OF THEOREM [4.1]

Letd > 1—pyp_(1—c—16e78). By Theorem given 2 samples, one positive and one negative,
with probability at least 1 — 6 < pyp_ (1 — ¢ — 16e~®), gradient descent will converge to a global
minimum that has 0 test error. Therefore, for all € > 0, m(e, §) < 2. On the other hand, by Theorem

5.3 if m < 22555) hen with probabil h
Spirm < Wt en with probability greater than

10%(33?52)) 33
) les(pyr) 1—c)— =
(p+p-) (-0
gradient descent converges to a global minimum with test error at least p*. It follows that for

2log %
0 <e<p*,m(ed) > W

0

9 XOR

In this section we assume that we are given a training set S C {£1}? x {£1}? consisting of
points (x1, 1), (2, —1), (x3,1), (x4, —1), where 1 = (1,1), &2 = (—1,1), z3 = (—1,—1) and
x4 = (1,—1). Our goal is to learn the XOR function with gradient descent.

Note that in the case of two dimensions, the convolutional network introduced in Section [3]reduces
to the following two-layer fully connected network.

Ny, (x) = Z [0 (wgi) a:) -0 (ugz) . a:)]

i=1
We consider running gradient descent with a constant learning rate n < %, ¢y < 1 and IID gaussian

initialization with mean 0 and standard deviation o4 = We assume that gradient descent
minimizes the hinge loss

cy
16k3/2 "

(W)=Y max{l-yNw(=),0}
(z,y)€S

where optimization is only over the first layer. We will show that gradient descent converges to the
global minimum in a constant number of iterations.

For each point x; € S define the following sets of neurons:
Wi i) = {i w2 >0}

Wi (i) = {j w2 <0}
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U (i) = {j |uf -2 > 0}

U (i) = {j |uf -2 < 0}

Lemma 9.1. Fori € {1,3}, if j € W, (i) then j € W, (i) for all t > 0 and if j € Wy (i) then
j € W (i) forall t > 0. Similarly, fori € {2,4}, if j € U;" (i) then j € U, (i) for all t > 0 and if
j € W[ (i) then j € U; (i) forall t > 0.

Proof. Without loss of generality it suffices to prove the claim for W, (1). This follows by
symmetry and the fact that j € W, (1) if and only if j € W, (3). The proof is by induc-
tion. Assume that 7 € Wf +. The gradient of w(® with respect to a point (z,y) is given

by 8;1?(’5’)) (W) = —yo'(w" - x)xl, Ny (@)<1. Therefore, by the facts wij) -x3 < 0 and
X1 - T2, x1 - &4 = 0 it follows that wi@l - @1 > 0, which concludes the proof. O

Lemma 9.2. With probability at least 1 — 8e™8, forall 1 < j < 4

k k
5~ Wk < |W6i_(‘7)} ) ’U(T(J)’ < 3 +2VE

Proof. Without loss of generality consider ‘WOJF (1) ] Since the sign of a one dimensional Gaussian
random variable is a Bernoulli random variable, we get by Hoeffding’s inequality

2(22k)

P(’]W()*(1)|—];’<2\/E) <2 F =2°

Since |W"(1)| + |[Wy"(3)| = k with probability 1, we get that if ||W"(1)| — £| < 2v/k then
] ’WJ (3)‘ — §| < 2V/k. The result now follows by symmetry and the union bound. O

For each point x;, define the following sums:

sty =Y o (w? )

JEWS (i)

R (i) = Z o (uij) a:,)

JEUS (i)
Rr()= Y o(u? a)
JEU; (3)

We will prove the following lemma regarding S;" (1), S; (1), R} (1), R; (1) for i = 1. By symme-
try, analogous lemmas follow for i # 1.

Lemma 9.3. The following holds with probability > 1 — \)?:’;k :

1. Forallt >0, Rf (1) + R; (1) < kn.

2. Forallt >0, 5; (1) =0.

3. Lett > 0. If —yNw,(w1) < 1, then S;(1) > S} (1) + |W;5(1)| 2. Otherwise, if
—yNw, (1) > 1then S}, (1) = 5, (1).
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Proof. 1. For ¢t = 0 the claim holds by Lemma[8.2] Assume by contradiction that there exists
t > 0, such that R; (1) + R; (1) > kn. It follows that, without loss of generality, there
exists j € U;"(1) such that o (u!? - :1:1) > 1. In each iteration u\”) - ; can increase by

at most 7, therefore by Lemmathere exists 0 < ¢’ < tsuchthat0 < o (ufﬂ ). wl) <n

and o (u(j) . :1:1) > n. However, in this case uigil = ui?) + axy + By + vy Where

41
«a < 0. Therefore, uE?)H sy < uif) -1 < 1, a contradiction.

2. This is a direct consequence of Lemma(9.1]

3. By Lemma if j € Wit (1) and —y N, (21) < 1thenw?), = w4 9@+ Bzs+ms,
from which the first part of the claim follows. The second claim follows similarly.

O

Proposition 9.4. Assume that k > 25. With probability > 1 — ﬁk — 8¢~ 8, for all i, if until

iteration T' there were at least | > k—Tk\/E + 10 iterations, in which —yNw, (x;) < 1, then it holds
that —yNw, (x;) > 1 forallt > T.

Proof. Without loss of generality assume that ¢ = 1. By Lemma[9.3]and Lemma with probabil-
NI 7). Therefore,

ity > 1 — o225 — 8¢5, if —yNuw, (1) < 1then Sy (1) > S (1) + (g —2

by Lemma[.3] forallt > T
Nw, (z) = S (1) + S; (1) = R (1) + Ry (1)
> (g—Q\/E) In—kn
>1

where the last ineqaulity follows by the assumption on [. O

Theorem 9.5. Assume that k > 25. With probability > 1 — \)f:’;k —8e~8, after at most k:ék\/g +40

iterations, gradient descent converges to a global minimum.

Proof. Proposition implies that there are at most k_42k 75T 40 iterations in which there exists

(z;,y;) such that —y; Ny, (;) < 1. After at most that many iterations, gradient descent converges
to a global minimum. O

10 VC DIMENSION

As noted in Remark 3.1} the VC dimension of the model we consider is at most 15. To see this, we
first define for any z € {£1}2? the set P, C {#1}2 which contains all the distinct two dimensional
binary patterns that z has. For example, for a positive diverse point z it holds that P, = {4-1}2.
Now, for any points z(1), 2(2) € {£112? such that P, = P, and for any filter w € R? it holds
that max; o (w . zgl)) = max; o (w : z§2)). Therefore, for any W, Ny (V) = Ny (2?).
Specifically, this implies that if both z(1) and 2(?) are diverse then Ny (2(1)) = Ny (2(?). Since
there are 15 non-empty subsets of {1}2, it follows that for any k the network can shatter a set of
at most 15 points, or equivalently, its VC dimension is at most 15. Despite these expressive power
limitations, there is a generalization gap between small and large networks in this setting, as can be
seen in Figure[I]
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