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ABSTRACT

Gatys et al. (2015a) showed that pair-wise products of features in a convolutional
network are a very effective representation of image textures. We propose a simple
modification to that representation which makes it possible to incorporate long-
range structure into image generation, and to render images that satisfy various
symmetry constraints. We show how this can greatly improve rendering of regular
textures and of images that contain other kinds of symmetric structure. We also
present applications to inpainting and season transfer.

1 INTRODUCTION

There are currently two dominant approaches to texture synthesis: non-parametric techniques, which
synthesize a texture by extracting pixels (or patches) from a reference image that are resampled for
rendering (Efros & Leung, 1999; Kwatra et al., 2003), and parametric statistical models, which op-
timize reconstructions to match certain statistics computed on filter responses (Heeger & Bergen,
1995; Portilla & Simoncelli, 2000). Recently, the second approach has seen a significant advance-
ment, after Gatys et al. (2015a) showed that a CNN pre-trained on an object classification task, such
as ImageNet (Russakovsky et al., 2015), can be very effective at generating textures. Gatys et al.
(2015a) propose to minimize with respect to the input image a loss function, that measures how
well certain high-level features of a reference image are preserved. The reference image constitutes
an example of the texture to be generated. The high-level features to be preserved are pair-wise
products of feature responses, averaged over the whole image, referred to as the “Gramian” in that
work. In Gatys et al. (2015b), the same authors show that by adding a second term to the cost, which
matches the content of another image, one can render that other image in the “style” (texture) of
the first. Numerous follow-up works have since then analysed and extended this approach (Ulyanov
et al., 2016; Johnson et al., 2016; Ustyuzhaninov et al., 2016).

As shown in Figure 1, this method produces impressive results. However, it fails to take into account
non-local structure, and consequently cannot generate results that exhibit long-range correlations in
images. An example of the importance of long-range structure is the regular brick wall texture in
the middle of the figure. Another example is the task of inpainting, where the goal is to fill in a
missing part of an image, such that it is faithful to the non-missing pixels. Our main contribution is
to introduce a way to deal with long-range structure using a simple modification to the product-based
texture features. Our approach is based on imposing a “Markov-structure” on high-level features,
allowing us to establish feature constraints that range across sites instead of being local. Unlike
classical approaches to preserving spatial structure in image generation, such as Markov Random
Fields and learning-based extensions (Roth & Black, 2005), our approach does not impose any
explicit local constraints on pixels themselves. Rather, inspired by Gatys et al. (2015a), it encourages
consistency to be satisfied on high-level features and on average across the whole image. We present
applications to texture generation, inpainting and season transfer.

2 THE ARTISTIC STYLE ALGORITHM

2.1 SYNTHESIS PROCEDURE

Given a reference texture, x, the algorithm described in Gatys et al. (2015a) permits to synthesize
by optimization a new texture x̂ similar to x. To achieve this, the algorithm exploits an ImageNet
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Figure 1: Reference image (left) and generated texture (right) using the procedure described in Gatys
et al. (2015a).

Figure 2: Summary of the texture synthesis procedure described in Gatys et al. (2015a). We use a
VGG-19 network Simonyan & Zisserman (2014) as the pre-trained CNN.

pre-trained model to define metrics suitable for describing textures: “Gram” matrices of feature
maps, computed on top of L selected layers. Formally, let N l be the number of maps in layer l of a
pre-trained CNN. The corresponding Gram matrix Gl is a N l ×N l matrix defined as:

Glij =
1

M l

M l∑
k=1

F likF
l
jk =

1

M l
〈F li:, F lj:〉 (1)

where F li: is the ith vectorized feature map of layer l, M l is the number of elements in each map
of this layer, and where 〈 ·, ·〉 denotes the inner product. Equation 1 makes it clear that Gl captures
how feature maps from layer l are correlated to each other. Diagonal terms, Glii are the squared
Frobenius norm of the ith map

∥∥F li:∥∥2F , so they represent its spatially averaged energy. We will
discuss the Gramians in more detail in the next paragraph. Once the Gram matrices {Gl}l∈[1,L]
of the reference texture are computed, the synthesis procedure by Gatys et al. (2015a) amounts to
constructing an image that produces Gram matrices {Ĝl}l∈[1,L] that match the ones of the reference
texture. More precisely, the following loss function is minimized with respect to the image being
constructed:

Lstyle =
L∑
l=1

wl

∥∥∥Ĝl −Gl∥∥∥2
F
=

L∑
l=1

wlLlstyle (2)

where wl is a normalizing constant similar to Gatys et al. (2015a).

The overall process is summarized in Figure 2. While the procedure can be computationally ex-
pensive, there have been successful attempts reported recently which reduce the generation time
(Ulyanov et al., 2016; Johnson et al., 2016).

2.2 WHY GRAM MATRICES WORK

Feature Gram matrices are effective at representing texture, because they capture global statistics
across the image due to spatial averaging. Since textures are static, averaging over positions is re-
quired and makes Gram matrices fully blind to the global arrangement of objects inside the reference
image. This property permits to generate very diverse textures by just changing the starting point
of the optimization. Despite averaging over positions, coherence across multiple features needs to
be preserved (locally) to model visually sensible textures. This requirement is taken care of by
the off-diagonal terms in the Gram matrix, which capture the co-occurence of different features at
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Figure 3: Exploiting Gram matrices of feature maps as in Gatys et al. (2015a) (1st row) or only the
squared Frobenius norm of feature maps (2nd row) for increasingly deep layers (from left to right).

a single spatial location. Indeed, Figure 3 shows that restricting the texture representation to the
squared Frobenius norm of feature maps (i.e. diagonal terms) makes distinct object-parts from the
reference texture encroach on each other in the reconstruction, as local coherence is not captured by
the model. Exploiting off-diagonal terms improves the quality of the reconstruction as consistency
across feature maps is enforced (on average across the image).

The importance of local coherence can be intuitively understood in the case of linear features (or
in the lowest layer of a convolutional network): when decomposing an image using Gabor-like
features, local structure can be expressed as the relative offsets in the Fourier phase angles between
multiple different filter responses. A sharp step-edge, for example, requires the phases of local
Fourier components at different frequencies to align in a different way than a blurry edge or a
ridge (Morrone & Burr, 1988; Kovesi, 1999). Also, natural images exhibit very specific phase-
relationships across frequency components in general, and destroying these makes the image look
unnatural (Wang & Simoncelli, 2003). The same is not true of Fourier amplitudes (represented
on the diagonals of the Gramian), which play a much less important role in the visual appearance
(Oppenheim & Lim, 1981). In the case of deeper representations, the situation is more complex, but
it is still local co-occurrence averaged over the whole image that captures texture.

Unfortunately, average local coherence falls short of capturing long-range structure in images. Spa-
tial consistency is hard to capture within a single filter bank, because of combinatorial effects. In-
deed, since Gram matrices capture coherence at a single spatial location, every feature would have
to be matched to multiple transformed versions of itself. A corollary is that every feature would have
to appear in the form of multiple transformed copies of itself in order to capture spatial consistency.
However, this requirement clashes with the limited number of features available in each CNN layer.
One way to address this is to use higher-layer features, whose receptive fields are larger. Unfortu-
nately, as illustrated in Figure 3, even if using layers up to pool5 whose input receptive field covers
the whole image1 (first row, last column), the reconstruction remains mainly unstructured and the
method fails to produce spatial regularities.

3 MODELING SPATIAL CO-OCCURENCES

To account for spatial structure in images, we propose encoding this structure in the feature self-
similarity matrices themselves. To this end, we suggest that, instead of computing co-occurences
between multiple features within a map, we compute co-occurences between feature maps F l and
spatially transformed feature maps T (F l), where T denotes a spatial transformation. In the simplest
case, T represents local translation, which amounts to measuring similarities between local features
and other neighbouring features. We denote by Tx,+δ the operation consisting in horizontally trans-
lating feature maps by δ pixels and define the transformed Gramian:

Glx,δ,ij =
1

M l
〈Tx,+δ

(
F li:
)
, Tx,−δ

(
F lj:
)
〉 (3)

1For this experiment, the image size is 264× 264, which is also the size of the pool5 receptive field.

3



Published as a conference paper at ICLR 2017

Figure 4: Computing the shifted Gram matrix for a given layer with feature maps of width X .

where Tx,−δ performs a translation in the opposite direction. As illustrated in Figure 4, the transfor-
mation in practice simply amounts to removing the δ first or last columns from the raw feature maps.
Therefore, the inner product now captures how features at position (i, j) are correlated with features
located at position (i, j + δ) in average. While Figure 4 illustrates the case where feature maps
are horizontally shifted, one would typically use translations along both the x-axis and the y-axis.
Our transformed Gramians are related to Gray-Level Co-occurrence Matrices (GLCM) (Haralick
et al., 1973) which compute the unnormalized frequencies of pixel values for a given offset in an
image. While GLCMs have been mainly used for analysis, some work tried to use these features
for texture synthesis (Lohmann, 1995). Usually, GLCMs are defined along 4 directions: 0◦ and 90◦

(i.e. horizontal and vertical offsets), as well as 45◦ and 135◦ (i.e. diagonal offsets). In comparison,
our method does not consider diagonal offsets and captures spatial coherence on high-level features,
making use of a pre-trained CNN, instead of working directly in the pixel domain.

With this definition for transformed Gram matrices, we propose defining the loss as: L =
Lstyle + Lcc, where cc stands for cross-correlation. Like Lstyle, Lcc is a weighted sum of mul-
tiple losses Llcc,δ defined for several selected layers as the mean squared error between transformed
Gram matrices of the reference texture and the one being constructed:

Llcc,δ =
1

2

(
Llcc,x,δ + Llcc,y,δ

)
=

1

2

(∥∥∥Ĝlx,δ −Glx,δ∥∥∥2
F
+
∥∥∥Ĝly,δ −Gly,δ∥∥∥2

F

)
(4)

Although this amounts to adding more terms to a representation that was already high-dimensional
and overparametrized, we found that these additional terms do not hurt the diversity of generated
textures. Indeed, the new loss remains blind to the global arrangement of objects. In fact, there exists
a specific situation where our approach is strictly equivalent to computing Gram matrices of deeper
layers: with linear activations and “one-hot” convolution kernels2, deeper layers would simply
contain translated versions of lower feature maps. In that case, computing Gram matrices of deeper
layers would permit to directly capture cross-correlation statistics in lower ones. Nevertheless, this
situation is very unlikely when using a pretrained CNN, as the network probably learned operations
more useful than simple translations during its supervised training.

While we focus on translation for most of our results, we shall discuss other types of transformation
in the experiments Section.

4 EXPERIMENTS

In our experiments, we exploit the same normalized version of the VGG-19 network3 (Simonyan &
Zisserman, 2014) as in Gatys et al. (2015a;b) and layers conv1 1, pool1, pool2, pool3, and pool4 are
always used to define the standard Gram matrices. In our method, we did not use conv1 1 to define
cross-correlation terms, as the large number of neurons at this stage makes the computation of Gram
matrices costly. Corresponding δ values for each layer are discussed in the next paragraph.

2To match our translated Gramians, the only non-zero component would be δ or −δ shifted from the center.
3available at http://bethgelab.org/media/uploads/deeptextures/vgg normalised.caffemodel.
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Figure 5: Pool2 reconstruction using different values for δ in Lpool2cc,δ . (1st column): Without cross-
correlation terms. (Other columns): Using a single cross-correlation term with a fixed δ value (1st
row) or using multiple cross-correlation terms with distinct δ values (2nd row).

Finally, our implementation4 uses Lasagne (Dieleman et al., 2015). Each image is of size 384×384.
Most textures used as references in this paper were taken from textures.com and pixabay.com.

4.1 EXPERIMENTS WITH TRANSLATION-GRAMIANS

The δ parameter is of central importance as it dictates the range of the spatial constraints. We
observed that the optimal value depends on both the considered layer in the pre-trained CNN and
the reference texture, making it difficult to choose a value automatically.

For instance, Figure 5 shows generated images from the brick wall texture using only the pool2 layer
with different δ configurations. The first row depicts the results when considering single values of
δ only. While δ = 4 or δ = 8 are good choices, considering extreme long-range correlations does
not help for this particular texture: a brick depends mostly on its neighbouring bricks and not the
far-away ones. More precisely, a translation of more than 16 pixels in the pool2 layer makes the
input receptive field move more than 64 pixels. Therefore δ = 16 or δ = 32 do not capture any
information about neighbouring bricks. Unfortunately, this is not true for all textures, and δ = 16 or
δ = 32 might be good choices for another image that exhibits longer structures.

Searching systematically for a δ configuration that works well with the reference texture being con-
sidered would be a tedious task: even for a very regular texture with a periodic horizontal (or ver-
tical) pattern, it is hard to guess the optimal δ values for each layer (for deeper ones in particular).
Instead, we propose to use a fixed but wide set of δ values per layer, by defining the cost to be:
Llcc =

∑
k

Llcc,δk . A potential concern is that combining many loss terms can hurt the reconstruc-

tion or the diversity of generated textures. Figure 5 (second row) shows contrarily that there is
no visual effect from using δ values that are not specifically useful for the reference texture be-
ing considered: the rendering benefits from using δ ∈ {2, 4, 8} while considering bigger values
(δ ∈ {2, 4, 8, 16, 32}, e.g.) does not help, but does not hurt the reconstruction either. We found
the same to be true for other textures as well, and our results (shown in the next Section) show that
combining the loss terms is able to generate very diverse textures. A drawback from using multiple
cross-correlation terms per layers, however, is computational. We found that in our experimental
setups, adding cross-correlation terms increases the generation time by roughly 80%.

As a guide-line, for image sizes of roughly 384 × 384 pixels, we recommend the following δ val-
ues per layer (which we used in all our following experiments): {2, 4, 8, 16, 32, 64} for pool1,
{2, 4, 8, 16, 32} for pool2, {2, 4, 8, 16} for pool3, and {2, 4, 8} for pool4. The number and the
range of δ values decrease with depth because feature maps are getting smaller due to 2× 2 pooling
layers. This configuration should be sufficient to account for spatial structure in any 384 × 384
image.

4available at https://github.com/guillaumebrg/texture generation
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Figure 6: Some results of our approach compared with Gatys et al. (2015a). Only the initialization
differs in the last two columns. Further results are shown in the supplementary material.

4.2 SYNTHESIS OF STRUCTURED TEXTURE EXAMPLES

Figure 6 shows the result of our approach applied to various structured and unstructured textures.
It demonstrates that the method is effective at capturing long-range correlations without simply
copying the content of the original texture. For instance, note how our model captures the depth
aspect of the reference image in the third and fourth rows.
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Figure 7: Texture generation applied to in-painting. More in-painted images can be found in the
supplementary material.

Figure 8: Season transfer examples.

The problem of synthesizing near-regular structures is challenging because stochasticity and regu-
larity are adversarial properties (Lin et al., 2006). Non-parametric patch-based techniques, such as
Efros & Freeman (2001), are better suited for this task because they can tile5 the reference image.
On the other hand, regular structures are usually more problematic for parametric statistical models.
Nevertheless, the two first rows of Figure 6 demonstrate that our approach can produce good visual
results and can reduce the gap to patch-based methods on these kinds of texture.

Even if the reference image is not a texture, the generated images in the last row (Leonardo Di-
caprio’s face) provide a good visual illustration of the effect of translation terms. In contrast to
Gatys et al., our approach preserves longer-range structure, such as the alignment and similar ap-
pearance of the eyes, hair on top of the forehead, the chin below the mouth, etc. Finally, when the
reference texture is unstructured (fifth row), our solution does not necessarily provide a benefit, but
it also does not hurt the visual quality or the diversity of the generated textures.

4.3 INPAINTING APPLICATION

Modelling long-range correlations can make it possible to apply texture generation to inpainting,
because it allows us to impose consistency constraints between the newly rendered region and the
unmodified parts of the original image.

To apply our approach to texture inpainting, we extracted two patches from the original image:
one that covers the whole area to inpaint, and another one that serves as the reference texture.
Then, approximately the same process as for texture generation is used, with the following two

5Copy and paste patches side by side.
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Figure 9: Generation of abstract symmetric textures.

modifications: First, instead of random noise, the optimization starts from the masked content patch
(the one to inpaint) showing a grey area and its non-missing surrounding. Second, we encourage the
borders of the output to not change much with respect to the original image using an L2 penalty. We
apply the penalty both in the Gatys et al. rendering and in ours. Some inpainted images are shown
in Figure 7. As seen in the figure, our solution significantly outperforms Gatys et al. in terms of
visual quality. Further results are shown in the supplementary material.

4.4 SEASON TRANSFER

Figure 8 shows the result of applying our approach to a style transfer task, as in Gatys et al. (2015b):
transferring the “season” of a landscape image to another one. On this task, the results from our
approach are similar to those from Gatys et al. (2015b). Nevertheless, in contrast to the Gatys et
al. results, our approach seems to better capture global information, such as sky color and leaves
(bottom row), or the appearance of branches in the winter image (top row).

4.5 INCORPORATING OTHER TYPES OF STRUCTURE

While we focused on feature map translations in most of our experiments, other transformations can
be applied as well. To illustrate this point, we explored a way to generate symmetric textures using
another simple transformation. To this end, we propose flipping one of the two feature maps before
computing the Gram matrices: Gllr,ij = 〈F li:, Tlr

(
F lj:
)
〉. Here Tlr corresponds to the left-right

flipping operation, but we also considered up-down flipping of feature maps: Ll = Llstyle + Lllr +
Llud.

As can be seen in Figure 9, in contrast to Gatys et al., the additional loss terms capture which
objects are symmetric in the reference texture, and enforce these same objects to be symmetric in
the reconstruction as well. Other kinds of transformation could be used, depending on the type of
property in the source texture one desires to preserve.
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5 CONCLUSION

We presented an approach to satisfying long-range consistency constraints in the generation of im-
ages. It is based on a variation of the method by Gatys et al., and considers spatial co-occurences
of local features (instead of only co-occurences across features). We showed that the approach per-
mits to generate textures with various global symmetry properties and that it makes it possible to
apply texture generation to in-painting. Since it preserves correlations across sites, the approach is
reminiscent of an MRF, but in contrast to an MRF or other graphical models, it defines correlation-
constraints on high-level features of a (pre-trained) CNN rather than on pixels.
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Supplementary material
A TEXTURE GENERATION
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B INPAINTING
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Gatys et al. loss
Texture Gatys et al. Ours

“red leaves” 3.38e-4 4.72e-4
“floor” 3.68e-4 4.73e-4
Supplementary material textures
“leaves” 4.08e-4 5.14e-4
“cargo” 3.39e-4 4.73e-4

“building” 8.90e-4 6.67e-4
“building2” 7.19e-4 7.78e-4

“cargo2” 1.05e-3 1.18e-3
“small bricks” 1.21e-3 6.82e-4
“football team” 4.56e-3 5.68e-3

Table 1: Final Gatys et al. loss for all inpainted textures (by order of appearance).

Table 1 reports the final Gatys et al. losses obtained by both approaches for all inpainted textures
showed previously. In most cases, the Gatys et al. (2015a) approach converges to a smaller value,
which is not surprising since our method optimizes a modified version of the loss. Table 1, combined
with the visual aspect of Gatys et al. inpainted renderings, illustrates that only imposing local
coherence is not enough to obtain good inpainted textures. Our texture representation seems to be
better suited for this task.
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