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ABSTRACT

We propose a new learning-based approach to solve ill-posed inverse problems in
imaging. We address the case where ground truth training samples are rare and
the problem is severely ill-posed—both because of the underlying physics and
because we can only get few measurements. This setting is common in geophysical
imaging and remote sensing. We show that in this case the common approach to
directly learn the mapping from the measured data to the reconstruction becomes
unstable. Instead, we propose to first learn an ensemble of simpler mappings from
the data to projections of the unknown image into random piecewise-constant
subspaces. We then combine the projections to form a final reconstruction by
solving a deconvolution-like problem. We show experimentally that the proposed
method is more robust to measurement noise and corruptions not seen during
training than a directly learned inverse.

1 INTRODUCTION

A variety of imaging inverse problems can be discretized to a linear system y = Ax + η where
y ∈ RM is the measured data,A ∈ RM×N is the imaging or forward operator, x ∈ X ⊂ RN is
the object being probed by applyingA (often called the model), and η is the noise. Depending on the
application, the set of plausible reconstructions X could model natural, seismic, or biomedical images.
In many cases the resulting inverse problem is ill-posed, either because of the poor conditioning ofA
(a consequence of the underlying physics) or because M � N .

A classical approach to solve ill-posed inverse problems is to minimize an objective functional
regularized via a certain norm (e.g. `1, `2, total variation (TV) seminorm) of the model. These
methods promote general properties such as sparsity or smoothness of reconstructions, sometimes in
combination with learned synthesis or analysis operators, or dictionaries (Sprechmann et al. (2013)).

In this paper, we address situations with very sparse measurement data (M � N ) so that even a
coarse reconstruction of the unknown model is hard to get with traditional regularization schemes.
Unlike artifact-removal scenarios where applying a regularized pseudoinverse of the imaging operator
already brings out considerable structure, we look at applications where standard techniques cannot
produce a reasonable image (Figure 1). This highly unresolved regime is common in geophysics and
requires alternative, more involved strategies (Galetti et al. (2017)).

An appealing alternative to classical regularizers is to use deep neural networks. For example,
generative models (GANs) based on neural networks have recently achieved impressive results in
regularization of inverse problems (Bora et al. (2018), Lunz et al. (2018)). However, a difficulty in
geophysical applications is that there are very few examples of ground truth models available for
training (sometimes none at all). Since GANs require many, they cannot be applied to such problems.
This suggests to look for methods that are not very sensitive to the training dataset. Conversely, it
means that the sought reconstructions are less detailed than what is expected in data-rich settings; for
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Figure 1: We reconstruct an image x from its tomographic measurements. In moderately ill-posed
problems, conventional methods based on the pseudoinverse and regularized non-negative least
squares (x ∈ [0, 1]N , N is image dimension) give correct structural information. In fact, total
variation (TV) approaches give very good results. A neural network (Jin et al. (2016)) can be trained
to directly invert and remove the artifacts (NN). In a severely ill-posed problem on the other hand
(explained in Figure 4) with insufficient ground truth training data, neither the classical techniques
nor a neural network recover salient geometric features.

an example, see the reconstructions of the Tibetan plateau (Yao et al. (2006)).

In this paper, we propose a two-stage method to solve ill-posed inverse problems using random
low-dimensional projections and convolutional neural networks. We first decompose the inverse
problem into a collection of simpler learning problems of estimating projections into random (but
structured) low-dimensional subspaces of piecewise-constant images. Each projection is easier to
learn in terms of generalization error (Cooper (1995)) thanks to its lower Lipschitz constant.

In the second stage, we solve a new linear inverse problem that combines the estimates from the
different subspaces. We show that this converts the original problem with possibly non-local (often
tomographic) measurements into an inverse problem with localized measurements, and that in fact, in
expectation over random subspaces the problem becomes a deconvolution. Intuitively, projecting
into piecewise-constant subspaces is equivalent to estimating local averages—a simpler problem
than estimating individual pixel values. Combining the local estimates lets us recover the underlying
structure. We believe that this technique is of independent interest in addressing inverse problems.

We test our method on linearized seismic traveltime tomography (Bording et al. (1987); Hole (1992))
with sparse measurements and show that it outperforms learned direct inversion in quality of achieved
reconstructions, robustness to measurement errors, and (in)sensitivity to the training data. The latter
is essential in domains with insufficient ground truth images.

2 RELATED WORK

Although neural networks have long been used to address inverse problems (Ogawa et al. (1998);
Hoole (1993); Schiller and Doerffer (2010)), the past few years have seen the number of related
deep learning papers grow exponentially. The majority address biomedical imaging (Güler and
Übeylı (2005); Hudson and Cohen (2000)) with several special issues1 and review papers (Lucas et al.
(2018); McCann et al. (2017)) dedicated to the topic. All these papers address reconstruction from
subsampled or low-quality data, often motivated by reduced scanning time or lower radiation doses.
Beyond biomedical imaging, machine learning techniques are emerging in geophysical imaging
(Araya-Polo et al. (2017); Lewis and Vigh (2017); Bianco and Gertoft (2017)), though at a slower
pace, perhaps partly due to the lack of standard open datasets.

Existing methods can be grouped into non-iterative methods that learn a feed-forward mapping from
the measured data y (or some standard manipulation such as adjoint or a pseudoinverse) to the model
x (Jin et al. (2016); Pelt and Batenburg (2013); Zhu et al. (2018); Wang (2016); Antholzer et al.
(2017); Han et al. (2016); Zhang et al. (2016)); and iterative energy minimization methods, with

1IEEE Transactions on Medical Imaging, May 2016 (Greenspan et al. (2016)); IEEE Signal Processing
Magazine, November 2017, January 2018 (Porikli et al. (2017; 2018)).
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Figure 2: Regularization by Λ random projections: 1) each orthogonal projection is approximated by
a convolutional neural network which maps from a non-negative least squares reconstruction of an
image to its projection onto a lower dimension subspace of Delaunay triangulations; 2) projections
are combined to estimate the original image using regularized least squares.

either the regularizer being a neural network (Li et al. (2018)), or neural networks replacing various
iteration components such as gradients, projectors, or proximal mappings (Kelly et al. (2017); Adler
and Öktem (2017b;a); Chang et al. (2017)). These are further related to the notion of plug-and-play
regularization (Venkatakrishnan et al. (2013)), as well as early uses of neural nets to unroll and
adapt standard sparse reconstruction algorithms (Gregor and LeCun (2010); Xin et al. (2016)). An
advantage of the first group of methods is that they are fast; an advantage of the second group is that
they are better at enforcing data consistency.

Generative models A rather different take was proposed in the context of compressed sensing
where the reconstruction is constrained to lie in the range of a pretrained generative network (Bora
et al. (2017; 2018)). Their scheme achieves impressive results on random sensing operators and
comes with theoretical guarantees. However, training generative networks requires many examples of
ground truth and the method is inherently subject to dataset bias. Here, we focus on a setting where
ground-truth samples are very few or impossible to obtain.

There are connections between our work and sketching (Gribonval et al. (2017); Pilanci and Wain-
wright (2016)) where the learning problem is also simplified by random low-dimensional projections
of some object—either the data or the unknown reconstruction itself (Yurtsever et al. (2017)). This
also exposes natural connections with learning via random features (Rahimi and Recht (2008; 2009)).

3 REGULARIZATION BY RANDOM MESH PROJECTIONS

The two stages of our method are (i) decomposing a “hard” learning task of directly learning an
unstable operator into an ensemble of “easy” tasks of estimating projections of the unknown model
into low-dimensional subspaces; and (ii) combining these projection estimates to solve a reformulated
inverse problem for x. The two stages are summarized in Figure 2. While our method is applicable
to continuous and non-linear settings, we focus on linear finite-dimensional inverse problems.

3.1 DECOMPOSING THE LEARNING PROBLEM

Statistical learning theory tells us that the number of samples required to learn an M -variate L-
Lipschitz function to a given sup-norm accuracy is O(LM ) (Cooper (1995)). While this result is
proved for scalar-valued multivariate maps, it is reasonable to expect the same scaling in L to hold
for vector-valued maps. This motivates us to study Lipschitz properties of the projected inverse maps.

We wish to reconstruct x, an N -pixel image from X ⊂ RN where N is large (we think of x as an√
N ×

√
N discrete image). We assume that the map from x ∈ X to y ∈ RM is injective so that it is

invertible on its range, and that there exists an L-Lipschitz (generally non-linear) inverse G,

‖G(y1)−G(y2)‖ ≤ L ‖y1 − y2‖ .
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In order for the injectivity assumption to be reasonable, we assume that X is a low-dimensional
manifold embedded in RN of dimension at most M , where M is the number of measurements. Since
we are in finite dimension, injectivity implies the existence of L (Stefanov and Uhlmann (2009)).
Due to ill-posedness, L is typically large.

Consider now the map from the data y to a projection of the model x into some K-dimensional
subspace S, where K � N . Note that this map exists by construction (since A is injective on X ),
and that it must be non-linear. To see this, note that the only consistent2 linear map acting on y is
an oblique, rather than an orthogonal projection on S (cf. Section 2.4 in Vetterli et al. (2014)). We
explain this in more detail in Appendix A.

Denote the projection by P Sx and assume S ⊂ RN is chosen uniformly at random.3 We want to
evaluate the expected Lipschitz constant of the map from y to P Sx, noting that it can be written as
P S •G:

E ‖P S •G(y1)− P S •G(y2)‖ ≤
√
E ‖P S •G(y1)− P S •G(y2)‖2 ≤

√
K
NL ‖y1 − y2‖

where the first inequality is Jensen’s inequality, and the second one follows from
E ‖P Sx‖2 = Ex>P>SP Sx = x>E(P>SP S)x

and the observation that EP>SP S = K
N IN . In other words, random projections reduce the Lipschitz

constant by a factor of
√
K/N on average. Since learning requires O(LK) samples, this allows us to

work with exponentially fewer samples and makes the learning task easier. Conversely, given a fixed
training dataset, it gives more accurate estimates.

3.1.1 A CASE FOR DELAUNAY TRIANGULATIONS

The above example uses unstructured random subspaces. In many inverse problems, such as inverse
scattering (Beretta et al. (2013); Di Cristo and Rondi (2003)), a judicious choice of subspace family
can give exponential improvements in Lipschitz stability. Particularly, it is favorable to use piecewise-
constant images: x =

∑K
k=1 xkχk, with χk being indicator functions of some domain subset.

Motivated by this observation, we use piecewise-constant subspaces over random Delaunay triangle
meshes. The Delaunay triangulations enjoy a number of desirable learning-theoretic properties. For
function learning it was shown that given a set of vertices, piecewise linear functions on Delaunay
triangulations achieve the smallest sup-norm error among all triangulations (Omohundro (1989)).

We sample Λ sets of points in the image domain from a uniform-density Poisson process and construct
Λ (discrete) Delaunay triangulations with those points as vertices. Let S = {Sλ | 1 ≤ λ ≤ Λ} be the
collection of Λ subspaces of piecewise-constant functions on these triangulations. Let further Gλ be
the map from y to the projection of the model into subspace Sλ, Gλy = P Sλx. Instead of learning
the “hard” inverse mapping G, we propose to learn an ensemble of simpler mappings {Gλ}Λλ=1.

We approximate each Gλ by a convolutional neural network, Γθ(λ)(ỹ) : RN → RN , parameterized
by a set of trained weights θ(λ). Similar to Jin et al. (2016), we do not use the measured data
y ∈ RM directly as this would require the network to first learn to map y back to the image domain;
we rather warm-start the reconstruction by a non-negative least squares reconstruction, ỹ ∈ RN ,
computed from y. The weights are chosen by minimizing empirical risk:

θ(λ) = arg min
θ

1

J

J∑
j=1

∥∥Γθ(λ)(ỹj)− P Sλxj
∥∥2

2
, (1)

where
{

(xj , ỹj)
}J
j=1

is a set of J training models and non-negative least squares measurements.

3.2 THE NEW INVERSE PROBLEM

By learning projections onto random subspaces, we transform our original problem into that of
estimating x from

{
Γθ(λ)(ỹ)

}Λ

λ=1
. To see how this can be done, ascribe to the columns of Bλ ∈

2Consistent meaning that if x already lives in S, then the map should return x.
3One way to construct the corresponding projection matrix is as P S = WW †, where W ∈ RN×K is a

matrix with standard iid Gaussian entries.
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RN×K a natural orthogonal basis for the subspace Sλ,Bλ = [χλ,1, . . . , χλ,K ], with χλ,k being the

indicator function of the kth triangle in mesh λ. Denote by qλ
def
= qλ(y) the mapping from the data y

to an estimate of the expansion coefficients of x in the basis for Sλ:

qλ(y)
def
= B>λ Γθ(λ)(ỹ)

Let B def
=
[
B1 B2 . . . BΛ

]
∈ RN×KΛ, and q def

= q(y)
def
=
[
q>1 , q

>
2 , . . . , q

>
Λ

]> ∈ RKΛ; then we
can estimate x using the following reformulated problem:

q ≈ B>x,
and the corresponding regularized reconstruction:

x̂ = Ĝ(y)
def
= arg min

x∈[0,1]N

∥∥∥q(y)−B>x
∥∥∥2

+ λϕ(x), (2)

with ϕ(x) chosen as the TV-seminorm ‖x‖TV. The regularization is not essential. As we show
experimentally, if KΛ is sufficiently large, ϕ(x) is not required. Note that solving the original
problem directly using ‖x‖TV regularizer fails to recover the structure of the model (Figure 1).

3.3 STABILITY OF THE REFORMULATED PROBLEM AND “CONVOLUTIONALIZATION”

Since the true inverse map G has a large Lipschitz constant, it would seem reasonable that as the
number of mesh subspaces Λ grows large (and their direct sum approaches the whole ambient space
RN ), the Lipschitz properties of Ĝ should deteriorate as well.

Denote the unregularized inverse mapping in y 7→ x̂ (2) by G. Then we have the following estimate:∥∥G(y1)−G(y2)
∥∥ =

∥∥∥(BT )†q(y1)− (BT )†q(y2)
∥∥∥ ≤ σmin(B)−1

√
ΛLK ‖y1 − y2‖ ,

with σmin(B) the smallest (non-zero) singular value ofB and LK the Lipschitz constant of the stable
projection mappings qλ. Indeed, we observe empirically that σmin(B)−1 grows large as the number
of subspaces increases which reflects the fact that although individual projections are easier to learn,
the full-resolution reconstruction remains ill-posed.

Estimates of individual subspace projections give correct local information. They convert possibly
non-local measurements (e.g. integrals along curves in tomography) into local ones. The key is that
these local averages (subspace projection coefficients) can be estimated accurately (see Section 4).

To further illustrate what we mean by correct local information, consider a simple numerical exper-
iment with our reformulated problem, q = BTx, where x is an all-zero image with a few pixels
“on”. For the sake of clarity we assume the coefficients q are perfect. Recall thatB is a block matrix
comprising Λ subspace bases stacked side by side. It is a random matrix because the subspaces are
generated at random, and therefore the reconstruction x̂ = (B>)†q is also random. We approximate
E x̂ by simulating a large number of Λ-tuples of meshes and averaging the obtained reconstructions.

Results are shown in Figure 3 for different numbers of triangles per subspace, K, and subspaces
per reconstruction, Λ. As Λ or K increase, the expected reconstruction becomes increasingly
localized around non-zero pixels. The following proposition (proved in Appendix B) tells us that this
phenomenon can be modeled by convolution.4

Proposition 1. Let x̂ be the solution to q = B>x given as (B>)†q. Then there exists a kernel κ̃(u),
with u a discrete index, such that E x̂ = x ∗ κ̃. Furthermore, κ̃(u) is isotropic.

While Figure 3 suggests that more triangles are better, we note that this increases the subspace
dimension which makes getting correct projection estimates harder. Instead we choose to stack more
meshes with a smaller number of triangles.

Intuitively, since every triangle average depends on many measurements, estimating each average
is more robust to measurement corruptions as evidenced in Section 4. Accurate estimates of local
averages enable us to recover the geometric structure while being more robust to data errors.

4We note that this result requires adequate handling of boundary conditions; for the lack of space we omit
the straightforward details.
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Figure 3: Illustration of the expected kernel κ(u, v) with varying subspace dimension,K, and number
of subspaces, Λ. Reconstruction of a sparse three-pixel image (left) and the cameraman image (right).

Figure 4: Linearized traveltime tomography illustration: On the left we show a sample model, with
red crosses indicating 25 sensor locations and dashed blue lines indicating linearized travel paths; on
the right we show a reconstruction from

(
25
2

)
= 300 measurements by non-negative least squares.

4 NUMERICAL RESULTS

4.1 APPLICATION: TRAVELTIME TOMOGRAPHY

To demonstrate our method’s benefits we consider linearized traveltime tomography (Hole (1992);
Bording et al. (1987)), but we note that the method applies to any inverse problem with scarce data.

In traveltime tomography, we measure
(
N
2

)
wave travel times between N sensors as in Figure 4.

Travel times depend on the medium property called slowness (inverse of speed) and the task is to
reconstruct the spatial slowness map. Image intensities are a proxy for slowness maps—the lower
the image intensity the higher the slowness. In the straight-ray approximation, the problem data is
modeled as integral along line segments:

y(si, sj) =

∫ 1

0

x(tsi + (1− t)sj) dt, ∀ si 6= sj (3)

where x : R2 → R+ is the continuous slowness map and si, sj are sensor locations. In our
experiments, we use a 128× 128 pixel grid with 25 sensors (300 measurements) placed uniformly in
an inscribed circle, and corrupt the measurements with zero-mean iid Gaussian noise.

4.1.1 ARCHITECTURES AND RECONSTRUCTION

We generate random Delaunay meshes each with 50 triangles. The corresponding projector matrices
compute average intensity over triangles to yield a piecewise constant approximation P Sλx of x.
We test two distinct architectures: (i) ProjNet, tasked with estimating the projection into a single
subspace; and (ii) SubNet, tasked with estimating the projection over multiple subspaces.5

The ProjNet architecture is inspired by the FBPConvNet (Jin et al. (2016)) and the U-Net (Ronneberger
et al. (2015)) as shown in Figure 11a in the appendix. Crucially, we constrain the network output to
live in Sλ by fixing the last layer of the network to be a projector, P Sλ (Figure 11a). A similar trick
in a different context was proposed in (Sønderby et al. (2016)).

5Code available at https://github.com/swing-research/deepmesh under the MIT License.
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We combine projection estimates from many ProjNets by regularized linear least-squares (2) to get
the reconstructed model (cf. Figure 2) with the regularization parameter λ determined on five held-out
images. A drawback of this approach is that a separate ProjNet must be trained for each subspace.
This motivates the SubNet (shown in Figure 11b). Each input to SubNet is the concatenation of
a non-negative least squares reconstruction and 50 basis functions, one for each triangle forming
a 51-channel input. This approach scales to any number of subspaces which allows us to get
visually smoother reconstructions without any further regularization as in (2). On the other hand, the
projections are less precise which can lead to slightly degraded performance.

As a quantitative figure of merit we use the signal-to-noise ratio (SNR). The input SNR is defined as
10 log10(σ2

signal/σ
2
noise) where σ2

signal and σ2
noise are the signal and noise variance; the output SNR is

defined as supa,b 20 log10(‖x‖2/‖x− ax̂− b‖2) with x the ground truth and x̂ the reconstruction.

130 ProjNets are trained for 130 different meshes with measurements at various SNRs. Similarly,
a single SubNet is trained with 350 different meshes and the same noise levels. We compare the
ProjNet and SubNet reconstructions with a direct U-net baseline convolutional neural network that
reconstructs images from their non-negative least squares reconstructions. The direct baseline has
the same architecture as SubNet except the input is a single channel non-negative least squares
reconstruction like in ProjNet and the output is the target reconstruction. Such an architecture was
proposed by (Jin et al. (2016)) and is used as a baseline in recent learning-based inverse problem
works (Lunz et al. (2018); Ye et al. (2018)) and is inspiring other architectures for inverse problems
(Antholzer et al. (2017)). We pick the best performing baseline network from multiple networks
which have a comparable number of trainable parameters to SubNet. We simulate the lack of training
data by testing on a dataset that is different than that used for training.

Robustness to corruption To demonstrate that our method is robust against arbitrary assumptions
made at training time, we consider two experiments. First, we corrupt the data with zero-mean iid
Gaussian noise and reconstruct with networks trained at different input noise levels. In Figures 5a, 12
and Table 1, we summarize the results with reconstructions of geo images taken from the BP2004
dataset6 and x-ray images of metal castings (Mery et al. (2015)). The direct baseline and SubNet
are trained on a set of 20,000 images from the arbitrarily chosen LSUN bridges dataset (Yu et al.
(2015)) and tested with the geophysics and x-ray images. ProjNets are trained with 10,000 images
from the LSUN dataset. Our method reports better SNRs compared to the baseline. We note that
direct reconstruction is unstable when trained on clean and tested on noisy measurements as it often
hallucinates details that are artifacts of the training data. For applications in geophysics it is important
that our method correctly captures the shape of the cavities unlike the direct inversion which can
produce sharp but wrong geometries (see outlines in Figure 5a).
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Figure 5: a) Reconstructions for different combinations of training and testing input SNR. The output
SNR is indicated for each reconstruction. Our method stands out when the training and testing
noise levels do not match; b) reconstructions with erasures with probability 1

8 , 1
10 and 1

12 . The
reconstructions are obtained from networks which are trained with input SNR of 10 dB. The direct
network cannot produce a reasonable image in any of the cases.

Second, we consider a different corruption mechanism where traveltime measurements are erased (set
to zero) independently with probability p ∈

{
1
12 ,

1
10 ,

1
8

}
, and use networks trained with 10 dB input

SNR on the LSUN dataset to reconstruct. Figure 5b and Table 2 summarizes our findings. Unlike

6http://software.seg.org/datasets/2D/2004_BP_Vel_Benchmark/
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Average SNR over
102 x-ray images

Training SNR
10 dB ∞ dB

Direct ProjNets SubNet Direct ProjNets SubNet
Testing
SNR

10 dB 13.51 14.49 13.92 10.34 12.88 12.85
∞ dB 13.78 15.38 14.04 16.67 17.23 16.86

Table 1: Average reconstruction SNR for various training and testing SNR combinations.

Average SNR over
102 x-ray images p = 1

8 p = 1
10 p = 1

12

Direct 9.03 9.62 10.06
ProjNets 11.09 11.70 12.08
SubNet 11.33 11.74 11.99

Table 2: Average SNR values for reconstructions
from measurements with erasure probability, p. All
networks were trained for 10dB noisy measurements
on the LSUN bridges dataset. Refer to Appendix E
for actual reconstructions.

Original
Non-negative
least squares LSUN CelebA Shapes

Figure 6: Reconstructions from networks
trained on different datasets (LSUN, CelebA
and Shapes) with 10dB training SNR.

with Gaussian noise (Figure 5a) the direct method completely fails to recover coarse geometry in all
test cases. In our entire test dataset of 102 x-ray images there is not a single example where the direct
network captures a geometric feature that our method misses. This demonstrates the strengths of our
approach. For more examples of x-ray images please see Appendix E.

Robustness against dataset overfitting Figure 6 illustrates the influence of the training data on
reconstructions. Training with LSUN, CelebA (Liu et al. (2015)) and a synthetic dataset of random
overlapping shapes (see Figure 15 in Appendix for examples) all give comparable reconstructions—a
desirable property in applications where real ground truth is unavailable.

We complement our results with reconstructions of checkerboard phantoms (standard resolution tests)
and x-rays of metal castings in Figure 7. We note that in addition to better SNR, our method produces
more accurate geometry estimates, as per the annotations in the figure.

5 CONCLUSION

We proposed a new approach to regularize ill-posed inverse problems in imaging, the key idea being
to decompose an unstable inverse mapping into a collection of stable mappings which only estimate
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Figure 7: Reconstructions on checkerboards and x-rays with 10dB measurement SNR tested on 10dB
trained networks. Red annotations highlight where the direct net fails to reconstruct correct geometry.
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low-dimensional projections of the model. By using piecewise-constant Delaunay subspaces, we
showed that the projections can indeed be accurately estimated. Combining the projections leads to
a deconvolution-like problem. Compared to directly learning the inverse map, our method is more
robust against noise and corruptions. We also showed that regularizing via projections allows our
method to generalize across training datasets. Our reconstructions are better both quantitatively in
terms of SNR and qualitatively in the sense that they estimate correct geometric features even when
measurements are corrupted in ways not seen at training time. Future work involves getting precise
estimates of Lipschitz constants for various inverse problems, regularizing the reformulated problem
using modern regularizers (Ulyanov et al. (2017)), studying extensions to non-linear problems and
developing concentration bounds for the equivalent convolution kernel.
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İnan Güler and Elif Derya Übeylı. ECG beat classifier designed by combined neural network model.
Pattern Recognition, 38(2):199–208, 2005.

Yo Seob Han, Jaejun Yoo, and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT
Reconstruction via Persistent Homology Analysis. arXiv preprint arXiv:1611.06391, November
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, pages 630–645. Springer, 2016a.

10



Published as a conference paper at ICLR 2019

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition, pages
770–778. IEEE, 2016b.

John Hole. Nonlinear high-resolution three-dimensional seismic travel time tomography. Journal of
Geophysical Research: Solid Earth, 97(B5):6553–6562, 1992.

Samuel Ratnajeevan Herbert Hoole. Artificial neural networks in the solution of inverse electromag-
netic field problems. IEEE Trans. Magn., 29(2):1931–1934, March 1993.

Donna L Hudson and Maurice E Cohen. Neural networks and artificial intelligence for biomedical
engineering. Wiley Online Library, 2000.

Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep Convolutional
Neural Network for Inverse Problems in Imaging. arXiv preprint arXiv:1611.03679v1, November
2016.

Brendan Kelly, Thomas P Matthews, and Mark A Anastasio. Deep Learning-Guided Image Recon-
struction from Incomplete Data. arXiv preprint arXiv:1709.00584, September 2017.

Winston Lewis and Denes Vigh. Deep learning prior models from seismic images for full-waveform
inversion. In SEG International Exposition and Annual Meeting. Society of Exploration Geophysi-
cists, 2017.

Housen Li, Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. NETT: Solving Inverse
Problems with Deep Neural Networks. arXiv preprint arXiv:1803.00092v1, February 2018.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Alice Lucas, Michael Iliadis, Rafael Molina, and Aggelos K Katsaggelos. Using Deep Neural
Networks for Inverse Problems in Imaging: Beyond Analytical Methods. IEEE Signal Process.
Mag., 35(1):20–36, 2018.

Sebastian Lunz, Ozan Öktem, and Carola-Bibiane Schönlieb. Adversarial regularizers in inverse
problems. arXiv preprint arXiv:1805.11572, 2018.

Michael T McCann, Kyong Hwan Jin, and Michael Unser. Convolutional neural networks for inverse
problems in imaging: A review. IEEE Signal Process. Mag., 34(6):85–95, 2017.

Domingo Mery, Vladimir Riffo, Uwe Zscherpel, Germán Mondragón, Iván Lillo, Irene Zuccar, Hans
Lobel, and Miguel Carrasco. GDXray: The Database of X-ray Images for Nondestructive Testing.
Journal of Nondestructive Evaluation, 34, 11 2015.

Takehiko Ogawa, Yukio Kosugi, and Hajime Kanada. Neural network based solution to inverse
problems. In Neural Networks Proceedings, 1998. IEEE World Congress on Computational
Intelligence. The 1998 IEEE International Joint Conference on, volume 3, pages 2471–2476. IEEE,
1998.

Stephen M. Omohundro. The Delaunay triangulation and function learning, 1989.

Daniel Maria Pelt and Kees Joost Batenburg. Fast tomographic reconstruction from limited data
using artificial neural networks. IEEE Trans. on Image Process., 22(12):5238–5251, 2013.

Mert Pilanci and Martin J Wainwright. Iterative hessian sketch: Fast and accurate solution approxima-
tion for constrained least-squares. The Journal of Machine Learning Research, 17(1):1842–1879,
2016.

Fatih Porikli, Shiguang Shan, Cees Snoek, Rahul Sukthankar, and Xiaogang Wang. Deep Learning
for Visual Understanding [From the Guest Editors]. IEEE Signal Process. Mag., 34(6):24–25, Nov
2017.

Fatih Porikli, Shiguang Shan, Cees Snoek, Rahul Sukthankar, and Xiaogang Wang. Deep Learning
for Visual Understanding: Part 2 [From the Guest Editors]. IEEE Signal Process. Mag., 35(1):
17–19, Jan 2018.

11



Published as a conference paper at ICLR 2019

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
Neural Information and Processing (NIPS), 2008.

Ali Rahimi and Benjamin Recht. Weighted Sums of Random Kitchen Sinks: Replacing minimization
with randomization in learning. Advances in Neural Information and Processing (NIPS), pages
1313–1320, 2009.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 234–241. Springer, 2015.

Helmut Schiller and Roland Doerffer. Neural network for emulation of an inverse model operational
derivation of Case II water properties from MERIS data. International Journal of Remote Sensing,
November 2010.

Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised
map inference for image super-resolution. arXiv preprint arXiv:1610.04490, 2016.

Pablo Sprechmann, Roee Litman, Tal Ben Yakar, Alexander M Bronstein, and Guillermo Sapiro.
Supervised sparse analysis and synthesis operators. In Advances in Neural Information Processing
Systems, pages 908–916, 2013.

Plamen Stefanov and Gunther Uhlmann. Linearizing non-linear inverse problems and an application
to inverse backscattering. Journal of Functional Analysis, 256(9):2842–2866, 2009.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. arXiv preprint
arXiv:1711.10925, 2017.

Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. Plug-and-play priors
for model based reconstruction. In Global Conference on Signal and Information Processing
(GlobalSIP), 2013 IEEE, pages 945–948. IEEE, 2013.
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Figure 8: Orthogonal vs. oblique projections. There is no linear operator acting on y or on the
orthogonal projection ỹ = PR(A∗)x = A†y that can compute the orthogonal projection into S.

A NEED FOR NON-LINEAR OPERATORS

We explain the need for non-linear operators even in the absence of noise with reference to Figure 8.
Projecting x into a given known subspace is a simple linear operation, so it may not be a priori clear
why we use non-linear neural networks to estimate the projections. Alas, we do not know x and only
have access to y. Suppose that there exists a linear operator (a matrix) F ∈ RN×M which acts on y
and computes the projection of x on Sλ. A natural requirement on F is consistency: if x already
lives in Sλ, then we would like to have FAx = x. This implies that for any x, not necessarily in
Sλ, we require FAFAx = FAx which implies that FA = (FA)2 is an idempotent operator.
Letting the columns ofBλ be a basis for Sλ, it is easy to see that the least squares minimizer for F is
Bλ(ABλ)†. However, becauseR(F ) = Sλ 6= R(A∗) (A∗ is the adjoint ofA, simply a transpose
for real matrices), in general it will not hold that (FA)∗ = FA. Thus, FA is an oblique, rather
than orthogonal projection into S. In Figure 8 this corresponds to the point P oblique

Sλ
x which can be

arbitrarily far from the orthogonal projection P ortho
Sλ

x. The nullspace of the oblique projection is
precisely N (A) = R(A∗)⊥.

Thus consistent linear operators can at best yield oblique projections which can be far from the
orthogonal one. One could also see this geometrically from Figure 8. As the angle between Sλ
and R(A∗) increases to π/2 the oblique projection point travels to infinity (note that the oblique
projection always happens along the nullspace ofA, which is the line orthogonal to PR(A∗). Since
our subspaces are chosen at random, in general they are not aligned withR(A∗). The only subspace
on which we can linearly compute an orthogonal projection from y isR(A∗); this is given by the
Moore-Penrose pseudoinverse. Therefore, to get the orthogonal projection onto random subspaces,
we must use non-linear operators. More generally, for any other ad hoc linear reconstruction operator
W ,Wy = WAx always lives in the column space ofWA which is a subspace whose dimension
is at most the number of rows ofA. However, we do not have any linear subspace model for x.

As shown in the right half of Figure 8, as soon asA is injective on X , the existence of this non-linear
map is guaranteed by construction: since y determines x, it also determines P Sλx.

We show the results of numerical experiments in Figures 9 and 10 which further illustrate the
performance difference between linear oblique projectors and our non-linear learned operator when
estimating the projection of an image into a random subspace. We refer the reader to the captions
below each figure for more details.

B PROOF OF PROPOSITION 1

Proof. The reconstruction of the new inverse problem can be written as x̂ = B̃B>x where the
columns of B̃ = (B>)† form a biorthogonal basis to the columns ofB. Thus

x̂ =

KΛ∑
p=1

〈x, bp〉 b̃p.
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Figure 9: Comparison between perfect orthogonal projection, ProjNet projections and oblique
projection. The projections of an image, x, (same as Figure 5) are obtained using ProjNet and the
linear oblique projection method. The mean-squared errors (MSE) between the obtained projections
and the perfect projections are stated. The subspaces used in this figure were used in the ProjNet
reconstructions.

ProjNet (Fig. 5):
130 subspaces
with TV and BC

SubNet (Fig. 5):
350 subspaces

with BC
Model, x

Linear approach:
130 subspaces
with TV and BC

Linear approach:
350 subspaces

with BC

12.51 13.62 5.397.00

Figure 10: We try hard to get the best reconstruction from the linear approach. SNRs are indicated
in the bottom-left of each reconstruction. In the linear approach, coefficients are obtained using the
linear oblique projection method. Once coefficients are obtained, they are non-linearly reconstructed
according to (2). Both linear approach reconstructions use the box-constraint (BC) mentioned in (2).
For the 130 subspace reconstruction total-variation (TV) regularization is also used. Therefore, once
the coefficients are obtained using the linear approach, the reconstruction of the final image is done
in an identical manner as ProjNet for 130 subspaces and SubNet for 350 subspaces. To give the linear
approach the best chance we also optimized hyperparameters such as the regularization parameter to
give the highest SNR.
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Using the definition of the inner product and rearranging, we get

x̂(u) =

〈
KΛ∑
p=1

bp(·)b̃p(u), x

〉
def
= 〈κ(u, ·),x〉

where κ(u, v)
def
=
∑KΛ
p=1 bp(v)b̃p(u). Now, the probability distribution of triangles around any

point u is both shift- and rotation-invariant because a Poisson process in the plane is shift- and
rotation-invariant. It follows that Eκ(u, v) = κ̃(‖u− v‖) for some κ̃, meaning that

(E x̂)(u) = E 〈κ(u, ·),x〉 = 〈κ̃(‖u− ·‖), x〉 = (x ∗ κ̃)(u)

which is a convolution of the original model with a rotationally invariant (isotropic) kernel.

C NETWORK ARCHITECTURES

Figure 11 explains the network architecture used for ProjNet and SubNet. The network consists of a
sequence of downsampling layers followed by upsampling layers, with skip connections (He et al.
(2016b;a)) between the downsampling and upsampling layers. Each ProjNet output is constrained
to a single subspace by applying a subspace projection operator, P Sλ . We train 130 such networks
and reconstruct from the projection estimate using (2). SubNet is a single network that is trained
over multiple subspaces. To do this, we change its input to be [ỹ Bλ]. Moreover, we apply the same
projection operator as ProjNet to the output of the SubNet. Each SubNet is trained to give projection
estimates over 350 random subspaces. This approach allows us to scale to any number of subspaces
without training new networks for each. Moreover, this allows us to build an over-constrained
system q = Bx to solve. Even though SubNet has almost as many parameters as the direct net,
reconstructing via the projection estimates allows SubNet to get higher SNR and more importantly,
get better estimates of the coarse geometry than the direct inversion. All networks are trained with
the Adam optimizer.

ProjNet:

3x3 conv + ReLU + batch norm
2x2 max pool
2x2 upsampling
skip connection concatenation

32 channels
128x128

64
64x64

128
32x32

256
16x16

512
8x8

256
16x16 128

32x32
64

64x64

32
128x128

1

concatenate as one input

SubNet:

64 channels
128x128

128
64x64

256
32x32 512

16x16
1024
8x8

512
16x16

256
32x32

128
64x64

64
128x128

1

projection into input subspace

Figure 11: a) ProjNet architecture; b) SubNet architecture. In both cases, the input is a non-negative
least squares reconstruction and the network is trained to reconstruct a projection into one subspace.
In SubNet, the subspace basis is concatenated to the non-negative least squares reconstruction.

D FURTHER RECONSTRUCTIONS

We showcase more reconstructions on actual geophysics images taken from the BP2004 dataset in
Figure 12. Note that all networks were trained on the LSUN bridges dataset.
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Figure 12: Geophysics image patches taken from BP2004 dataset. Our method especially gets correct
global shapes with better accuracy even when tested on noise levels different from training.
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Figure 13: Reconstructions from erasures on x-ray images with erasure probability p = 1
8 .

E ERASURE RECONSTRUCTIONS

We show additional reconstructions for the largest corruption case, p = 1
8 , for x-ray images (Figure

13) and geo images (Figure 14). Our method consistently has better SNR. More importantly we note
that there is not a single instance where the direct reconstruction gets a feature that our methods
do not. In a majority of instances, the direct network misses a feature of the image. This is highly
undesirable in settings such as geophysical imaging.
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Figure 14: Reconstructions from erasures on geo images with erasure probability p = 1
8 .

Figure 15: Examples from the random shapes dataset which is used in Figure 6.

F SHAPES DATASET

The shapes dataset was generated using random ellipses, circle and rectangle patches. See Figure 15
for examples. This dataset was used in Figure 6.

G COMPARISON OF PROPOSED METHOD WITH ENSEMBLE OF DIRECT NETS

In Section 4 we train multiple ProjNets, each focusing on a different low-dimensional subspace.
Here we train an ensemble of direct networks where each network is as described in Section 4.1.1
and evaluate the robustness of a method where the outputs of these networks are averaged to give
a final reconstruction. Once again, we consider scenarios where the model is trained with data at a
particular noise level and then tested with data at a different noise level and with erasures that were
unseen during training time. We show that our proposed method is more robust to changes in the test
scenario.

In Figure 16, we consider the erasure model with p = 1
8 (described in Figure 5b). 9 out of 10

randomly chosen direct network reconstructions fail to capture the key structure of the original image
under this corruption mechanism. In Table 3, we summarize this with the SNRs of reconstructions
from the erasure corruption mechanism. In that table we also report SNRs when reconstructing from
measurements at different noise levels. The ensemble of direct networks performs well when the
training and test data have the same measurement noise level. However, our method is more robust to
changes in the test noise level. This further illustrates that direct networks are highly tuned to the
training scenario and therefore not as stable as our proposed method (cf. Section 3).
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Direct network reconstructions

Original

Figure 16: Reconstructions of the original image from 10 individually trained direct inversion
networks for 10dB noise under the p = 1

8 erasure corruptions model (described in Figure 5b). 9 out
of the 10 reconstructions fail to capture the key structure of the original image.

Scenario Single Direct 50-Ensemble ProjNets SubNet
10 dB train and 10 db test 12.01 13.404 13.15 12.72
10 dB train and∞ dB test 11.01 10.70 13.36 11.51

10 dB train and erasures with p = 1
8 test 7.19 8.70 10.64 10.48

Table 3: Comparison of SNRs in different scenarios. 50-Ensemble refers to reconstructions obtained
by averaging the output of 50 direct networks.
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