MULTI-AGENT DUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Dual learning has attracted much attention in machine learning, computer vision and natural language processing communities. The core idea of dual learning is to leverage the duality between the primal task (mapping from domain \mathcal{X} to domain \mathcal{Y}) and dual task (mapping from domain \mathcal{Y} to \mathcal{X}) to boost the performances of both tasks. Existing dual learning framework forms a system with two agents (one primal model and one dual model) to utilize such duality. In this paper, we extend this framework by introducing more primal and dual models, and propose the multi-agent dual learning framework. Experiments on neural machine translation and image translation tasks demonstrate the effectiveness of the new framework. In particular, our framework achieves state-of-the-art performance on IWSLT 2014 German-to-English translation with a 35.44 BLEU score and achieves a 30.67 BLEU score on WMT 2014 English-to-German translation, with over 2.2 BLEU improvement over the strong Transformer baseline.

1 INTRODUCTION

Motivated by the dual nature of many tasks, e.g., English-to-German v.s. German-to-English in machine translation, photo-to-Monet v.s. Monet-to-photo in image translation, and speech recognition v.s. speech synthesis, dual learning is proposed (He et al., 2016) and applied to many applications including neural machine translation (He et al., 2016; Xia et al., 2017) (NMT), image-to-image translation (Zhu et al., 2017; Yi et al., 2017; Luo et al., 2017), question answering (Duan et al., 2017) and image captioning (Huang et al., 2018). The basic idea of dual learning is to leverage the duality between the two related domains as the feedback signal to regularize training. The regularization has been implemented with different ways in existing works, such as maximizing the likelihood of data reconstruction (He et al., 2016), constraining joint probabilistic consistency (Xia et al., 2017), and encouraging the model-level information sharing (Xia et al., 2018). Among them, the principle of likelihood maximization of data reconstruction has been mostly adopted (Zhu et al., 2017; He et al., 2016), in which dual learning is formulated as a two-agent system: One agent targets at learning the mapping $f: \mathcal{X} \mapsto \mathcal{Y}$, while the other learning the mapping of opposite direction $g: \mathcal{Y} \mapsto \mathcal{X}$. Here \mathcal{X} and \mathcal{Y} are two domains. In a dual learning framework, $x \in \mathcal{X}$ is first mapped to $\hat{y} \in \mathcal{Y}$ through f and then reconstructed to $\hat{x} \in \mathcal{X}$ by $g(\hat{y})$. The distortion between x and \hat{x}, denoted as $\Delta_x(x, \hat{x})$, is used as the feedback signal to regularize training. Similar reconstruction error can also be constructed in \mathcal{Y} and further used for training.

In such a two-agent system, g and f can be viewed as an evaluator for each other. g is used to evaluate the quality of \hat{y} generated by f and return the feedback signal $\Delta_x(x, g(\hat{y}))$ back to f, and vice versa. The quality of such evaluation plays a central role to improve the training of the mapping functions. In the current dual learning framework, only one agent g is used to evaluate and provide feedback signals to the mapping function f in the other direction. In this work, we introduce more agents into the learning system to further utilize the potential of dual learning. The agents in the same direction have similar capability and certain level of diversity to map one domain to the other domain, i.e., $\mathcal{X} \mapsto \mathcal{Y}$ or $\mathcal{Y} \mapsto \mathcal{X}$. The different agents can be obtained by training multiple f’s and g’s independently with different random seeds for initialization and data access order. Then for the output of each f (or g), multiple gs (or fs) will provide feedback signals. Intuitively, more agents can lead to more reliable and robust feedback, just like the majority voting of multiple experts, and it is expected to achieve better final performance. We name this new dual learning framework with multiple agents as multi-agent dual learning.
Although multiple agents are involved in multi-agent dual learning, we still focus on training two agents $f_0: \mathcal{X} \rightarrow \mathcal{Y}$ and $g_0: \mathcal{Y} \rightarrow \mathcal{X}$, similar to the traditional two-agent dual learning. The additionally introduced agents play the role of facilitating the training of f_0 and g_0. The parameters of the additional agents are fixed during training and have no part to play during testing/inference. Therefore, the inference of multi-agent dual learning is of the same complexity as it is of the standard two-agent dual learning. More precisely, apart from the two agents f_0 and g_0, we further employ $2(N - 1)$ additional agents, $N \geq 2$, which are pre-trained with parameters fixed along the whole process. Among them, $N - 1$ agents are leveraged to model the mapping $f_i: \mathcal{X} \rightarrow \mathcal{Y}$ and the others $N - 1$ agents model $g_i: \mathcal{Y} \rightarrow \mathcal{X}$, $i \in \{1, 2, \cdots, N - 1\}$.

All these $2(N - 1)$ agents are used to facilitate the training of f_0 and g_0 in a similar manner as the standard dual learning with minor revisions: To help the training of f_0, for any $x \in \mathcal{X}$, we first map x to \hat{y} by f_0, build the feedback signals by adaptively summing $\Delta_x(x, g_i(\hat{y}))$ for any $i \in \{0, 1, \cdots, N - 1\}$, and then regularize training with the feedback signals. The training of g_0 is performed in the similar way.

We conduct experiments on two benchmark tasks of dual learning, NMT and image-to-image translation, to verify our proposed framework. For NMT tasks, we work on the English–German translation with different numbers of bilingual data. On IWSLT 2014 translation task with 153K bilingual data and no monolingual data, we achieve 29.52 and 35.44 BLEU scores for English–German and German–English translations respectively, setting a new record on this task. On WMT 2014 translation task with 4.5M bilingual sentence, we achieve 29.92/30.67 and 33.32/35.64 BLEU scores without/with monolingual data, which are the best results of the same settings. On WMT 2016 unsupervised NMT where no bilingual data is available and only $50M$ monolingual data is provided, we achieve 19.07/23.61 BLEU scores, outperforming all the previous pure NMT based systems. For image-to-image translation tasks, we work on two groups of experiments, paint–from-to-photo translation (including Van Gogh, Monet, Ukiyo-e and Cezanne), and cityscapes to labels translation. Experimental results show that we can generate better images than the standard CycleGAN.

The remaining part of this paper is organized as follows. We introduce the basic framework in section 2. The applications to NMT and image translation are presented in Section 3 and Section 4. We conclude this paper and point out future directions in the last section.

2 Framework

In this section, we mathematically formulate the multi-agent dual learning framework, and compare it with previous learning settings.

Consider two domains of interests, \mathcal{X} and \mathcal{Y}. Let \mathcal{D}_x and \mathcal{D}_y denote the collection of training data from \mathcal{X} and \mathcal{Y} respectively. We aim to learn two agents $f_0: \mathcal{X} \rightarrow \mathcal{Y}$, and $g_0: \mathcal{Y} \rightarrow \mathcal{X}$. Without loss of generality, we call learning f_0 and g_0 as the primal task and the dual task respectively. Let $\Delta_x(x, x')$ be a mapping from $\mathcal{X} \times \mathcal{X}$ to \mathbb{R}, representing the dissimilarity/distance/error between x and x' where $x, x' \in \mathcal{X}$, and $\Delta_y(y, y')$ denote the dissimilarity between the two elements y and y' in space \mathcal{Y}. The standard dual learning loss (He et al., 2016) is formulated as

$$\frac{1}{|\mathcal{D}_x|} \sum_{x \in \mathcal{D}_x} \Delta_x(x, g_0(f_0(x))) + \frac{1}{|\mathcal{D}_y|} \sum_{y \in \mathcal{D}_y} \Delta_y(y, f_0(g_0(y))),$$

(1)

where $|\mathcal{D}_x|$ and $|\mathcal{D}_y|$ denote the number of elements in \mathcal{D}_x and \mathcal{D}_y. In multi-agent dual learning framework, as a prerequisite there are $N - 1$ pretrained primal models $f_i: \mathcal{X} \rightarrow \mathcal{Y}$ and $N - 1$ dual models $g_i: \mathcal{Y} \rightarrow \mathcal{X}$, $i = \{1, 2, \cdots, N - 1\}$. The pretraining process for each f_i follows the typical way of training machine learning models, i.e., minimizing $-\sum_{(x,y)} \log P(y|x; f_i)$ via stochastic gradient descent where (x, y) is the paired data, or using unsupervised learning techniques to obtain like unsupervised NMT (Lample et al., 2018) or unsupervised image translation (Zhu et al., 2017). The differences of training each f_i, $i \in \{1, 2, \cdots, N - 1\}$ lie in the the variations of random seeds affecting for example, weight initialization and data order. The same process holds for each g_i, $i \in \{1, 2, \cdots, N - 1\}$. In the training process of f_0 and g_0, all these $2(N - 1)$ models remain

\footnote{The numbers of agents served for two mapping directions are not necessarily the same. For the tasks where the two domains \mathcal{X} and \mathcal{Y} are fully symmetric, like the language spaces in NMT and image collections in image-to-image translation, learning the two mappings are of similar difficulty. Therefore, we use the same number of agents to assist training in this paper, and leave the study of asymmetric setting to the future work.}
loop so as to evaluate the quality of generated pairs.

For multi-agent dual learning, the duality feedback signal is built upon F_α and G_β. Following the basic framework of dual learning \(\text{[He et al.] 2016} \), for any $x \in X$, all agents first cooperate to generate a $\hat{y} = F_\alpha(x)$, and then jointly reconstruct the \hat{x} through $\hat{x} = G_\beta(\hat{y})$. The reconstruction error between $y \in Y$ and $\hat{y} = F_\alpha(G_\beta(y))$ is similarly constructed. The out-coming dual learning loss is defined as

$$
\ell_{\text{dual}}(D_x, D_y; F_\alpha, G_\beta) = \frac{1}{|D_x|} \sum_{x \in D_x} \Delta_x(x, G_\beta(F_\alpha(x))) + \frac{1}{|D_y|} \sum_{y \in D_y} \Delta_y(y, F_\alpha(G_\beta(y))).
$$

In this way, N agent pairs (prima-dual model pairs) are involved to jointly train and improve f_0 and g_0. When $N = 1$, Our algorithm degenerates to standard dual learning. No labeled information is required for building ℓ_{dual}. We can apply it on either labeled data or unlabeled data.

Note that Eqn. (3) is the loss about duality. Other training objectives could also be included. For example, in NMT, if bilingual data is available, the cross entropy loss can be included to guide inference. To predict the label of $x \in X$, all agents vote together and the final label would be

$$
\arg\min_{y \in Y} \sum_{i=0}^{N-1} \alpha_i \ell(f_i(x), y),
$$

where ℓ is the loss function over space $X \times Y$. The α_i’s can be simply set as $1/N$ or adaptively set according to the quality of each agent. There are several differences between ensemble learning and our work: 1) ensemble learning does not use multiple agents in training as we do; 2) our multi-agent dual learning uses only one model f_0 in inference, which is more efficient than ensemble learning which uses multiple agents; and 3) duality is not considered in conventional ensemble learning.

(2) Knowledge distillation with multiple agents \(\text{[Hinton et al.] 2015; Kim & Rush] 2016} \). Knowledge distillation consists of two steps: first, all f_i’s generate soft labels for $x \in X$, e.g., $\bar{y} = \arg\min_{y \in Y} \sum_{i=0}^{N-1} \alpha_i \ell(f_i(x), y)$; the generated pairs (x, \bar{y})’s are together used to train a new model. Each (x, \bar{y}) is regarded as labeled data without evaluating the quality of \bar{y} and whether it is good enough to train a new model. In our proposed framework, we leverage the duality to build a feedback loop so as to evaluate the quality of generated pairs.

3 Application to Neural Machine Translation

In this section, we introduce how to adapt the proposed multi-agent dual learning framework to NMT, and present experimental results on several public translation datasets.

3.1 Adaptation

Denote the parameters of f_0 and g_0 as θ_f^0 and θ_g^0 respectively. Following the common practice in NMT, the Δ_x and Δ_y are specified as negative log-likelihood, that is, for any $x \in X$,

$$
\Delta_x(x, G_\beta(F_\alpha(x))) = -\log \sum_{\hat{y} \in Y} P(F_\alpha(x) = \hat{y}|x; F_\alpha, G_\beta)P(G_\beta(\hat{y}) = x|\hat{y}; F_\alpha, G_\beta)
$$

$$
= -\log \sum_{\hat{y} \in Y} P(F_\alpha(x) = \hat{y}|x; F_\alpha)P(G_\beta(\hat{y}) = x|\hat{y}; G_\beta) = -\log \sum_{y \in Y} P(y|x; F_\alpha)P(x|y; G_\beta).
$$

\[\text{(4)} \]
Similarly, for any \(y \in \mathcal{Y} \), we have
\[
\Delta_y(y, F_\alpha(G_\beta(y))) = -\log \sum_{\hat{x} \in \mathcal{X}} P(\hat{x}|y; G_\beta)P(y|\hat{x}; F_\alpha).
\] (5)

For ease of optimization, we minimize the following two upper bounds of \(\Delta_x \) and \(\Delta_y \):
\[
\tilde{\Delta}_x(x, G_\beta(F_\alpha(x))) = -\sum_{\hat{y} \in \mathcal{Y}} P(\hat{y}|x; F_\alpha)\log P(x|\hat{y}; G_\beta) \geq \Delta_x(x, G_\beta(F_\alpha(x)));
\]
\[
\tilde{\Delta}_y(y, F_\alpha(G_\beta(y))) = -\sum_{\hat{x} \in \mathcal{X}} P(\hat{x}|y; G_\beta)\log P(y|\hat{x}; F_\alpha) \geq \Delta_y(y, F_\alpha(G_\beta(y))).
\] (6)

The two \(\geq \) hold due to Jensen’s inequality. Then we turn to minimize
\[
\tilde{\ell}_{dual}(D_x, D_y; F_\alpha, G_\beta) = \frac{1}{|D_x|} \sum_{x \in D_x} \tilde{\Delta}_x(x, G_\beta(F_\alpha(x))) + \frac{1}{|D_y|} \sum_{y \in D_y} \tilde{\Delta}_y(y, F_\alpha(G_\beta(y))).
\] (7)

The gradient of \(\tilde{\Delta}_x \) and \(\tilde{\Delta}_y \) are given by:
\[
\frac{\partial \tilde{\Delta}_x}{\partial \theta_0^x} = -\sum_{\hat{y} \in \mathcal{Y}} P(\hat{y}|x; F_\gamma) \frac{\delta(x, \hat{y}; F_\alpha, G_\beta, F_\gamma)}{\partial \theta_0^x},
\]
\[
\frac{\partial \tilde{\Delta}_y}{\partial \theta_0^y} = -\sum_{\hat{x} \in \mathcal{X}} P(\hat{x}|y; G_\gamma) \frac{\delta(x, \hat{y}; G_\beta, F_\alpha, G_\gamma)}{\partial \theta_0^y},
\]
\[
\delta(x, \hat{y}; F_\alpha, G_\beta, F_\gamma) = \left(\frac{P(\hat{y}|x; F_\alpha)}{P(\hat{y}|x; F_\gamma)} \right) \log P(x|\hat{y}; G_\beta),
\]
\[
\delta(y, \hat{x}; G_\beta, F_\alpha, G_\gamma) = \left(\frac{P(\hat{x}|y; G_\beta)}{P(\hat{x}|y; G_\gamma)} \right) \log P(y|\hat{x}; F_\alpha).
\] (8)

In the above equations, we bring in an additional notation \(\gamma = (0, \frac{1}{N-1}, \cdots, \frac{1}{N-1}) \). \(F_\gamma \) and \(G_\gamma \) thus represent the combined model from all the pre-trained agents without the target models \(f_0 \) and \(g_0 \) (see Eqn. 2). We then compute the four gradient terms in the equation above (i.e., \(\frac{\partial \tilde{\Delta}_x}{\partial \theta_0^x} \), \(\frac{\partial \tilde{\Delta}_y}{\partial \theta_0^y} \), and \(\frac{\partial \delta}{\partial \theta_0^x} \) and \(\frac{\partial \delta}{\partial \theta_0^y} \)) via two tricks. First, approximation using Monte Carlo method and importance sampling. Take the calculation of \(\frac{\partial \delta}{\partial \theta_0^x} \) as an example, to tackle the intractability resulting from the summation over the exponentially large space \(\mathcal{Y} \), we sample one \(\hat{y} \in \mathcal{Y} \) according to the distribution \(P(\hat{y}|x; F_\gamma) \), and use \(\frac{\delta(x, \hat{y}; F_\alpha, G_\beta, F_\gamma)}{\partial \theta_0^x} \) as an approximation to \(\frac{\partial \delta}{\partial \theta_0^x} \). Second, offline sampling rather than online sampling. Initially we sample the data \(\hat{x} \) and \(\hat{y} \) offline respectively by \(F_\alpha \) and \(G_\gamma \), calculate their weights \(P(\hat{x}|y; F_\gamma) \) and \(P(\hat{y}|x; G_\gamma) \), and then train our models by reading the sampled data. In this way we avoid the huge GPU memory usage brought by loading multiple models simultaneously for online sampling.

When bilingual data is available, denoted as \(B = \{(x_k, y_k)\}_{k=1}^M \) where \(M \) is the number of training data, we can also apply the negative log-likelihood loss on bilingual data. We summarize our method in Algorithm 1.

3.2 Experiment Settings

Dataset We use multiple benchmark NMT tasks to evaluate the effectiveness of the proposed framework, including IWSLT 2014 English\(\rightarrow\)German translation, WMT 2014 English\(\rightarrow\)German translation and WMT 2016 unsupervised NMT English\(\rightarrow\)German translation. English and German is denoted as “En” and “De” respectively for ease of reference. For IWSLT 2014 En\(\rightarrow\)De translation, following [Edunov et al. (2018)], we lowercase all the sentences, and split them into training/validation/test set with 16,986/4,413/4,413 sentences respectively. For WMT 2014 En\(\rightarrow\)De translation, we choose WMT 2014 training set and filter out 4.5M sentences pairs following [Gehring et al. (2017) and Vaswani et al. (2017)]. We concatenate newstest 2012 and newstest 2013 as the validation set and use newstest 2014 as the test set. We also select 8M English and 8M German
monolingual sentences from newscrawl 2013 as monolingual dataset. For unsupervised En→De, following Lample et al. (2018), we choose 50M monolingual English and German sentences and use newstest 2016 as the test set for a fair comparison with the previous work. We preprocess the words into word-pieces in the same way as Wu et al. (2016).

Model Architecture We use Transformer (Vaswani et al. 2017) as the basic model structure. For IWSLT En→De, we use the transformer_small configuration with 4 and 8 blocks to verify the generality of our model with different structures (a 4-block setting refer to transformer with 4 encoder layers and 4 decoder layers), where the word embedding dimension, hidden state dimension and non-linear layer dimension is set to be 256, 256 and 1024 respectively. For the WMT task, following Vaswani et al. (2017), we use the transformer_big setting with 6 blocks, where the word embedding dimension, hidden state dimension and non-linear layer dimension is 1024, 1024 and 4096 respectively. For the unsupervised NMT task, we choose transformer_base following Lample et al. (2018), where the above three dimensions are 512, 512 and 2048. The dropout rates for the three settings are 0.2, 0.1 and 0.1 respectively.

Optimization and Evaluation We choose Adam (Kingma & Ba 2015) to optimize the network. The η in Algorithm 1 is set as 2×10^{-4}. The learning rate decay rule and the two β’s of Adam are the same as Vaswani et al. (2017). For the three tasks, we use one, eight and four M40 GPUs to train those networks for three, five and six days respectively. Beam search is applied to generate translations for all the models, where the beam sizes for the three tasks are 6, 4 and 4 respectively. The evaluation metric is BLEU score (Papineni et al. 2002), which is the geometric mean of n-gram precisions, $n \in \{1, 2, 3, 4\}$.

Baselines We implement three types of important baselines including back translation (Sennrich et al. 2015), Edunov et al. (2018a), knowledge distillation (Kim & Rush 2016) and the two-agent dual learning (He et al. 2016). Take the $f : \mathcal{X} \rightarrow \mathcal{Y}$ translation as an example: 1) To use back translation, a reversed translation model $g : \mathcal{Y} \rightarrow \mathcal{X}$ is first trained on the original bilingual dataset, then the dataset $\{(g(y), y) | y \in \mathcal{D}_y\}$ is constructed, which is then concatenated with the original dataset and train another model f. 2) To use knowledge distillation, we pre-train a teacher model $f_T : \mathcal{X} \rightarrow \mathcal{Y}$, and use it to generate the corresponding dataset $\{(x, f_T(x)) | x \in \mathcal{D}_x\}$, which is then mixed with the groundtruth data and used to train a new model f. For these two baselines, we generate sentences using both a single model and multiple models. 3) Two-agent dual learning, which uses f together with g to build the feedback signal to regularize the training (see Eqn. (1)).

Algorithm 1: Algorithm for multi-agent dual learning.

\begin{algorithm}
\begin{algorithmic}[1]
\State \textbf{Input:} Data \mathcal{D}_x and \mathcal{D}_y, learning rate η, f_i and g_i, $i \in \{0, 1, \cdots, N - 1\}$; mini-batch size K; bilingual data B if possible;
\State Define $\gamma = (0, \frac{1}{N-1}, \cdots, \frac{1}{N-1})$ and $\alpha = \beta = (\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N})$;
\While {not converged}
\State Randomly sample two batches of $B_x \subset \mathcal{D}_x$ and $B_y \subset \mathcal{D}_y$, each of size K;
\State Following Eqn. (3) and the related sampling tricks, calculate the gradients of $\hat{\ell}_{\text{dual}}(B_x, B_y; F_0, G_0)$, w.r.t. θ_0^f and θ_0^g; denote them as Grad$_{f_0}$ and Grad$_{g_0}$;
\If {bilingual data is available, sample a batch $B_{xy} \subset B$ of size K, calculate}
\State Grad$_{f_0} \leftarrow$ Grad$_{f_0} - \frac{1}{K} \nabla_{\theta_0^f} \sum_{(x,y) \in B_{xy}} \log P(y|x; f_0)$ and
\State Grad$_{g_0} \leftarrow$ Grad$_{g_0} - \frac{1}{K} \nabla_{\theta_0^g} \sum_{(x,y) \in B_{xy}} \log P(x|y; g_0)$;
\EndIf
\State Update the parameters: $\theta_0^f \leftarrow \theta_0^f - \eta \text{Grad}_{f_0}$, $\theta_0^g \leftarrow \theta_0^g - \eta \text{Grad}_{g_0}$;
\EndWhile
\end{algorithmic}
\end{algorithm}

\footnote{All the implementations are based on the official tensor2tensor release: \url{https://github.com/tensorflow/tensor2tensor}}

\footnote{We have tried both mixing with groundtruth and not and found that mixing is better. On IWSLT 2014 De→En, with/without mixing can achieve 33.89/33.14 BLEU scores.}
3.3 RESULTS OF NMT ON IWSLT DATASET

We regard the English and German sentences in the IWSLT14 bilingual corpus as D_x and D_y in Algorithm 1. We use 4-block networks (i.e. F_γ in Algorithm 1) to generate translations, which are then used to train both 4-block (4B) and 8-block (8B) networks. We compare dual learning (Dual) with the standard baseline (Standard), knowledge distillation (KD) and back translation (BT) with different number of prima-dual model pairs ($N \in \{1, 5\}$, marked by integers following the hyphen after algorithm name).

The results of IWSLT En\leftrightarrowDe are presented in Table 1. We can observe that: 1) Dual learning has brought significant improvement over all the baselines (Standard, KD and BT) in both single-agent and multi-agent settings, demonstrating the effectiveness of dual learning; 2) Involving multiple agents into the learning system leads to better performances, which shows the importance of additional feedback signals from other agents. In particular, Dual-5 outperforms Dual-1 by around 0.5 BLEU in 4B setting and around 0.8 BLEU in 8B setting, which proves that dual learning can benefit from cooperating with more agents and demonstrates the effectiveness of our proposed algorithm. Particularly, dual learning with $N = 5$ agent pairs under 8B setting achieves the state-of-the-art result with 35.44 BLEU in De\rightarrowEn and 29.52 BLEU in En\rightarrowDe translations.

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>KD-1</th>
<th>KD-5</th>
<th>BT-1</th>
<th>BT-5</th>
<th>Dual-1</th>
<th>Dual-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>De\rightarrowEn (4B)</td>
<td>33.42</td>
<td>33.89</td>
<td>34.20</td>
<td>33.71</td>
<td>33.61</td>
<td>34.25</td>
<td>34.70</td>
</tr>
<tr>
<td>En\rightarrowDe (4B)</td>
<td>27.89</td>
<td>28.45</td>
<td>28.65</td>
<td>28.35</td>
<td>28.22</td>
<td>28.63</td>
<td>28.99</td>
</tr>
<tr>
<td>De\rightarrowEn (8B)</td>
<td>33.61</td>
<td>34.36</td>
<td>34.85</td>
<td>33.87</td>
<td>33.77</td>
<td>34.57</td>
<td>35.44</td>
</tr>
<tr>
<td>En\rightarrowDe (8B)</td>
<td>27.95</td>
<td>28.74</td>
<td>29.18</td>
<td>28.28</td>
<td>28.25</td>
<td>29.07</td>
<td>29.52</td>
</tr>
</tbody>
</table>

Study on different number of agents. We further study the performances of our proposed algorithm with respect to different numbers of agent pairs, i.e., N and explore the optimal value of N. We enumerate within $N = \{1, \cdots, 5\}$ and did not try larger N values due to the limitation of computational resources. As we can see from Figure 1, more agents can bring better performance for all settings. While it appears that the performance becomes better with more pair of agents involved into the learning system, the gain becomes more and more marginal (e.g., the maximum difference for $N = 4$ and $N = 5$ across all settings is around 0.1 BLEU). Furthermore, larger N leads to higher computational costs such as GPU resources. Thus, it is the most practical to leverage $N = 3$ agent pairs, where we can benefit from the substantial gain over baselines without too much computational costs. We employ $N = 3$ for the rest of our experiments.

Study on translation tasks for other language pairs. We carry out another three groups of experiments, English\leftrightarrowSpanish (Es), English\leftrightarrowRussian (Ru) and English\leftrightarrowHebrew (He) translations, all from IWSLT14, to verify the generality of our framework on different languages. As is illustrated in Table 2, the results across different translation tasks (for all languages and all translation directions)

![Figure 1: BLEU scores on IWSLT En\leftrightarrowDe w.r.t the number of agents pairs.](image-url)
are consistent with our previous observations, further demonstrating the effectiveness and robustness of our algorithm.

Table 2: BLEU scores on the translations between \{Es, Ru, He\} and En.

<table>
<thead>
<tr>
<th></th>
<th>Es→En</th>
<th>En→Es</th>
<th>Ru→En</th>
<th>En→Ru</th>
<th>He→En</th>
<th>En→He</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>40.50</td>
<td>37.95</td>
<td>18.94</td>
<td>16.06</td>
<td>33.25</td>
<td>22.20</td>
</tr>
<tr>
<td>Dual-1</td>
<td>42.14</td>
<td>38.09</td>
<td>21.14</td>
<td>16.31</td>
<td>35.42</td>
<td>22.75</td>
</tr>
<tr>
<td>Dual-3</td>
<td>42.41</td>
<td>38.62</td>
<td>21.56</td>
<td>16.71</td>
<td>36.08</td>
<td>23.80</td>
</tr>
</tbody>
</table>

3.4 Results of NMT on WMT Dataset

We work with two settings on WMT En→De task, where (1) only bilingual data is available; and (2) additional monolingual data is provided. The results are summarized in Table 3.

From this table, we can see that the proposed algorithm achieves the best performances for all settings, and we observe that: 1) With WMT 2014 bilingual data only, the proposed multi-agent dual learning (Dual-3) achieves the state-of-the-art results to our knowledge, with 29.92 BLEU for En→De and 33.32 BLEU for De→En\(^4\). 2) Compared with the traditional two-agent dual learning in [He et al., 2016], we can achieve 0.48 BLEU score improvement on En→De with bilingual data only. For the setting of using monolingual data, the improvements are 0.74 and 0.66 respectively. 3) Although KD and BT can bring improvements under different settings, the results are not as consistent as dual learning. For example, the performance of BT is not as good as KD under bilingual setting, but is better than KD under monolingual setting. We conjecture the reason is that with feedback signals to a generated sentence in the dual learning framework, the dataset is not only enlarged through sampling, but the quality of generation is also guaranteed, while BT and KD can not enjoy such benefits.

Table 3: BLEU scores on WMT En→De translation. “Biling” and “Mono” respectively represents using bilingual data only and using the mix of bilingual/monolingual data.

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>KD-1</th>
<th>KD-3</th>
<th>BT-1</th>
<th>BT-3</th>
<th>Dual-1</th>
<th>Dual-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>En→De (Biling)</td>
<td>28.4</td>
<td>29.17</td>
<td>29.28</td>
<td>28.26</td>
<td>27.79</td>
<td>29.44</td>
<td>29.92</td>
</tr>
<tr>
<td>De→En (Biling)</td>
<td>32.15</td>
<td>32.43</td>
<td>31.38</td>
<td>32.41</td>
<td>32.68</td>
<td>32.99</td>
<td>33.32</td>
</tr>
<tr>
<td>En→De (Mono)</td>
<td>28.4</td>
<td>29.20</td>
<td>29.36</td>
<td>29.42</td>
<td>29.68</td>
<td>29.93</td>
<td>30.67</td>
</tr>
<tr>
<td>De→En (Mono)</td>
<td>32.15</td>
<td>32.28</td>
<td>32.43</td>
<td>34.58</td>
<td>34.77</td>
<td>34.98</td>
<td>35.64</td>
</tr>
</tbody>
</table>

3.5 Results of NMT with Monolingual Data Only

Unsupervised NMT is studied recently to learn two translation models without bilingual data. [Lample et al., 2018] have achieved the best results on multiple unsupervised NMT tasks. There are two kinds of loss in unsupervised NMT: the language model loss implemented by two de-noising auto-encoders, and the back-translation loss. More introductions about unsupervised NMT is included in Appendix A due to space limitation. We first pre-train two unsupervised NMT models with different initialization, use them to translate the whole 50M monolingual sentences, and apply KD, BT and dual learning. The results are reported in Table 4.

The standard baseline achieves 17.52 and 22.12 BLEU for En→De and De→En translations respectively. With one additional En→De and De→En model, KD and BT obtain almost the same results as the standard baseline. Dual learning achieves a little better results on En→De translation(18.01). When we increase the agents of each translation from one to two, there are significant improvements for KD, BT and dual learning. Especially, multi-agent dual learning achieves 19.06 and 23.61 BLEU scores, setting new records for unsupervised NMT with pure NMT models only.

\(^4\)Although Edunov et al., 2018 provides a higher BLEU score, they use WMT 18 dataset, which is different from ours and currently not widely used in NMT literature. We will explore the settings of Edunov et al., 2018a in the future.
4 APPLICATION TO IMAGE TRANSLATION

We apply the multi-agent dual learning framework to image translation tasks. We follow the setting of CycleGAN [Zhu et al. 2017], the most popular implementation of image translation that combines the ideas of GAN and dual learning. In this section, we introduce how to adapt the framework to image translation, describe the experimental settings and present the results.

4.1 ADAPTION

Following the common practice in image translation [Zhu et al. 2017], for each term in Eqn. (3), the Δ_x and Δ_y are specified as the $L1$ norm of pixel-level difference between two images. We set $\alpha = \beta = \left(\frac{1}{\lambda}, \frac{1}{\lambda}, \ldots, \frac{1}{\lambda}\right)$. Since there is few literature focusing on generating consensus images using multiple models, we switch Eqn. (3) to a simpler form:

$$
\ell_{\text{dual}}(D_x, D_y; F, G) = \frac{1}{|D_x|} \sum_{x \in D_x} \|x - G_{\beta}(f_{\alpha}(x))\|_1 + \frac{1}{|D_y|} \sum_{y \in D_y} \|y - F_{\alpha}(g_{\beta}(y))\|_1, \tag{9}
$$

where D_x and D_y are the datasets of domain \mathcal{X} and domain \mathcal{Y}. The remaining parts of our model, including the model components, the objective functions, are exactly the same as the standard CycleGAN. There are two discriminators $d_\mathcal{X} : \mathcal{X} \mapsto [0, 1]$ and $d_\mathcal{Y} : \mathcal{Y} \mapsto [0, 1]$ used to differentiate the generated images from natural images. The outputs of $d_\mathcal{X}$ and $d_\mathcal{Y}$ represent the probability that the input image is a natural one. The GAN loss (Goodfellow et al. 2014) is defined as

$$
\ell_{\text{GAN}} = \frac{1}{|D_\mathcal{X}|} \sum_{x \in \mathcal{X}} \left[\log d_\mathcal{X}(x) + \log (1 - d_\mathcal{Y}(f_{\alpha}(x))) \right] + \frac{1}{|D_\mathcal{Y}|} \sum_{y \in \mathcal{Y}} \left[\log d_\mathcal{Y}(y) + \log (1 - d_\mathcal{X}(g_{\beta}(y))) \right].
$$

During the optimization process, the two discriminators will try to maximize ℓ_{GAN}, while the f_0 and g_0 will minimize $\ell_{\text{dual}}(D_x, D_y; F, G) + \lambda \ell_{\text{GAN}}$ in cooperation with other provided agents, where λ is a hyper-parameter to be tuned. In the experiments, we follow [Zhu et al. 2017] to set λ as 10.

4.2 SETTINGS

We use the same datasets, model configuration and optimization algorithm as [Zhu et al. 2017]. We implement our method based on CycleGAN. We choose two tasks, the photo-to-paint translations where the art styles include Monet, Van Gogh, Ukiyo-e, Cezanne, and cityscapes-++-label translation. All the images are cropped to 256×256. The detailed implementation can be found at Appendix [8] which is exactly the same as [Zhu et al. 2017].

4.3 RESULTS OF PAINT-FROM-TO-PHOTO TRANSLATION

The task of photo to paint translation is to translate an input photo to a painting with specific art style. As can be seen from results in Figure [2], both standard CycleGAN and our algorithm successfully translates the inputs to the corresponding target domains. Benefiting from the multiple feedback signals, our model outperforms the baseline in two aspects: 1) multi-agent dual learning can generate clearer images with less block artifact (the Monet column and Ukiyo-e column); and 2) the images generated by our algorithm are faithful to the original images in semantics. For example, the sun disappear from the images generated by CycleGAN as in the top Ukiyo-e column and the bottom Cezanne column, while the images generated by our algorithm is able to keep the sun.

The results of paint to photo translation are shown in Figure [2]. There are several cases that our algorithm is clearly better than CycleGAN. Take the images in the top-left corner as examples.
CycleGAN fails to recover the tree while our algorithm succeeds, with many details included like the branches and leaves. In the bottom right corner, the texture of the ground is kept by our results, which is missing from the images generated by CycleGAN.

Figure 2: Two groups of experiments on paint-to-photo translations.

![Images showing results of CycleGAN and our algorithm for paint-to-photo translations.]

Figure 3: Four groups of experiments on photo-to-paint translations.

4.4 Results of Label to Cityscapes Translation

The results of label→cityscape is shown in Figure 4. Both CycleGAN and our algorithm can transfer the input label to a natural scene, where the content could generally match the given label. Due to the multiple feedback signals, the results of multi-agent are clearer with less noise. For example, in the top left corner, our algorithm can generate flatten roads, clearer cars and buildings. In comparison, the baseline method fails. For the cityspaces to label translation, the standard CycleGAN and our algorithm achieve similar results. Due to space limitation, we put the results in Appendix 4 and leave how to improve cityspaces to labels as future work.
5 CONCLUSION

In this paper, we proposed a new framework, multi-agent dual learning, in which more than one primal models and dual models are involved in the learning system. We empirically verify the effectiveness of this framework on multiple machine translation tasks and image translation tasks.

For the future work, we will first extend the framework to more applications. Second, it is worth studying how to apply this idea to other dual learning paradigms, like dual supervised learning [Xia et al. (2017)] and dual transfer learning [Wang et al. (2018)]. Third, the theoretical understanding of multi-agent dual learning is another interesting topic. Furthermore, it is challenging to speed up the training procedure so as to incorporate more agents to achieve better accuracy.

REFERENCES

A INTRODUCTION OF UNSUPERVISED NMT

In this section, we briefly introduce (Lample et al., 2018), a recent state-of-the-art unsupervised NMT algorithm. Similar to the standard NMT model trained from bilingual training data, an unsupervised NMT model also consists of an encoder, a source-to-target attention module, and a decoder. A shared embedding for similar languages can be applied, like German and English or French and English. The source sentences and target sentences are mapped into a same vocabulary using BPE techniques. The shared embedding is pretrained with fastText (Bojanowski et al., 2017) to get good initial values. The proposed model will handle both source-to-target translation and target-to-source translation like Johnson et al. (2017).

The training loss of an unsupervised NMT model usually consists of two parts, a language model loss and a back-translation loss. Let \(P_{\mathcal{X} \rightarrow \mathcal{Y}} \) denote the translation from space \(\mathcal{X} \) to space \(\mathcal{Y} \), and so for the other similar notations.

(1) Language model loss, implemented by a denoising autoencoder. Mathematically,
\[
L_1 = \mathbb{E}_{x \sim \mathcal{X}}[- \log P_{\mathcal{X} \rightarrow \mathcal{X}}(x | C(x))] + \mathbb{E}_{y \sim \mathcal{Y}}[- \log P_{\mathcal{Y} \rightarrow \mathcal{Y}}(y | C(y))],
\]
where \(C(\cdot) \) is a noise model with randomly dropping several words, swapping words, etc.

(2) Back translation loss, implemented by back-translating the monolingual data and feeding into the reversed models. Mathematically,
\[
L_2 = \mathbb{E}_{x \sim \mathcal{X}}[- \log P_{\mathcal{Y} \rightarrow \mathcal{X}}(x | \hat{y}(x))] + \mathbb{E}_{y \sim \mathcal{Y}}[- \log P_{\mathcal{X} \rightarrow \mathcal{Y}}(y | \hat{x}(y))],
\]
in which \(\hat{y}(x) = \arg \max_{u \in \mathcal{Y}} P_{\mathcal{X} \rightarrow \mathcal{Y}}(u | x) \) and \(\hat{x}(y) = \arg \max_{v \in \mathcal{X}} P_{\mathcal{Y} \rightarrow \mathcal{X}}(v | y) \). Note that the four \(P \)’s are implemented in a single encoder-decoder based model, where each translation task has a different “task embedding”, i.e., a learnable vector indicating the translating directions.

B MODEL ARCHITECTURE OF IMAGE-TO-IMAGE TRANSLATION

We follow [Zhu et al., 2017] to configure the model architectures. For the generator, the network contains two stride-2 convolutions, nine residual blocks, and two convolutional layers with stride \(\frac{1}{2} \), (i.e., the transposed convolutional layers). Instance normalization is applied to the network. For the discriminator, the 70 × 70 PatchGANs (Isola et al., 2017), which aim to classify whether 70 × 70 overlapping image patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion.

C RESULTS OF CITYSCAPES TO LABEL

The results of cityscapes to labels are shown in Figure 5.

Figure 5: Results of cityspaces to labels.