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ABSTRACT

Recent efforts on combining deep models with probabilistic graphical models are
promising in providing flexible models that are also easy to interpret. We propose
a variational message-passing algorithm for variational inference in such models.
We make three contributions. First, we propose structured inference networks
that incorporate the structure of the graphical model in the inference network of
variational auto-encoders (VAE). Second, we establish conditions under which
such inference networks enable fast amortized inference similar to VAE. Finally,
we derive a variational message passing algorithm to perform efficient natural-
gradient inference while retaining the efficiency of the amortized inference. By
simultaneously enabling structured, amortized, and natural-gradient inference for
deep structured models, our method simplifies and generalizes existing methods.

1 INTRODUCTION

To analyze real-world data, machine learning relies on models that can extract useful patterns. Deep
Neural Networks (DNNs) are a popular choice for this purpose because they can learn flexible
representations. Another popular choice are probabilistic graphical models (PGMs) which can find
interpretable structures in the data. Recent work on combining these two types of models hopes to
exploit their complimentary strengths and provide powerful models that are also easy to interpret
(Johnson et al., 2016; Krishnan et al., 2015; Archer et al., 2015; Fraccaro et al., 2016).

To apply such hybrid models to real-world problems, we need efficient algorithms that can extract
useful structure from the data. However, the two fields of deep learning and PGMs traditionally
use different types of algorithms. For deep learning, stochastic-gradient methods are the most
popular choice, e.g., those based on back-propagation. These algorithms are not only widely ap-
plicable, but can also employ amortized inference to enable fast inference at test time (Rezende
et al., 2014; Kingma & Welling, 2013). On the other hand, most popular algorithms for PGMs
exploit the model’s graphical conjugacy structure to gain computational efficiency, e.g., variational
message passing (VMP) (Winn & Bishop, 2005), expectation propagation (Minka, 2001), Kalman
filtering (Ghahramani & Hinton, 1996; 2000), and more recently natural-gradient variational infer-
ence (Honkela et al., 2011) and stochastic variational inference (Hoffman et al., 2013). In short, the
two fields of deep learning and probabilistic modelling employ fundamentally different inferential
strategies and a natural question is, whether we can design algorithms that combine their respective
strengths.

There have been several attempts to design such methods in the recent years, e.g., Krishnan et al.
(2015; 2017); Fraccaro et al. (2016); Archer et al. (2015); Johnson et al. (2016); Chen et al. (2015).
Our work in this paper is inspired by the previous work of Johnson et al. (2016) that aims to combine
message-passing, natural-gradient, and amortized inference. Our proposed method in this paper
simplifies and generalizes the method of Johnson et al. (2016).

To do so, we propose Structured Inference Networks (SIN) that incorporate the PGM structure in
the standard inference networks used in variational auto-encoders (VAE) (Kingma & Welling, 2013;
Rezende et al., 2014). We derive conditions under which such inference networks can enable fast
amortized inference similar to VAE. By using a recent VMP method of Khan & Lin (2017), we
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Figure 1: Fig. (a) and (c) show two examples of generative models that combine deep models with
PGMs, while Fig. (b) and (d) show our proposed Structured Inference Networks (SIN) for the two
models. The generative models are just like the decoder in VAE but they employ a structured prior,
e.g., Fig. (a) has a mixture-model prior while Fig. (b) has a dynamical system prior. SINs, just like
the encoder in VAE, mimic the structure of the generative model by using parameters φ. One main
difference is that in SIN the arrows between yn and xn are reversed compared to the model, while
rest of the arrows have the same direction.

derive a variational message-passing algorithm whose messages automatically reduce to stochastic-
gradients for the deep components of the model, while perform natural-gradient updates for the PGM
part. Overall, our algorithm enables Structured, Amortized, and Natural-gradient (SAN) updates and
therefore we call our algorithm the SAN algorithm. We show that our algorithm give comparable
performance to the method of Johnson et al. (2016) while simplifying and generalizing it. The code
to reproduce our results is available at https://github.com/emtiyaz/vmp-for-svae/.

2 THE MODEL AND CHALLENGES WITH ITS INFERENCE

We consider the modelling of data vectors yn by using local latent vectors xn. Following previous
works (Johnson et al., 2016; Archer et al., 2015; Krishnan et al., 2015), we model the output yn
given xn using a neural network with parameters θNN, and capture the correlations among data
vectors y := {y1,y2, . . . ,yN} using a probabilistic graphical model (PGM) over the latent vectors
x := {x1,x2, . . . ,xN}. Specifically, we use the following joint distribution:

p(y,x,θ) :=

[
N∏
n=1

p(yn|xn,θNN)

]
︸ ︷︷ ︸

DNN

[
p(x|θPGM)

]
︸ ︷︷ ︸

PGM

[
p(θPGM)

]
︸ ︷︷ ︸

Hyperprior

, (1)

where θNN and θPGM are parameters of a DNN and PGM respectively, and θ := {θNN,θPGM}.
This combination of probabilistic graphical model and neural network is referred to as structured
variational auto-encoder (SVAE) by Johnson et al. (2016). SVAE employs a structured prior
p(x|θPGM) to extract useful structure from the data. SVAE therefore differs from VAE (Kingma
& Welling, 2013) where the prior distribution over x is simply a multivariate Gaussian distribution
p(x) = N (x|0, I) with no special structure. To illustrate this difference, we now give an example.

Example (Mixture-Model Prior) : Suppose we wish to group the outputs yn into K distinct
clusters. For such a task, the standard Gaussian prior used in VAE is not a useful prior. We could
instead use a mixture-model prior over xn, as suggested by (Johnson et al., 2016),

p(x|θPGM) =

N∏
n=1

p(xn|θPGM) =

N∏
n=1

[
K∑
k=1

p(xn|zn = k)πk

]
, (2)

where zn ∈ {1, 2, . . . ,K} is the mixture indicator for the n’th data example, and πk are mixing
proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
a Gaussian distribution p(xn|zn = k) := N (xn|µk,Σk) giving us the Gaussian Mixture Model
(GMM) prior with PGM hyperparameters θPGM := {µk,Σk, πk}Kk=1. The graphical model of
an SVAE with such priors is shown in Figure 1a. This type of structured-prior is useful for
discovering clusters in the data, making them easier to interpret than VAE.
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Our main goal in this paper is to approximate the posterior distribution p(x,θ|y). Specifically,
similar to VAE, we would like to approximate the posterior of x by using an inference network. In
VAE, this is done by using a function parameterized by DNN, as shown below:

p(x|y,θNN) =
1

p(y|θ)

N∏
n=1

[p(yn|xn,θNN)N (xn|0, I)] ≈
N∏
n=1

q(xn|fφ(yn)), (3)

where the left hand side is the posterior distribution of x, and the first equality is obtained by using
the distribution of the decoder in the Bayes’ rule. The right hand side is the distribution of the en-
coder where q is typically an exponential-family distribution whose natural-parameters are modelled
by using a DNN fφ with parameters φ. The same function fφ(·) is used for all n which reduces the
number of variational parameters and enables sharing of statistical strengths across n. This leads to
both faster training and faster testing (Rezende et al., 2014).

Unfortunately, for SVAE, such inference networks may give inaccurate predictions since they ignore
the structure of the PGM prior p(x|θPGM). For example, suppose yn is a time-series and we model
xn using a dynamical system as depicted in Fig. 1c. In this case, the inference network of (3) is
not an accurate approximation since it ignores the time-series structure in x. This might result in
inaccurate predictions of distant future observations, e.g., prediction for an observation y10 given the
past data {y1,y2,y3} would be inaccurate because the inference network has no path connecting
x10 to x1,x2, or x3. In general, whenever the prior structure is important in obtaining accurate
predictions, we might want to incorporate it in the inference network.

A solution to this problem is to use an inference network with the same structure as the model but to
replace all its edges by neural networks (Krishnan et al., 2015; Fraccaro et al., 2016). This solution is
reasonable when the PGM itself is complex, but might be too aggressive when the PGM is a simple
model, e.g., when the prior in Fig. 1c is a linear dynamical system. Using DNNs in such cases
would dramatically increase the number of parameters which will lead to a possible deterioration in
both speed and performance.

Johnson et al. (2016) propose a method to incorporate the structure of the PGM part in the inference
network. For SVAE with conditionally-conjugate PGM priors, they aim to obtain a mean-field
variational inference by optimizing the following standard variational lower bound1:

L(λx,θ) := Eq(x)

[
log

{
N∏
n=1

p(yn|xn,θNN)p(x|θPGM)

}
− log q(x|λx)

]
, (4)

where q(x|λx) is a minimal exponential-family distribution with natural parameters λx. To incorpo-
rate an inference network, they need to restrict the parameter of q(x|λx) similar to the VAE encoder
shown in (3), i.e., λx must be defined using a DNN with parameter φ. For this purpose, they use
a two-stage iterative procedure. In the first stage, they obtain λ∗x by optimizing a surrogate lower
bound where the decoder in (4) is replaced by the VAE encoder of (3) (highlighted in blue),

L̂(λx,θ,φ) := Eq(x)

[
log

{
N∏
n=1

q(xn|fφ(yn))p(x|θPGM)

}
− log q(x|λx)

]
. (5)

The optimal λ∗x is a function of θ and φ and they denote it by λ∗x(θ,φ). In the second stage, they
substitute λ∗x into (4) and take a gradient step to optimize L(λ∗x(θ,φ),θ) with respect to θ and
φ. This is iterated until convergence. The first stage ensures that q(x|λx) is defined in terms of φ
similar to VAE, while the second stage improves the lower bound while maintaining this restriction.

The advantage of this formulation is that when the factors q(xn|fφ(yn)) are chosen to be con-
jugate to p(x|θPGM), the first stage can be performed efficiently using VMP. However, the over-
all method might be difficult to implement and tune. This is because the procedure is equiva-
lent to an implicitly-constrained optimization2 that optimizes (4) with the constraint λ∗x(θ,φ) =

arg maxλx L̂(λx,θ,φ). Such constrained problems are typically more difficult to solve than their
unconstrained counterparts, especially when the constraints are nonconvex (Heinkenschloss, 2008).
Theoretically, the convergence of such methods is difficult to guarantee when the constraints are

1Johnson et al. (2016) consider θ to be a random variable, but for clarity we assume θ to be deterministic.
2This is similar to Hoffman & Blei (2015) who also solve an implicitly constrained optimization problem.
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violated. In practice, this makes the implementation difficult because in every iteration the VMP
updates need to run long enough to reach close to a local optimum of the surrogate lower bound.

Another disadvantage of the method of Johnson et al. (2016) is that its efficiency could be ensured
only under restrictive assumptions on the PGM prior. For example, the method does not work for
PGMs that contain non-conjugate factors because in that case VMP cannot be used to optimize the
surrogate lower bound. In addition, the method is not directly applicable when λx is constrained
and when p(x|θPGM) has additional latent variables (e.g., indicator variables zn in the mixture-model
example). In summary, the method of Johnson et al. (2016) might be difficult to implement and tune,
and also difficult to generalize to cases when PGM is complex.

In this paper, we propose an algorithm to simplify and generalize the algorithm of Johnson et al.
(2016). We propose structured inference networks (SIN) that incorporate the structure of the PGM
part in the VAE inference network. Even when the graphical model contains a non-conjugate factor,
SIN can preserve some structure of the model. We derive conditions under which SIN can enable
efficient amortized inference by using stochastic gradients. We discuss many examples to illustrate
the design of SIN for many types of PGM structures. Finally, we derive a VMP algorithm to perform
natural-gradient variational inference on the PGM part while retaining the efficiency of the amortized
inference on the DNN part.

3 STRUCTURED INFERENCE NETWORKS

We start with the design of inference networks that incorporate the PGM structure into the inference
network of VAE. We propose the following structured inference network (SIN) which consists of
two types of factors,

q(x|y,φ) :=
1

Z(φ)

[
N∏
n=1

q(xn|fφNN(yn))

]
︸ ︷︷ ︸

DNN Factor

[
q(x|φPGM)

]
︸ ︷︷ ︸

PGM Factor

. (6)

The DNN factor here is similar to (3) while the PGM factor is an exponential-family distribution
which has a similar graph structure as the PGM prior p(x|θPGM). The role of the DNN term is to
enable flexibility while the role of the PGM term is to incorporate the model’s PGM structure into the
inference network. Both factors have their own parameters. φNN is the parameter of DNN and φPGM
is the natural parameter of the PGM factor. The parameter set is denoted by φ := {φNN,φPGM}.
How should we choose the two factors? As we will show soon that, for fast amortized inference,
these factors need to satisfy the following two conditions. The first condition is that the normalizing
constant3 logZ(φ) is easy to evaluate and differentiate. The second condition is that we can draw
samples from SIN, i.e., x∗(φ) ∼ q(x|y,φ) where we have denoted the sample by x∗(φ) to show its
dependence on φ. An additional desirable, although not necessary, feature is to be able to compute
the gradient of x∗(φ) by using the reparameterization trick. Now, we will show that given these two
conditions we can easily perform amortized inference.

We show that when the above two conditions are met, a stochastic gradient of the lower bound can
be computed in a similar way as in VAE. For now, we assume that θ is a deterministic variable (we
will relax this in the next section). The variational lower bound in this case can be written as follows:

LSIN(θ,φ) := Eq
[
log

p(y,x|θ)

q(x|y,φ)

]
= Eq

[
log

∏
n {p(yn|xn,θNN)} p(x|θPGM)Z(φ)∏
n {q(xn|fφNN(yn))} q(x|φPGM)

]
(7)

=

N∑
n=1

Eq
[
log

p(yn|xn,θNN)

q(xn|fφNN(yn))

]
+ Eq[log p(x|θPGM)]− Eq[log q(x|φPGM)] + logZ(φ) (8)

The first term above is identical to the lower bound of the standard VAE, while the rest of the
terms are different (shown in blue). The second term differs due to the PGM prior in the generative
model. In VAE, p(x|θPGM) is a standard normal, but here it is a structured PGM prior. The last two
terms arise due to the PGM term in SIN. If we can compute the gradients of the last three terms and
generate samples x∗(φ) from SIN, we can perform amortized inference similar to VAE. Fortunately,

3Note that both the factors are normalized distribution, but their product may not be.
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the second and third terms are usually easy for PGMs, therefore we only require the gradient ofZ(φ)
to be easy to compute. This confirms the two conditions required for a fast amortized inference.

The resulting expressions for the stochastic gradients are shown below where we highlight in blue
the additional gradient computations required on top of a VAE implementation (we also drop the
explicit dependence of x∗(φ) over φ for notational simplicity).

∂LSIN

∂θNN
≈ N ∂log p(yn|x∗n,θNN)

∂θNN
,

∂LSIN

∂θPGM
≈ ∂log p(x∗|θPGM)

∂θPGM
, (9)

∂LSIN

∂φ
≈ ∂

∂x∗n

[
N log

p(yn|x∗n,θNN)

q(x∗n|fφNN(yn))

]
∂x∗n
∂φ
−N ∂log q(x∗n|fφNN(yn))

∂φ

+
∂

∂x∗

[
log

p(x∗|θPGM)

q(x∗|φPGM)

]
∂x∗

∂φ
+
∂logZ(φ)

∂φ
, (10)

The gradients of Z(φ) and x∗(φ) might be cheap or costly depending on the type of PGM. For
example, for LDS, these require a full inference through the model which costs O(N) computation
and is infeasible for large N . However, for GMM, each xn can be independently sampled and
therefore computations are independent of N . In general, if the latent variables in PGM are highly
correlated (e.g., Gaussian process prior), then Bayesian inference is not computationally efficient
and gradients are difficult to compute. In this paper, we do not consider such difficult cases and
assume that Z(φ) and x∗(φ) can be evaluated and differentiated cheaply.

We now give many examples of SIN that meet the two conditions required for a fast amortized
inference. When p(x|θPGM) is a conjugate exponential-family distribution, choosing the two factors
is a very easy task. In this case, we can let q(x|φPGM) = p(x|φPGM), i.e., the second factor is the
same distribution as the PGM prior but with a different set of parameters φPGM. To illustrate this,
we give an example below when the PGM prior is a linear dynamical system.

Example (SIN for Linear Dynamical System (LDS)) : When yn is a time series, we can model
the latent xn using an LDS defined as p(x|θ) := N (x0|µ0,Σ0)

∏N
n=1N (xn|Axn−1,Q), where

A is the transition matrix, Q is the process-noise covariance, and µ0 and Σ0 are the mean and
covariance of the initial distribution. Therefore, θPGM := {A,Q,µ0,Σ0}. In our inference
network, we choose q(x|φPGM) = p(x|φPGM) as show below, where φPGM := {Ā, Q̄, µ̄0, Σ̄0}
and, since our PGM is a Gaussian, we choose the DNN factor to be a Gaussian as well:

q(x|y,φ) :=
1

Z(φ)

[
N∏
n=1

N (xn|mn,Vn)

]
︸ ︷︷ ︸

DNN Factor

[
N (x0|µ̄0, Σ̄0)

N∏
n=1

N (xn|Āxn−1, Q̄)

]
︸ ︷︷ ︸

LDS Factor

, (11)

where mn := mφNN(yn) and Vn := VφNN(yn) are mean and covariance parameterized by a
DNN with parameter φNN. The generative model and SIN are shown in Fig. 1c and 1d, respec-
tively. The above SIN is a conjugate model where the marginal likelihood and distributions can
be computed in O(N) using the forward-backward algorithm, a.k.a. Kalman smoother (Bishop,
2016). We can also compute the gradient of Z(φ) as shown in Kokkala et al. (2015).

When the PGM prior has additional latent variables, e.g., the GMM prior has cluster indicators zn,
we might want to incorporate their structure in SIN. This is illustrate in the example below.

Example (SIN for GMM prior): The prior shown in (2) has an additional set of latent variables
zn. To mimic this structure in SIN, we choose the PGM factor as shown below with parameters
φPGM := {µ̄k, Σ̄k, π̄k}Kk=1, while keeping the DNN part to be a Gaussian distribution similar to
the LDS case:

q(x|y,φ) :=
1

Z(φ)

N∏
n=1

[
N (xn|mn,Vn)

]
︸ ︷︷ ︸

DNN Factor

[
K∑
k=1

N (xn|µ̄k, Σ̄k)π̄k

]
︸ ︷︷ ︸

GMM Factor

, (12)
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The model and SIN are shown in Figure 1a and 1b, respectively. Fortunately, due to conjugacy
of the Gaussian and multinomial distributions, we can marginalize xn to get a closed-form ex-
pression for logZ(φ) :=

∑
n log

∑
kN (mn|µ̄k,Vn + Σ̄k) π̄k. We can sample from SIN by

first sampling from the marginal q(zn = k|y,φ) ∝ N
(
mn|µ̄k,Vn + Σ̄k

)
π̄k. Given zn, we

can sample xn from the following conditional: q(xn|zn = k,y,φ) = N (xn|µ̃n, Σ̃n), where

Σ̃
−1
n = V−1n + Σ̄

−1
k and µ̃n = Σ̃n(V−1n mn + Σ̄

−1
k µk). See Appendix B for a detailed deriva-

tion.

In all of the above examples, we are able to satisfy the two conditions even when we use the same
structure as the model. However, this may not always be possible for all conditionally-conjugate
exponential family distributions. However, we can still obtain samples from a tractable structured
mean-field approximation using VMP. We illustrate this for the switching state-space model in Ap-
pendix A. In such cases, a drawback of our method is that we need to run VMP long enough to get
a sample, very similar to the method of Johnson et al. (2016). However, our gradients are simpler
to compute than theirs. Their method requires gradients of λ∗(θ,φ) which depends both on θ and
φ (see Proposition 4.2 in (Johnson et al., 2016)). In our case, we require gradient of Z(φ) which is
independent of θ and therefore is simpler to implement.

An advantage of our method over the method of Johnson et al. (2016) is that our method can handle
non-conjugate factors in the generative model. When the PGM prior contains some non-conjugate
factors, we might replace them by their closest conjugate approximations while making sure that the
inference network captures the useful structure present in the posterior distribution. We illustrate
this on a Student’s t mixture model.

Example (SIN for Student’s t-Mixture Model) : To handle outliers in the data, we might want to
use the Student’s t-mixture component in the mixture model shown in (2), i.e., we set p(xn|zn =
k) = T (xn|µk,Σk, γk) with mean µk, scale matrix Σk and degree of freedom γk. The Student’s
t-distribution is not conjugate to the multinomial distribution, therefore, if we use it as the PGM
factor in SIN, we will not be able to satisfy both conditions easily. Even though our model
contains a t-distribution components, we can still use the SIN shown in (12) that uses a GMM
factor. We can therefore simplify inference by choosing an inference network which has a simpler
form than the original model.

In theory, one can do this even when all factors are non-conjugate, however, the approximation error
might be quite large in some cases for this approximation to be useful. In our experiments, we
tried this for non-linear dynamical system and found that capturing non-linearity was essential for
dynamical systems that are extremely non-linear.

4 VARIATIONAL MESSAGE PASSING FOR NATURAL-GRADIENT
VARIATIONAL INFERENCE

Previously, we assumed θPGM to be deterministic. In this section, we relax this condition and assume
θPGM to follow an exponential-family prior p(θPGM|ηPGM) with natural parameter ηPGM. We derive
a VMP algorithm to perform natural-gradient variational inference for θPGM. Our algorithm works
even when the PGM part contains non-conjugate factors, and it does not affect the efficiency of
the amortized inference on the DNN part. We assume the following mean-field approximation:
q(x,θ|y) := q(x|y,φ)q(θPGM|λPGM) where the first term is equal to SIN introduced in the previous
section, and the second term is an exponential-family distribution with natural parameter λPGM. For
θNN and φ, we will compute point estimates.

We build upon the method of Khan & Lin (2017) which is a generalization of VMP and stochastic
variational inference (SVI). This method enables natural-gradient updates even when PGM con-
tains non-conjugate factors. This method performs natural-gradient variational inference by using
a mirror-descent update with the Kullback-Leibler (KL) divergence. To obtain natural-gradients
with respect to the natural parameters of q, the mirror-descent needs to be performed in the mean
parameter space. We will now derive a VMP algorithm using this method.

We start by deriving the variational lower bound. The variational lower bound corresponding to the
mean-field approximation can be expressed in terms of LSIN derived in the previous section.
L(λPGM,θNN,φ) := Eq(θPGM|λPGM) [LSIN(θ,φ)]− DKL[q(θPGM|λPGM) ‖ p(θPGM|ηPGM)]. (13)
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Algorithm 1 Structured, Amortized, and Natural-gradient (SAN) Variational Inference

Require: Data y, Step-sizes β1, β2, β3
1: Initialize λPGM,θNN,φ.
2: repeat
3: Compute q(x|y,φ) for SIN shown in (6) either by using an exact expression or using VMP.
4: Sample x∗ ∼ q(x|y,φ), and compute ∇φZ and∇φx∗.
5: Update λPGM using the natural-gradient step given in (16).
6: Update θNN and φ using the gradients given in (9)-(10) with θPGM ∼ q(θPGM|λPGM).
7: until Convergence

We will use a mirror-descent update with the KL divergence for q(θPGM|λPGM) because we want
natural-gradient updates for it. For the rest of the parameters, we will use the usual Euclidean
distance. We denote the mean parameter corresponding to λPGM by µPGM. Since q is a minimal
exponential family, there is a one-to-one map between the mean and natural parameters, therefore
we can reparameterize q such that q(θPGM|λPGM) = q(θPGM|µPGM). Denoting the values at iteration
t with a superscript t and using Eq. 19 in (Khan & Lin, 2017) with these divergences, we get:

max
µPGM

〈µPGM,∇µPGMLt〉 −
1

β1
DKL[q(θPGM|µPGM) ‖ q(θPGM|µtPGM)], (14)

max
θNN

〈θNN,∇θNNLt〉 −
1

β2
‖θNN − θtNN‖22, max

φ
〈φ,∇φLt〉 −

1

β3
‖φ− φt‖22. (15)

where β1 to β3 are scalars, 〈, 〉 is an inner product, and∇Lt is the gradient at the value in iteration t.

As shown by Khan & Lin (2017), the maximization in (14) can be obtained in closed-form:

λPGM ← (1− β1)λPGM + β1∇µPGMEq(θPGM|µPGM)[log p(x∗|θPGM)]. (16)

When the prior p(θPGM|ηPGM) is conjugate to p(x|θPGM), the above step is equal to the SVI update
of the global variables. The gradient itself is equal to the message received by θPGM in a VMP algo-
rithm, which is also the natural gradient with respect to λPGM. When the prior is not conjugate, the
gradient can be approximated either by using stochastic gradients or by using the reparameterization
trick (Khan & Lin, 2017). Therefore, this update enables natural-gradient update for PGMs that may
contain both conjugate and non-conjugate factors.

The update of the rest of the parameters can be done by using a stochastic-gradient method. This
is because the solution of the update (15) is equal to a stochastic-gradient descent update (one can
verify this by simplify taking the gradient and setting it to zero). We can compute the stochastic-
gradients by using a Monte Carlo estimate with a sample θ∗PGM ∼ q(θPGM|λPGM) as shown below:

∇φL(λPGM,θNN,φ) ≈ ∇φLSIN(θ∗,φ), ∇θNNL(λPGM,θNN,φ) ≈ ∇θNNLSIN(θ∗,φ) (17)

where θ∗ := {θ∗PGM,θNN}. As discussed in the previous section, these gradients can be computed
similar to VAE-like by using the gradients given in (9)-(10). Therefore, for the DNN part we can
perform amortized inference, and use a natural-gradient update for the PGM part using VMP.

The final algorithm is outlined in Algorithm 1. Since our algorithm enables Structured, Amortized,
and Natural-gradient (SAN) updates, we call it the SAN algorithm. Our updates conveniently sep-
arate the PGM and DNN computations. Step 3-6 operate on the PGM part, for which we can use
existing implementation for the PGM. Step 7 operates on the DNN part, for which we can reuse
VAE implementation. Our algorithm not only generalizes previous works, but also simplifies the
implementation by enabling the reuse of the existing software.

5 EXPERIMENTS AND RESULTS

The main goal of our experiments is to show that our SAN algorithm gives similar results to the
method of Johnson et al. (2016). For this reason, we apply our algorithm to the two examples
considered in Johnson et al. (2016), namely the latent GMM and latent LDS (see Fig. 1). In this
section we discuss results for latent GMM. An additional result for LDS is included in Appendix C.
Our results show that, similar to the method of Johnson et al. (2016) our algorithm can learn complex
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Figure 2: Figure (a) compares performances of GMM, SVAE, and SAN on the Pinwheel where
we see that SAN converges faster than SVAE and performs better than GMM. Figure (b) compares
GMM, VAE, and SAN on the Auto dataset where we see the same trend. Figure (c) compares per-
formances on the Pinwheel dataset with outliers. We see that the performance of SAN on Student’s
t-mixture model (SAN-TMM) degrades slower than the performance of methods based on GMM.
Even with 70% outliers, SAN-TMM performs better than SAN-GMM with 10% outliers.

(a) GMM (b) SAN (c) VAE

(d) GMM (e) SAN (f) VAE

Figure 3: Top row is for the Pinwheel dataset, while the bottom row is for the Auto dataset. Point
clouds in the background of each plot show the samples generated from the learned generative
model, where each mixture component is shown with a different color and the color intensities are
proportional to the probability of the mixture component. The points in the foreground show data
samples which are colored according to the true labels. We use K = 10 mixture components to
train all models. For the Auto dataset, we show only the first two principle components.

representations with interpretable structures. The advantage of our method is that it is simpler and
more general than the method of Johnson et al. (2016).

We compare to three baseline methods. The first method is the variational expectation-maximization
(EM) algorithm applied to the standard Gaussian mixture model. We refer to this method as ‘GMM’.
This method is a clustering method but does not use a DNN to do so. The second method is the VAE
approach of Kingma & Welling (2013), which we refer to as ‘VAE’. This method uses a DNN but
does not cluster the outputs or latent variables. The third method is the SVAE approach of Johnson
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et al. (2016) applied to latent GMM shown in Fig. 1. This method uses both a DNN and a mixture
model to cluster the latent variables. We refer to this as ‘SVAE’. We compare these methods to
our SAN algorithm applied to latent GMM model. We refer to our method as ‘SAN’. All methods
employ a Normal-Wishart prior over the GMM hyperparameters (see Bishop (2016) for details).

We use two datasets. The first dataset is the synthetic two-dimensional Pinwheel dataset (N = 5000
and D = 2) used in (Johnson et al., 2016). The second dataset is the Auto dataset (N = 392 and
D = 6, available in the UCI repository) which contains information about cars. The dataset also
contains a five-class label which indicates the number of cylinders in a car. We use these labels to
validate our results. For both datasets we use 70% data for training and the rest for testing. For all
methods, we tune the step-sizes, the number of mixture components, and the latent dimensionality
on a validation set. We train the GMM baseline using a batch method, and, for VAE and SVAE, we
use minibatches of size 64. DNNs in all models consist of two layers with 50 hidden units and an
output layer of dimensionality 6 and 2 for the Auto and Pinwheel datasets, respectively.

Figure 2a and 2b compare the performances during training. In Figure 2a, we compare to SVAE
and GMM, where we see that SAN converges faster than SVAE. As expected, both SVAE and SAN
achieve similar performance upon convergence and perform better than GMM. In Figure 2b, we
compare to VAE and GMM, and observe similar trends. The performance of GMM is represented
as a constant because it converges after a few iterations already. We found that the implementation
provided by Johnson et al. (2016) does not perform well on the Auto dataset which is why we have
not included it in the comparison. We also compared the test log-likelihoods and imputation error
which show very similar trends. We omit these results due to space constraints.

In the background of each plot in Figure 3, we show samples generated from the generative model.
In the foreground, we show the data with the true labels. These labels were not used during training.
The plots (a)-(c) show results for the Pinwheel dataset, while plots (d)-(e) shows results for the Auto
dataset. For the Auto dataset, each label corresponds to the number of cylinders present in a car. We
observe that SAN can learn meaningful clusters of the outputs. On the other hand, VAE does not
have any mechanisms to cluster and, even though the generated samples match the data distribution,
the results are difficult to interpret. Finally, as expected, both SAN and VAE learn flexible patterns
while GMM fails to do so. Therefore, SAN enables flexible models that are also easy to interpret.

An advantage of our method over the method of Johnson et al. (2016) is that our method applies even
when PGM contains non-conjugate factors. Now, we discuss a result for such a case. We consider
the SIN for latent Student’s t-mixture model (TMM) discussed in Section 3. The generative model
contains the student’s t-distribution as a non-conjugate factor, but our SIN replaces it with a Gaussian
factor. When the data contains outliers, we expect the SIN for latent TMM to perform better than the
SIN for latent GMM. To show this, we add artificial outliers to the Pinwheel dataset using a Gaussian
distribution with a large variance. We fix the degree of freedom for the Student’s t-distribution to
5. We test on four different levels of noise and report the test MSE averaged over three runs for
each level. Figure 2c shows a comparison of GMM, SAN on latent GMM, and SAN on latent TMM
where we see that, as the noise level is increased, latent TMM’s performance degrades slower than
the other methods (note that the y-axis is in log-scale). Even with 70% of outliers, the latent TMM
still performs better than the latent GMM with only 10% of outliers. This experiment illustrates that
a conjugate SIN can be used for inference on a model with a non-conjugate factor.

6 DISCUSSION AND CONCLUSION

We propose an algorithm to simplify and generalize the algorithm of Johnson et al. (2016) for models
that contain both deep networks and graphical models. Our proposed VMP algorithm enables struc-
tured, amortized, and natural-gradient updates given that the structured inference networks satisfy
two conditions. The two conditions derived in this paper generally hold for PGMs that do not force
dense correlations in the latent variables x. However, it is not clear how to extend our method to
models where this is the case, e.g., Gaussian process models. It is possible to use ideas from sparse
Gaussian process models and we will investigate this in the future. An additional issue is that our
results are limited to small scale data. We found that it is non-trivial to implement a message-passing
framework that goes well with the deep learning framework. We are going to pursue this direction
in the future and investigate good platforms to integrate the capabilities of these two different flavors
of algorithms.
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A SIN FOR SWITCHING LDS

In SLDS, we introduce discrete variable zn ∈ {1, 2, . . . ,K} that are sampled using a Markov chain:
p(zn = i|zn−1 = j) = πij such that πij sum to 1 over all i given j. The transition for LDS
is defined conditioned on zn: p(xn|xn−1, zn = i,θPGM) := N (xn|Aixn−1,Qi) where Ai and
Qi are parameters for the i’th indicator. These two dynamics put together define the SLDS prior
p(x, z|θPGM). We can use the following SIN which uses the SLDS prior as the PGM factor but with
parameters φPGM instead of θPGM. The expression for q(x, z|y,φ) is shown below:

1

Z(φ)

[
N∏
n=1

N (xn|mn,Vn)

]
︸ ︷︷ ︸

DNN Factor

[
N (x0|µ̄0,z0 , Σ̄0,z0)

N∏
n=1

N (xn|Āznxn−1, Q̄zn)p(zn|zn−1)

]
︸ ︷︷ ︸

SLDS Factor

,

Even though the above model is a conditionally-conjugate model, the partition function is not
tractable and sampling is also not possible. However, we can use a structured mean-field approxima-
tion. First, we can combine the DNN factor with the Gaussian observation of SLDS factor and then
use a mean-field approximation q(x, z|y,φ) ≈ q(x|λx)q(z|λz), e.g., using the method of Ghahra-
mani & Hinton (2000). This will give us a structured approximation where the edges between yn
and xn and zn and zn−1 are maintained but xn and zn independent of each other.

B SIN FOR SVAE WITH MIXTURE MODEL PRIOR

In this section we give detailed derivations for the SIN shown in (12). We derive the normalizing
constant Z(φ) and show how to generate samples from SIN.

We start by a simple rearrangement of SIN defined in (12):

q(x|y,φ) ∝
N∏
n=1

N (xn|mn,Vn)

[
K∑
k=1

N (xn|µ̄k, Σ̄k)π̄k

]

=

N∏
n=1

K∑
k=1

N (xn|mn,Vn)N (xn|µ̄k, Σ̄k)π̄k, (18)

∝
N∏
n=1

K∑
k=1

q(xn, zn = k|yn,φ) (19)

where the first step follows from the definition (12), the second step follows by taking the sum over
k outside, and the third step is obtained by defining each component as a joint distribution over xn
and the indicator variable zn.

We will express this joint distribution as a multiplication of the marginal of zn and conditional of
xn given zn. We will see that this will give us the expression for the normalizing constant, as well
as a way to sample from SIN.

We can simplify the joint distribution further as shown below. The first step follows from the defini-
tion. The second step is obtained by swapping mn and xn in the first term. The third step is obtained
by completing the squares and expressing the first term as a distribution over xn (the second and
third terms are independent of xn).

q(xn, zn = k|yn,φ) ∝ N (xn|mn,Vn)N (xn|µ̄k, Σ̄k)π̄k (20)

= N (mn|xn,Vn)N (xn|µ̄k, Σ̄k)π̄k (21)

= N (xn|µ̃n, Σ̃n)N
(
mn|µ̄k,Vn + Σ̄k

)
π̄k, (22)

where Σ̃
−1
n := V−1n + Σ̄

−1
k and µ̃n := Σ̃n

(
V−1n mn + Σ̄

−1
k µk

)
.

Using the above we get the marginal of zn and conditional of xn given zn:

q(zn = k|yn,φ) ∝ N
(
mn|µ̄k,Vn + Σ̄k

)
π̄k (23)

q(xn|zn = k,yn,φ) := N (xn|µ̃n, Σ̃n) (24)
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The normalizing constant of the marginal of zn is obtained by simply summing over all k:

Zn(φ) :=

K∑
k=1

N
(
mn|µ̄k,Vn + Σ̄k

)
π̄k. (25)

and since q(xn|zn = k,yn,φ) is already a normalized distribution, we can write the final expression
for the SIN as follows:

q(x|y,φ) =

N∏
n=1

1

Zn(φ)

K∑
k=1

q(xn|zn = k,yn,φ)q(zn = k|yn,φ) (26)

where components are defined in (23),(24), and (25). The normalizing constant is available in
closed-form and we can sample zn first and then generate xn. This completes the derivation.

C RESULTS FOR LATENT LINEAR DYNAMICAL SYSTEM

In this experiment, we apply our SAN algorithm to the latent LDS discussed in Section 3. For
comparison, we compare our method, Structured Variational Auto-Encoder (SVAE) (Johnson et al.,
2016), and LDS on the Dot dataset used in Johnson et al. (2016). Our results show that our method
achieves comparable performance to SVAE. For LDS, we perform batch learning for all model
parameters using the EM algorithm. For SVAE and SAN, we perform mini-batch updates for all
model parameters. We use the same neutral network architecture as in Johnson et al. (2016), which
contains two hidden layers with tanh activation function. We repeat our experiments 10 times and
measure model performance in terms of the following mean absolute error for τ -steps ahead predic-
tion. The error measures the absolute difference between the ground truth and the generative outputs
by averaging across generated results.

N∑
n=1

T−τ∑
t=1

1

N(T − τ)d

{
||y∗t+τ,n − Ep(yt+τ,n|y1:t,n)

[
yt+τ,n

]
||1
}

(27)

whereN is the number of testing time series with T time steps, d is the dimensionality of observation
y, and observation y∗t+τ,n denotes the ground-truth at time step t+ τ .
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Figure 4: Prediction error, where shadows denote the standard errors across 10 runs

From Figure 4, we can observe that our method performs as good as SVAE and outperforms LDS.
Our method is slightly robust than SVAE. In Figure 5, there are generated images obtained from
all methods. From Figure 5, we also see that our method performs as good as SAVE and is able to
recover the ground-truth observation.
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(a) SAN (b) SVAE (c) LDS (d) Ground Truth

Figure 5: Generated images, where each column of pixels represents an observation, each row of
pixels represents one time step, and each vertical white line denotes the first time step to generate
images
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