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Abstract

3D LiDAR scanners are playing an increasingly important role in autonomous
driving as they can generate depth information of the environment. However,
creating large 3D LiDAR point-cloud datasets with point-level labels requires a
significant amount of manual annotation. This jeopardizes the efficient development
of supervised deep learning algorithms. We present a framework to rapidly create
point clouds with accurate point-level labels from a computer game. The framework
supports data collection from both autonomous-driving scenes and user-configured
scenes. Point clouds from auto-driving scenes can be used as training data for deep
learning algorithms. We show a significant improvement in accuracy (+9%) in
point cloud segmentation by augmenting the training dataset with the generated
synthesized data. Point clouds from user-configured scenes can then be used to
systematically test and analyze neural networks by sampling scenes in the scene
modification space. We also propose a method to do automatic calibration between
the point cloud and captured scene image.

1 Introduction

Autonomous driving requires accurate and reliable perception of the environment. Of all the sensors,
3D LiDARs (Light Detection And Ranging) plays an increasingly important role, as their resolution
and field of view exceed radar and ultrasonic sensors and they can provide direct distance mea-
surements that allow detection of all kinds of obstacles [8]. Moreover, LiDAR scanners are robust
under a variety of conditions: day or night, with or without glare and shadows [16]. While LiDAR
point clouds contain accurate depth measurement of the environment, navigation of autonomous
vehicles also relies on correct understanding of the semantics of the environment. Most of the LiDAR
based perception tasks, such as semantic segmentation and drivable area detection, require significant
amount of point-level labels for training and/or validation. Such annotation, however, is usually very
expensive.

To facilitate manual annotation process, much work has been done on interactive annotation. An-
notation methods have been proposed for labeling 3D point clouds of both indoor scenes [11] and
outdoor driving scenes [4]. These methods utilize little computer assistance during the annotation
process and thus need a significant amount of human effort. Other methods use more computer
assistance. In [7, 13], approaches have been proposed to enhance the interaction between a user
and the 3D environment to improve annotation efficiency. In [15, 10], annotation suggestions for
indoor RGBD scenes are proposed by the system, and then a user can interactively fix or refine the
annotation. In order to provide faster interactive labeling rates, [1] proposes a group annotation
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(a) (b) (c)
Figure 1: Sample data extracted from an in-game scene. (a): Image of the scene; (b): Point cloud of
car (Blue dots) mapped to image after calibration matches car in image; (c): Extracted point cloud
from the same scene.

approach for labeling objects in 3D LiDAR scans. Active learning has also been introduced in the
annotation process to train a classifier with fewer interactions [6, 12], yet it requires users to interact
with examples one-by-one. Other frameworks further take into account the risk of mislabeling and
cost of annotation. [14] proposes a model of the labeling process and dynamically chooses which
images will be labeled next in order to achieve a desired level of confidence.

Recently, video games have been used for creating large-scale ground truth data for training purposes.
In [9], a video game is used to generate ground truth semantic segmentation for the synthesized
in-game images. However, human effort is still required in the annotation process. In [5], the same
game engine is used to generate ground truth 2D bounding boxes of objects in the images. However,
more work is needed for the creation of 3D LiDAR point cloud datasets.

Note that even if we could provide large amounts of training data, it is still almost impossible for
any algorithms to achieve 100% accuracy. For Cyber-Physical Systems used for safety critical
purposes, such as autonomous driving, verifying neural networks is of extreme importance [2]. In
[3], a framework is proposed to systematically analyze convolutional neural networks (CNNs) used
in classification of cars in autonomous driving systems. However, the framework only takes into
account cars from direct back view and thus has a very limited modification space. To the best of our
knowledge, no similar work has been done for LiDAR point clouds.

In this paper, we propose a framework based on a popular video game that can address both issues
of label generation and systematic testing. First, our framework can automatically extract point
cloud data with ground truth labels together with the corresponding image frame of the in-game
auto-driving scene, as shown in Figure 1. The collected point cloud dataset itself can then be used as
training data, and the corresponding images can be further used for sensor fusion algorithms. Second,
in our framework, the user can configure desired scenes interactively. The collected data can then
be used for neural network testing and analysis. Preliminary experimental results show significant
advantages over state-of-the-art methods.

2 Technical Approach

2.1 In-Game Simulation Setup and Method for Data Collection

We choose to utilize the rich virtual world in Grand Theft Auto V (GTA-V), a popular video game, to
obtain simulated point cloud as well as images with high fidelity. The publisher of GTA-V allows
non-commercial use of footage of gameplay [9]. Our framework is based on DeepGTAV1, which
uses Script Hook V2 as a plugin.

In order to simulate realistic driving scenes, a test car is used to drive autonomously in a game with a
virtual LiDAR scanner mounted atop. While the car drives on street, the system collects LiDAR point
clouds and captures the game screen. The virtual LiDAR scanner and the game camera are placed at
the same position in the virtual 3D space, offering two advantages: 1) a sanity check can be easily
done on the collected data, since point cloud and images should be consistent; 2) calibration between
the game camera and the virtual LiDAR scanner can be done automatically, and then point clouds

1https://github.com/ai-tor/DeepGTAV
2http://www.dev-c.com/gtav/scripthookv/
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(a) (b)
Figure 2: Sample configurable parameters. α is vertical field of view (FOV), θ is vertical resolution,
σ is pitch angle, β is horizontal FOV, and φ is horizontal resolution.

and game scene images can be combined together as training dataset for neural networks for sensor
fusion tasks. Details of the calibration method will be described in Section 2.2.

Ray casting is used to simulate each laser ray which the virtual LiDAR scanner emits. The ray casting
API takes as input the coordinates of the starting point and ending point of the ray, and returns the
coordinates of the first point the ray hits. This point is used to calculate the distance of the point, the
category and instance ID of the object hit by the ray, thus allowing automatic annotation.

In our framework, users can provide configurations of the LiDAR scanner including vertical field of
view (FOV), vertical resolution, horizontal FOV, horizontal resolution, pitch angle, maximum range
of laser rays, an scanning frequency. Some of the configurable parameters are shown in Figure 2.

2.2 Automatic Calibration Method

The goal of the calibration process is to find the corresponding pixel in the image for each LiDAR
point. In our framework, the calibration process can be done automatically by the system based on
the parameters of camera and LiDAR scanner. In addition, the centers of the camera and LiDAR
scanner are set to the same position in the virtual world, making the calibration projection similar to
the camera perspective projection model, as shown in Figure 3.

The problem is formulated as follows: for a certain laser ray with azimuth angle φ and zenith angle
θ, calculate the index (i, j) of the corresponding pixel on image. Fc, Fo, P , P ′ and Pfar are 3D
coordinates of a) center of camera/LiDAR scanner, b) center of camera near-clip plane. c) point first
hit by the virtual laser ray (in red), d) pixel on image corresponding to P , and e) a point far away in
the laser direction, respectively. m and n are the width and height of the near-clip plane. γ is 1/2
vertical FOV of camera while ψ is 1/2 vertical FOV of the LiDAR scanner. Note that LiDAR scanner
FOV is usually smaller than camera FOV, since there is usually no object in the top part of image, and
emitting laser to open space isn’t quite necessary. After a series of 3D geometry calculation, we have:

i =
Rm

m
· (f · tan γ · m

n
− f

cos θ
· tanφ),

j =
Rn

n
· (f · tan γ + f · tan θ),

(1)

where f =
∥∥∥−−−→FcFo

∥∥∥, and (Rm, Rn) is the pixel resolution of the image.

Further, in order for the ray casting API to work properly, the 3D coordinates of Pfar are also
required. Then:

P ′ = Fc + f · −→xc −
f

cos θ
· tanφ · −→yc − f · tan θ · −→zc ,

Pfar = Fc + k · (P ′−Fc)
(2)

where k is a large coefficient, and −→xc ,−→yc ,−→zc are unit vectors of camera axis in the world coordinate
system.

An example of the calibration result is shown in Figure 1. After simulation, both image and point
cloud of the specified in-game scene are collected by the framework (Figure 1 (a, c)). Then with the
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Figure 3: Projection for Calibration. Fo is center of near-clip plane of the camera; Fc is the center of
camera and LiDAR scanner; red line is the laser ray and P is the point hit by the ray; the calibrated
on-image point has pixel index (i, j) and 3D coordinates P ′; γ is 1/2 camera vertical FOV and ψ is
1/2 LiDAR vertical FOV; φ and θ are azimath and zenith angles of the laser ray.

proposed calibration method, we map all the points with category "Car" to the corresponding image.
As shown in Figure 1 (b) The mapped car point cloud (blue dots) matches the car in the image fairly
accurately.

2.3 Configurable In-game Scene

Our framework offers a configurable mode, where the user can configure desired in-game scenes and
collect data from them. One advantage of configurable scenes is generating training data of driving
scenes that are dangerous or rare in real world. Another advantage is that we can systematically
sample the modification space of an in-game scene. The data can then be used to test neural nets and
expose its vulnerabilities. Our framework offers a large modification space of the in-game scene. As
shown in Figure4, the user can specify and change 8 dimensions of in-game scene: car model, car
location, car orientation, number of cars, scene location, color of car, weather, and time of day. The
first 5 dimensions affect both LiDAR point cloud and scene image, while the last three dimensions
affect only scene image. An example of sampling is shown in Figure 5, in which the scenes are only
sampled from the spatial dimensions (X, Y) with only one car in each scene. X and Y are the location
offset of the car relative to the camera/LiDAR location in left-right and forward-backward directions.
Figure5 (b) shows collected point cloud of the samples shown in Figure5 (a). Red points represent
car points while blue points represent the scene background. The collected point clouds match the
scene well thus allowing the use of the data to test neural nets systematically.

3 Experiments and Results

We performed experiments to show the efficacy of our data synthesis framework: 1) Data collected by
the framework can be used in the training phase and help boost the validation accuracy; 2) Collected
data can be used to systematically test a neural network. Our experiments are performed on the task
of LiDAR point cloud segmentation; specifically, given a point cloud detected by a LiDAR sensor,
we wish to perform point-wise classification, as shown in Fig. 6. This task is an essential step for
autonomous vehicles to perceive and understand the environment and navigate accordingly.

As in [16], to evaluate the accuracy of point cloud segmentation algorithm, we compute Intersection-
over-Union (IoU), Precision and Recall as:

IoUc =
|Pc ∩ Gc|
|Pc ∪ Gc|

, P rc =
|Pc ∩ Gc|
|Pc|

, Recallc =
|Pc ∩ Gc|
|Gc|

,

Here, Pc denotes the set of points that our model predicted to be of class-c, Gc denotes the ground-
truth set of points belonging to class-c, and |·| denotes the cardinality of a set. Precision and Recall
measures accuracy with regard to false positives and false negatives, respectively; while IoU takes
both into account. For this, IoU is used as the primary accuracy metric in our experiments.
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Car Model Car Location Car Orientation
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Figure 4: Modification dimensions of the framework with image in center showing the reference
scene.

X

Y

(a) (b)
Figure 5: Scenes with one car sampled from spatial dimensions and corresponding point cloud. (a)
shows the scene image while changing location of the car on X(left-right) and Y(forward-backward)
directions; (b) shows point clouds (red for car and blue for background) of scenes in (a).

Our analysis is based on SqueezeSeg [16], a convolutional neural network based model for point
cloud segmentation. To collect the real-word dataset, we used LiDAR point cloud data from the
KITTI dataset and converted its 3D bounding box labels to point-wise labels. This way, we obtained
10,848 LiDAR scans with manual labels. We used 8,057 frames for training and 2,791 frames for
validation and we used our data synthesis framework to generate 8,585 frames as extra training data.

As described in [16], we trained SqueezeSeg a) with only KITTI data, b) with only GTA synthetic
data and c) with both dataset, and evaluated its accuracy on the KITTI validation set. Accuracy for
these 3 cases are described in Table. 1. From the table, when augmented with synthetic data, the
model achieved the best accuracy, better than if we only used real-world data.
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Figure 6: LiDAR point cloud segmentation

Figure 7: IoU scatter with the change of car location

Then we used our framework to systematically test SqueezeSeg. Since the total modification space of
the framework is too large, we only did sampling in the car location X-Y dimensions as in Figure 5.
555 scenes are sampled to test SqueezeSeg, with the IoU results shown in Figure 7. Blue and green
dots show the car locations resulting in low IoU. Most of the "blind spot" are locations far from the
LiDAR scanner, but there are also closer locations which results in low IoU scores. The segmentation
accuracy can be potentially boosted by adding more samples near the "blind spot" locations detected
by the testing process.

Table 1: Segmentation Performance on the Car Category with Synthesized Data

Precision Recall IoU
KITTI 58.9 95.0 57.1
GTA 30.4 86.6 29.0

KITTI + GTA 69.6 92.8 66.0

4 Conclusions

In this paper, we propose a framework that synthesizes an annotated LiDAR point cloud from a
virtual world in a game, with a method to automatically calibrate the point cloud and scene image.
Our framework can be used to: 1) get a large amount of annotated point cloud data, which can then be
used to help neural network training; 2) systematically test and analyze neural networks for tasks such
as point cloud segmentation. Experiments show that for a point cloud segmentation task, synthesized
data help boost the validation accuracy (IoU) by 9%. Further more, our systematical sampling and
testing framework helps us to identify potential blind spots of our neural network model.
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