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ABSTRACT

Artificial neural networks have opened up a world of possibilities in data science
and artificial intelligence, but neural networks are cumbersome tools that grow
with the complexity of the learning problem. We make contributions to this issue
by considering a modified version of the fully connected layer we call a block
diagonal inner product layer. These modified layers have weight matrices that are
block diagonal, turning a single fully connected layer into a set of densely con-
nected neuron groups. This idea is a natural extension of group, or depthwise
separable, convolutional layers applied to the fully connected layers. Block di-
agonal inner product layers can be achieved by either initializing a purely block
diagonal weight matrix or by iteratively pruning off diagonal block entries. This
method condenses network storage and speeds up the run time without significant
adverse effect on the testing accuracy, thus offering a new approach to improve
network computation efficiency.

1 INTRODUCTION

Today, it is well known that larger neural networks can better represent complex data and hence
achieve higher accuracy than smaller networks (Hornik et al., 1989; Simonyan & Zisserman, 2014;
Sermanet et al., 2014). While larger networks are more capable than their smaller counterparts,
their size consumes significant storage and computational resources and memory bandwidth. Ide-
ally, efforts to reduce memory requirements would also lessen computational demand, but often
these competing interests force a trade-off. The fully connected layers are unwieldy, yet they con-
tinue to be present in the most successful networks (Krizhevsky et al., 2012; Zeiler & Fergus, 2013;
Simonyan & Zisserman, 2014). Our work addresses both memory and computational demand with-
out compromise. Focusing our attention on the inner product layers, we decrease network memory
footprint and improve network computational demand.

While larger network architectures achieve higher accuracy, there are a variety of methods to con-
dense them without much harm to the network accuracy. One such technique that has gained popu-
larity is pruning (Reed, 1993; Han et al., 2015a;b), but traditional pruning has disadvantages related
to network runtime. Most existing pruning processes significantly slow down network training, and
the final trained network is usually slower to execute (Han et al., 2015a). Sparse format operations
require additional overhead that can greatly slow down performance unless one prunes nearly all
weight entries, which can damage network accuracy.

Localized memory access patterns can be computed faster than non-localized lookups. By imple-
menting block diagonal inner product layers in place of fully connected layers, we condense neural
networks in a structured manner that speeds up the final runtime and does little harm to the final
accuracy. Block diagonal inner product layers can be implemented by either initializing a purely
block diagonal weight matrix or by initializing a fully connected layer and focusing pruning efforts
off the diagonal blocks to coax the dense weight matrix into structured sparsity. The first method
also reduces the gradient computation time and hence the overall training time. The latter method
can improve accuracy and supports the robustness of networks to shaping. That is, pruning can be
used as a mapping between architectures–in particular, a mapping to more convenient architectures.
Depending on how many iterations the pruning process takes, this method may also speed up train-
ing. We have converted a single fully connected layer into a group of smaller inner product learners
whose combined efforts form a stronger learner, in essence boosting the layer. These methods also
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bring artificial neural networks closer to the architecture of biological mammalian brains, which
have more local connectivity (Herculano-Houzel, 2012).

2 RELATED WORK

Weight pruning comes in many forms including penalty and second derivative methods, sensitivity
analysis and cross validation; it can be done iteratively during training or to a trained network before
refining the surviving weights (Reed, 1993; Castellano et al., 1997; LeCun et al., 1990; Hassibi &
Stork, 1992; Engelbrecht, 2001). With any of these methods, the result is a sparse network that
takes less storage space than its fully connected counterpart. Han et al. (2015b) iteratively prune
a network using the penalty method by adding a mask that disregards pruned parameters for each
weight tensor. This means that the number of required floating point operations decreases, but the
number performed stays the same. Furthermore, masking out updates takes additional time. Quan-
tization and Huffman coding can be used to compress a trained network further (Xie & Jabri, 1992;
Han et al., 2015a). Han et al. (2015a) report the average time spent on a forward propagation after
pruning is complete and the resulting sparse layers have been converted to CSR format; for batch
sizes larger than one, the sparse computations are significantly slower than the dense calculations.

Node pruning (He et al., 2014; Srinivas & Babu, 2015) could be used to speed up training and final
execution time more easily than weight pruning since node pruning preserves some structure, but
drastic node pruning can harm the network accuracy. In practice, node pruning requires additional
weight fine-tuning to maintain accuracy. Other approaches include storing a low rank approximation
for a layer’s weight matrix (Sainath et al., 2013), using specific parameter sharing mechanisms
(Chen et al., 2015), training smaller models on outputs of larger models (distillation) (Hinton et al.,
2014), allowing neurons to read stale gradient updates (Ho et al., 2013) and using lower precision
(Vanhoucke et al., 2011; M.Courbariaux et al., 2015; Gupta et al., 2015). Note that using lower
precision or stale gradients are techniques that can be applied to any of the methods considered,
including ours.

More recently, there has been momentum in the direction of structured reduction of network ar-
chitecture. Sindhwani et al. (2015) propose structured parameter matrices characterized by low
displacement rank that yield high compression rate as well as fast forward and gradient evaluation.
Their work focuses on toeplitz-related transforms of the fully connected layer weight matrix. How-
ever, speedup is generally only seen for compression of large weight matrices, and their structured
sparsity methods require parameter sharing which may be undesirable in some cases. Block sparsity
yields compression with parameter flexibility. Group lasso has made contributions to the compres-
sion of convolutional layers (Yuan & Lin, 2006; Lebedev & Lempitsky, 2016; Wen et al., 2016).
Group lasso expands the concept of node pruning to convolutional filters. That is, group lasso ap-
plies L1 norm regularization to entire filters. Likewise, group, or depthwise separable, convolutions
have been used in recent CNN architectures with great success (Xie et al., 2016; Zhang et al., 2017;
Chollet, 2017; Howard et al., 2017). In group convolutions, the number of nonzero weights does
not change, but the number of connections changes; a particular filter does not see all of the chan-
nels of the previous layer. Block diagonal inner product layers apply this idea of separable neuron
groups to the fully connected layers, which decreases the number of weights as well as the number
of connections. Decoupling channels in images is natural because channels often carry very simi-
lar information. When converting a fully connected layer to a block diagonal inner product layer,
blocks may not even see a whole channel. This method transforms a fully connected layer into an
ensemble of smaller fully connected neuron groups that boost the layer. Methods to condense and
speedup convolutional layers like group lasso or group convolutions, can also be used in conjunction
with our methods.

3 METHODOLOGY

We consider two methods for implementing block diagonal inner product layers:

1. We initialize a layer with a purely block diagonal weight matrix and keep the number of
connections constant throughout training.
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Figure 1: Speedup when performing matrix multiplication using an n× n weight matrix and batch
size 100. (Left) Speedup when performing only one forward matrix product. (Right) Speedup when
performing all three matrix products involved in the forward and backward pass in gradient descent.

2. We initialize a fully connected layer and iteratively prune entries off the diagonal blocks to
achieve a block substructure.

Within a layer, all blocks have the same size. Method 2 is accomplished in three phases: a dense
phase, an iterative pruning phase and a block diagonal phase. In the dense phase a fully connected
layer is initialized and trained in the standard way. During the iterative pruning phase, focused
pruning is applied to entries off the diagonal blocks using the weight decay method with L1-norm.
That is, ifW is the weight matrix for a fully connected layer we wish to push toward block diagonal,
we add

α
∑
i,j

|1i,jWi,j | (1)

to the loss function during the iterative pruning phase, where α is a tuning parameter and 1i,j in-
dicates whether Wi,j is off the diagonal blocks in W . The frequency of regularization and pruning
during this phase are additional hyperparameters. During this phase, masking out updates for pruned
entries is more efficient than maintaining sparse format. When pruning is complete, to maximize
speedup it is best to reformat the weight matrix once such that the blocks are condensed and adja-
cent in memory.1 Batched smaller dense calculations for the blocks use cuBLAS strided batched
multiplication (Nickolls et al., 2008). There is a lot of flexibility in method 2 that can be tuned for
specific user needs. More pruning iterations may increase the total training time but can yield higher
accuracy and reduce overfitting.

4 EXPERIMENTS: SPEEDUP AND ACCURACY

Our goal is to reduce memory storage of the inner product layers while maintaining or reducing the
final execution time of the network with minimal loss in accuracy. We will also see the reduction
of total training time in some cases. To test this, we ran experiments on the MNIST (LeCun et al.),
CIFAR10 (Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015) datasets. All experiments
are run on the Bridges’ NVIDIA P100 GPUs through the Pittsburgh Supercomputing Center. We
implement our work in Caffe (Jia et al., 2014) which provides suggested network architectures for
these datasets. Training is done with batched gradient descent using the cross-entropy loss function
on the softmax of the output layer. We report the forward time per inner product layer when the
layers are purely block diagonal; this time only measures the matrix multiplication in the forward
step and does not include the time to prune. We compare these times to the runtime of sparse matrix
multiplication with random entries in CSR format using cuSPARSE (Nickolls et al., 2008). We also
report the combined forward and backward time to do the three matrix products involved in gradient

1When using block diagonal layers, one should alter the output format of the previous layer and the expected
input format of the following layer accordingly, in particular to row major ordering.
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descent training when the layers are purely block diagonal. For brevity we refer to the block diagonal
method as (b1, . . . , bn)-BD; bi = 1 indicates that layer i is fully connected. FC is short for all inner
product layers being fully connected. We refer to networks that differ only by the number of blocks
in a single inner product layer as sister networks.

Figure 1 shows the speedup when performing matrix multiplication using an n × n weight matrix
and batch size 100 when the weight matrix is purely block diagonal. The speedup when performing
only the forward-pass matrix product is shown in the left pane, and the speedup when performing
all gradient descent products is shown in the right pane. As the number of blocks increases, the
overhead to perform cuBLAS strided batched multiplication can become noticeable; this library is
not yet well optimized for performing many small matrix products (Masliah et al., 2016). However,
with specialized batched multiplications for many small matrices, Jhurani & Mullowney (2015)
attain up to 6 fold speedup.

Zhang et al. (2017) note that when multiple group convolutions are stacked together, outputs from a
particular group only see the inputs within the group. They suggest that this property blocks infor-
mation flow between channel groups and weakens representation. To correct for this, they suggest
dividing the channels in each group into subgroups, and feeding each group in the next layer with a
mixture of subgroups from various parent groups in the previous layer. One drawback of applying
this approach to block inner product layers is that it either requires moving entries in memory or do-
ing more, smaller matrix products. As mentioned, performing many small matrix products can hurt
performance; this can be seen in Figure 1. Using pruning to achieve the block diagonal structure,
as in method 2, also addresses this issue. Pruning does add some work to the training iterations, but
does not add work to the final execution of the trained network unlike the shuffling method found
in ShuffleNet (Zhang et al., 2017). After pruning is complete, the learned weights are the result of a
more complete picture; while the information flow has been constrained, it is preserved like a ghost
in the remaining weights. Another alternative to the fixed channel shuffle offered in ShuffleNet, is
a random shuffle of the whole blocks similar to the “random sparse convolution” layer in the CNN
library cuda-convnet (Krizhevsky, 2012a). We will compare results using all of these methods.

4.1 MNIST

We experimented on the MNIST dataset with the LeNet-5 framework (LeCun et al., 1998). LeNet-5
has two convolutional layers with pooling followed by two inner product layers with ReLU activa-
tion. The first inner product layer, ip1, has a 500× 800 weight matrix, and the output inner product
layer, ip2, has a 10 × 500 weight matrix. We initialize the inner product layers using the Xavier
weight filler (Glorot & Bengio, 2010), which samples a uniform distribution with variance 1/nin,
where nin is the number of neurons feeding into a node. We used a training batch size of 64 and all
other hyperparameters provided by Caffe are left unchanged.

Figure 2 shows time and accuracy results for block diagonal method 1 without pruning. The (b1, b2)-
BD architecture has (800 × 500)/b1 + (500 × 10)/b2 nonzero weights across both inner product
layers. The points at which the forward sparse and forward block curves meet in Figure 2 (left)
indicate the fully connected dense forward runtimes for each layer; these are made clearer with
dotted, black, vertical lines. There is ≥ 1.4× speedup for b1 ≤ 50, or 8000 nonzero entries, when
timing both forward and backward matrix products, and 1.6× speedup when b1 = 100, or 4000
nonzero entries, in the forward only case. Sparse format times are slow until there are less than
50 nonzero entries. Figure 2 (right) shows a slight decline in accuracy as the number of nonzero
entries decreases. FC achieves a final accuracy of 99.11%. Without pruning, (100, 10)-BD has a
final accuracy of 98.52%. In all cases testing accuracy remains within 1% of FC accuracy.

Using traditional iterative pruning with L2 regularization, as suggested in (Han et al., 2015b), prun-
ing every fifth iteration until 4000 and 500 nonzero entries survived in ip1 and ip2 respectively gave
an accuracy of 98.55%, but the forward multiplication was more than 8 times slower than the dense
fully connected case. Implementing (100, 10)-BD method 2 with pruning using 15 dense iterations
and 350 pruning iterations gave a final accuracy of 98.65%. Thus we saw no great benefit to using
pruning over initializing pure block diagonal inner product layers for the MNIST dataset. In this
setting, using neither random shuffling of whole blocks in ip1, nor fixed sub-block shuffling in the
manner of Zhang et al. (2017) delivered any noticeable improvement.
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Figure 2: Time/Accuracy results using Lenet-5 on MNIST with batch size 64. (Left) For each inner
product layer: forward runtimes of block diagonal and CSR sparse formats, combined forward and
backward runtimes of block diagonal format. (Right) Accuracy versus total number of nonzero
entries in the inner product layers after 10000 training iterations using block diagonal method 1.

In (Sindhwani et al., 2015), Toeplitz (3) has error rate 2.09% using a single hidden layer net with
1000 hidden nodes on MNIST. This method yields 63.32 fold compression over the fully connected
setting. However from their Figure 3, this slows down the forward pass by around 1.5× and the
backward pass by around 5.5×. Our net with one hidden layer, 980 hidden nodes using (49, 1)-BD
on MNIST has 29.43 fold compression and error rate 4.37% using method 2 with pruning. This is
striking because the blocks of neurons in the hidden layer can only see a portion of the test input
images. Our speedup is 1.53 for forward only and 1.04 when combining the forward and backward
runtime.

As mentioned we left suggested hyperpameters by Caffe unchanged for hyperparameters like learn-
ing rate, momentum and weight decay. In our experiments on the MNIST dataset we performed only
manual hyperparameter tuning of new hyperparameters introduced by method 2 like the coefficient
of the new regularization term (see equation 1) and the frequency of pruning iterations.

4.2 CIFAR10

We experimented on the CIFAR10 dataset with Krizhevsky’s cuda-convnet (2012b). Cuda-convnet
has three convolutional layers with ReLu activation and pooling, followed by two fully connected
layers with no activation. The first inner product layer, ip1, has a 64× 1024 weight matrix, and the
second has a 10 × 64 weight matrix. In all methods the inner product layer weights are initialized
using a Gaussian filler with standard deviation 0.1, as suggested by Caffe. We used a training batch
size of 100, and all other hyperparameters provided by Caffe’s “quick” model are left unchanged.
Caffe reports ≈ 75% accuracy with the FC architecture.

Figure 3 shows time and accuracy results for the block diagonal method 1 without pruning. The
(b1, b2)-BD architecture has (1024 × 64)/b1 + (64 × 10)/b2 nonzero entries across both inner
product layers. In the ip1 layer, there is ≥ 1.26× speedup for b1 ≤ 32, or 2048 nonzero entries,
when timing both forward and backward matrix products, and ≥ 1.65× speedup for b1 ≤ 64, or
1024 nonzero entries, in the forward only case. Again, sparse format performs poorly until there are
less than 50 nonzero entries. Figure 3 (right) shows a decline in accuracy as the blocks increase. FC
achieves a final accuracy of 76.29%. Without pruning, (64, 2)-BD has a final accuracy of 72.49%.

Using traditional iterative pruning with L2 regularization pruning every fifth iteration until 1024
and 320 nonzero entries survived in the final two inner product layers gave an accuracy of 75.18%,
but again the forward multiplication was more than 8 times slower than the dense fully connected
computation. On the other hand, implementing (64, 2)-BD method 2 with pruning, which has cor-
responding numbers of nonzero entries, with 500 dense iterations and 1000 pruning iterations gave
a final accuracy of 74.81%. This is a 35.97 fold compression of the inner product layer parameters
with only a 1.5% drop in accuracy. The total forward runtime of ip1 and ip2 in (64, 2)-BD is 1.6
times faster than in FC. To achieve comparable speed with sparse format we used traditional itera-
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Figure 3: Time/Accuracy results of cuda-convnet on CIFAR10 with batch size 100. (Left) For each
inner product layer: forward runtimes of block diagonal and CSR sparse formats, combined forward
and backward runtimes of block diagonal format. (Right) Accuracy versus total number of nonzero
entries in the inner product layers after 9000 training iterations using block diagonal method 1.

tive pruning to leave 37 and 40 nonzero entries in the final inner product layers giving an accuracy
of 73.01%. Thus implementing block diagonal layers with pruning yields comparable accuracy and
memory condensation to traditional iterative pruning with faster final execution time.

Whole node pruning decreases the accuracy more than corresponding reductions in the block diag-
onal setting. Node pruning until ip1 had only 2 outputs, i.e. a 1024× 2 weight matrix, and ip2 had
a 2 × 10 weight matrix for a total of 2068 weights between the two layers gave a final accuracy of
59.67%. (64,2)-BD has a total of 1344 weights between the two inner product layers and had a final
accuracy 15.14% higher with pruning.

The final accuracy on an independent test set was 76.29% on CIFAR10 using the FC net while
the final accuracy on the training set itself was 83.32%. Using the (64,2)-BD net without pruning,
the accuracy on an independent test set was 72.49%, but on the training set was 75.63%. With
pruning, the accuracy of (64,2)-BD on an independent test set was 74.81%, but on the training set
was 76.85%. Both block diagonal methods decrease overfitting; the block diagonal method with
pruning decreases overfitting slightly more.

We saw no significant affect on the final accuracy after 9000 iterations when using random shuffling
of the ip2 layer blocks during training. Similarly, performing fixed sub-block shuffle as suggested
by Zhang et al. (2017) on the (2, 2)-BD architecture using method 1 where shuffling is applied to
sub-blocks of layer ip2 did not yield improvement over (2, 2)-BD without fixed sub-block shuffling.
These methods may be useful in networks with many stacked block inner product layers or net-
works with sparse convolution as a result of group lasso or group convolution, but saw no benefit
in the cuda-convnet architecture with two inner product layers. Using method 2 to achieve a block
substructure with pruning did yield improvement over method 1.

4.3 IMAGENET : INCOMPLETE

In this section we will put accuracy results when we are able to get them. Currently we are unable
to run ImageNet experiments using AlexNet because we need more memory on the Bridges Super-
computer. We have placed a request for more memory and we are waiting for that request to be
granted.

We experimented on the ImageNet dataset with the AlexNet framework (Krizhevsky et al., 2012).
AlexNet has five convolutional layers followed by three inner product layers with ReLU and dropout
activation. The first inner product layer, ip1, has a 4096 × 9216 weight matrix, the second inner
product layer, ip2, has a 4096 × 4096 weight matrix, and the output inner product layer, ip3, has a
1000× 4096 weight matrix. We initialize the inner product layers using a gaussian weight filler. We
used a training batch size of 256 and all other hyperparameters provided by Caffe are left unchanged.

Figure 4 shows time and accuracy results for block diagonal method 1 without pruning. The
(b1, b2, b3)-BD architecture has (4096×9216)/b1+(4096×4096)/b2+(1000×4096)/b3 nonzero
weights across all inner product layers. The points at which the forward sparse and forward block
curves meet in Figure 4 (left) indicate the fully connected dense forward runtimes for each layer.
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Figure 4: Time/Accuracy results using alexnet on imagenet with batch size 256. (Left) For each
inner product layer: forward runtimes as well as combined forward and backward runtimes of block
diagonal format. (Right) Accuracy versus total number of nonzero entries in the inner product layers
after 360000 training iterations using block diagonal method 1.

5 CONCLUSION

We have shown that block diagonal inner product layers can reduce network size, training time and
final execution time without significant harm to the network performance.

While traditional iterative pruning can reduce storage, the random indices of the surviving weights
make sparse computation inefficient, slowing down the training and final execution time of the net-
work. Our block diagonal methods address this inefficiency by confining dense regions to blocks
along the diagonal. Without pruning, block diagonal method 1 allows for faster training time.
Method 2 preserves the learning with focused, structured pruning that reduces computation for
speedup during execution. In our experiments, method 2 saw higher accuracy than the purely block
diagonal method for the more complex learning problem, CIFAR10; however, the increase in accu-
racy came in exchange for slightly more time to train the network. There is great deal of flexibility
in our block diagonal methods that can be tuned to an individual problem. These methods may also
make larger network architectures more feasible to train and use since they convert a fully connected
layer into a collection of smaller inner product learners working jointly to form a stronger learner.
In particular, GPU memory constraints become less constricting.

There is a lot of room for additional speedup with block diagonal layers. Dependency between
layers poses a noteworthy bottleneck in network parallelization. With structured sparsity like ours,
one no longer needs a full barrier between layers. Additional speedup would be seen in software
optimized to support weight matrices with organized sparse form, such as blocks, rather than being
optimized for dense matrices. For example, for many small blocks, one can reach up to 6 fold
speedup with specialized batched matrix multiplication (Jhurani & Mullowney, 2015). Hardware
has been developing to better support sparse operations. Block format may be especially suitable
for training on evolving architectures such as neuromorphic systems. These systems, which are far
more efficient than GPUs at simulating mammalian brains, have a pronounced 2-D structure and are
ill-suited to large dense matrix calculations (Merolla et al., 2014; Boahen, 2014).
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