
TOWARDS SAFE DEEP LEARNING: UNSUPERVISED
DEFENSE AGAINST GENERIC ADVERSARIAL ATTACKS

ABSTRACT

Recent advances in adversarial Deep Learning (DL) have opened up a new and
largely unexplored surface for malicious attacks jeopardizing the integrity of au-
tonomous DL systems. We introduce a novel automated countermeasure called
Parallel Checkpointing Learners (PCL) to thwart the potential adversarial attacks
and significantly improve the reliability (safety) of a victim DL model. The pro-
posed PCL methodology is unsupervised, meaning that no adversarial sample is
leveraged to build/train parallel checkpointing learners. We formalize the goal of
preventing adversarial attacks as an optimization problem to minimize the rarely
observed regions in the latent feature space spanned by a DL network. To solve the
aforementioned minimization problem, a set of complementary but disjoint check-
pointing modules are trained and leveraged to validate the victim model execution
in parallel. Each checkpointing learner explicitly characterizes the geometry of
the input data and the corresponding high-level data abstractions within a particu-
lar DL layer. As such, the adversary is required to simultaneously deceive all the
defender modules in order to succeed. We extensively evaluate the performance
of the PCL methodology against the state-of-the-art attack scenarios, including
Fast-Gradient-Sign (FGS), Jacobian Saliency Map Attack (JSMA), Deepfool, and
Carlini&WagnerL2. Extensive proof-of-concept evaluations for analyzing vari-
ous data collections including MNIST, CIFAR10, and ImageNet corroborate the
effectiveness of our proposed defense mechanism against adversarial samples.

1 INTRODUCTION

Security and safety consideration is a major obstacle to the wide-scale adoption of emerging learn-
ing algorithms in sensitive scenarios, such as intelligent transportation, healthcare, and video surveil-
lance applications (McDaniel et al. (2016); Dahl et al. (2013); Knorr (2015)). While advanced learn-
ing technologies are essential for enabling coordination and interaction between the autonomous
agents and the environment, a careful analysis of their decision reliability in the face of carefully
crafted adversarial samples (Goodfellow et al. (2014); Papernot et al. (2016a); Moosavi-Dezfooli
et al. (2016); Carlini & Wagner (2017b)) and thwarting their vulnerabilities are still in their infancy.

Consider a traffic sign classifier employed in self-driving cars. In this setting, an adversary can
carefully add imperceptible perturbation to a legitimate “stop” sign sample and fool the DL model
to classify it as a “yield” sign; thus, jeopardizes the safety of the vehicle as shown in (McDaniel et al.
(2016)). As such, it is highly important to reject risky adversarial samples to ensure the integrity of
DL models used in autonomous systems such as unmanned vehicles and drones. In this paper, we
aim to answer two open questions regarding the adversarial attacks.

(i) Why are machine learning models vulnerable to adversarial samples? Our hypothesis is that
the vulnerability of neural networks to adversarial samples originates from the existence of rarely
explored sub-spaces in each feature map. This phenomenon is particularly caused by the limited
access to the labeled data and/or inefficiency of regularization algorithms (Wang et al. (2016); Denil
et al. (2013)). Figure 1 provides a simple illustration of the partially explored space in a two-
dimensional setup. We analytically and empirically back up our hypothesis by extensive evaluations
on the state-of-the-art attacks, including Fast-Gradient-Sign (Goodfellow et al. (2014)), Jacobian
Saliency Map Attack (Papernot et al. (2016a)), Deepfool (Moosavi-Dezfooli et al. (2016)), and
Carlini&WagnerL2 (Carlini & Wagner (2017b)).

(ii) How can we characterize and thwart the underlying space for unsupervised model assurance
as well as defend against the adversaries? A line of research has shown that there is a trade-off
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between the robustness of a model and its accuracy (Madry et al. (2017); Papernot et al. (2016b)).
Taking this into account, instead of making a single model that is both robust and accurate, we
introduce a new defense mechanism called Parallel Checkpointing Learners (PCL). In this setting,
the victim model is kept as is while separate defender modules are trained to checkpoint the data
abstractions and assess the reliability of the victim’s prediction. Each defender module characterizes
the explored sub-space in the pertinent layer by learning the probability density function (pdf) of
legitimate data points and marking the complement sub-spaces as rarely observed regions. Once
such characterization is obtained, the checkpointing modules1 evaluate the input sample in parallel
with the victim model and raise alarm flags for data points that lie within the rarely explored regions
(Figure 1c). As we demonstrate in Section 4, adversarial samples created by various attack methods
mostly lie within the sub-spaces marked as partially explored sectors.

We consider a white-box attack model in which the attacker knows everything about the victim
model including its architecture, learning algorithm, and parameters. This threat model represents
the most powerful attacker that can endanger the real-world applications. We validate the security
of our proposed approach for different DL benchmarks including MNIST, CIFAR10, and a subset
of ImageNet data. Based on the result of our analysis, we provide new insights on the reason behind
the existence of adversarial transferability. We open-source our API to ensure ease of use by the
users (the link is omitted for blind review purposes) and invite the community to attempt attacks
against our provided benchmarks in the form of a challenge.

The explicit contribution of this paper is as follows: (i) Devising an automated end-to-end frame-
work for unsupervised model assurance as well as defending against the adversaries. (ii) Incepting
the idea of parallel checkpointing learners to validate the legitimacy of data abstractions at each in-
termediate DL layer. (iii) Performing extensive proof-of-concept evaluations against state-of-the-art
attack methods. (iv) Providing new insights regarding the transferability of adversarial samples in
between different models.

(a) (b) (c)

Figure 1: (a) In this example, data points (denoted by green and blue squares) can be easily sepa-
rated in one-dimensional space. Having extra dimensions adds ambiguity in choosing the pertinent
decision boundaries. For instance, all the shown boundaries (dashed lines) are sufficient to classify
the raw data with full accuracy in two-dimensional space but are not equivalent in terms of robust-
ness to noise. (b) The rarely explored space (region specified by diagonal striped) in a learning
model leaves room for adversaries to manipulate the nuisance (non-critical) variables and mislead
the model by crossing the decision boundaries. (c) In PCL methodology, a set of defender (check-
point) modules is trained to characterize the data density distribution in the space spanned by the
victim model. The defender modules are then used in parallel to checkpoint the reliability of the
ultimate prediction and raise an alarm flag for risky samples.

2 TRAINING CHECKPOINTING MODULES FOR INTERMEDIATE LAYERS

The goal of each defender (checkpointing) module is to learn the pdf of the explored sub-spaces in
a particular intermediate DL feature map. The learned density function is then used to identify the
rarely observed regions as depicted in Figure 1b. We consider a Gaussian Mixture Model (GMM)
as the prior probability to characterize the data distribution at each checkpoint location.2

1We use the term “checkpointing module” and “defender module” interchangeably throughout the paper.
2It is worth noting that our proposed approach is rather generic and is not restricted to the GMM distribution.

The GMM distribution can be replaced with any other prior depending on the application.
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Figure 2: Block diagram of the training procedure for devising parallel checkpointing modules.
Each defender module is built by minimizing the disentanglement of intermediate data features in a
Euclidean space at a particular checkpoint location. This goal is achieved through several rounds of
iterative realignment of data abstractions. The latent data space is then characterized as an ensemble
of lower dimensional sub-spaces to effectively learn the pdf of explored regions and detect atypical
samples based on a user-defined security parameter.

To effectively characterize the explored sub-space as a GMM distribution, one is required to mini-
mize the entanglement between each two Gaussian distribution (corresponding to every two different
classes) while decreasing the inner-class diversity. Figure 2 illustrates the high-level block diagram
of the training procedure for devising a parallel checkpointing module. Training a defender module
is a one-time offline process and is performed in three steps.

1 Replicating the victim neural network and all its feature maps. An L2 normalization layer is in-
serted in the desired checkpoint location. The normalization layer maps the latent feature variables,
φ(x), into the Euclidean space such that the acquired data embeddings live in a d-dimensional hyper-
sphere, i.e., ‖φ(x)‖2= 1. This normalization is crucial as it partially removes the effect of over-fitting
to particular data samples that are highly correlated with the underlying DL parameters.3

2 Fine-tuning the replicated network to enforce disentanglement of data features (at a particular
checkpoint location). To do so, we optimize the defender module by incorporating the following
loss function with the conventional cross entropy loss:

L+= γ [ ‖Cy∗ −φ(x)‖2
2︸ ︷︷ ︸

loss1

− Σi6=y∗‖Ci−φ(x)‖2
2︸ ︷︷ ︸

loss2

+ Σi(‖Ci‖2−1)2︸ ︷︷ ︸
loss3

]. (1)

Here, γ is a trade-off parameter that specifies the contribution of the additive loss term, φ(x) is the
corresponding feature vector of input sample x at the checkpoint location, y∗ is the ground-truth
label, and Ci denotes the center of all data abstractions (φ(x)) corresponding to class i. The center
values Ci and intermediate feature vectors φ(x) are trainable variables that are learned by fine-tuning
the defender module. In our experiments, we set the parameter γ to 0.01 and retrain the defender
model with the same optimizer used for training the victim model. The learning rate of the optimizer
is set to 1

10 of that of the victim model as the model is already in a relatively good local minima.

Figure 3a illustrates the optimization goal of each defender module per Eq. (1). The first term (loss1)
in Eq. (1) aims to condense latent data features φ(x) that belong to the same class. Reducing the
inner-class diversity, in turn, yields a sharper Gaussian distribution per class. The second term (loss2)
intends to increase the intra-class distance between different categories and promote separability.
The composition of the first two terms in Eq. (1) can be arbitrarily small by pushing the centers to
(Ci←±∞). We add the term, loss3, to ensure that the underlying centers lie on a unit d-dimensional
hyper-sphere and avoid divergence in training the defender modules.

Figures 3b and 3c demonstrate the distance of legitimate (blue) and adversarial (red) samples from
the corresponding centers Ci in a checkpoint module before and after retraining.4 As shown, fine-
tuning the defender module with proposed objective function can effectively separate the distribution

3The L2 norm is selected to be consistent with our assumption of GMM prior distribution. This norm can
be easily replaced by an arbitrarily user-defined norm through our accompanying API.

4The centers Ci before fine-tuning the checkpoint (defender) module are equivalent to the mean of the data
points in each class.
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of legitimate samples from malicious data points. Note that training the defender module is carried
out in an unsupervised setting, meaning that no adversarial sample is included in the training phase.

(a) (b) (c)

Figure 3: (a) Illustration of the optimization objective in each defender module. (b) The distance
of legitimate (blue) and adversarial (red) samples from the corresponding centers Ci before, and
(c) after realignment of data samples. In this example, we consider the LeNet3 model (LeCun
et al. (1998a)) trained on MNIST dataset (the checkpoint is inserted in the second-to-last layer) and
adversarial samples are generated by FGS attack with different perturbation levels.

3 High dimensional real-world datasets can be represented as an ensemble of lower dimensional
sub-spaces (Bouveyron et al. (2007); Mirhoseini et al. (2016); Rouhani et al. (2017)). As discussed
in (Bouveyron et al. (2007)), under a GMM distribution assumption, the data points belonging to
each class can be characterized as a spherical density in two sub-spaces: (i) The sub-space where
the data actually lives (Ei) and (ii) its orthogonal complementary space (E⊥i ). The orthogonal space
(E⊥i ) is defined such that E⊥i

⊕
Ei = Rd , where d is the overall dimensionality of the underlying

space. We leverage High Dimensional Discriminant Analysis (HDDA) algorithm (Bouveyron et al.
(2007)) to learn the mean and the conditional covariance of each class as a composition of lower
dimensional sub-spaces. Under the Gaussian distribution and our specific assumptions, the condi-
tional covariance matrix contains two different eigenvalues ai > bi to be determined as shown in
(Bouveyron et al. (2007)).

The learned pdf variables (i.e., mean and conditional covariance) are used to compute the probability
of a feature point φ(x) coming from a specific class. In particular, for each incoming test sample x,
the probability p(φ(x)|yi) is evaluated where yi is the predicted class (output of the victim neural
network) and φ(x) is the corresponding data abstraction at the checkpoint location. The acquired
likelihood is then compared against a user-defined cut-off threshold which we refer to as the security
parameter. The Security Parameter (SP) is a constant number in the range of [0%−100%] that de-
termines the hardness of defender modules. Figure 4 illustrates how the SP can control the hardness
of the pertinent decision boundaries. In this example, we have depicted the latent features of one
category that are projected into the first two Principal Component Analysis (PCA) components in
the Euclidean space (each point corresponds to a single input image). The blue and black contours
correspond to security parameters of 10% and 20%, respectively. For example, 10% of the legitimate
training samples lie outside the contour specified with SP = 10%.

One may speculate that an adversary can add a structured noise to a legitimate sample such that the
data point is moved from one cluster to the center of the other clusters; thus fooling the defender
modules (Figure 5a). The risk of such attack approach is significantly reduced in our proposed PCL
countermeasure due to three main reasons: (i) Use of parallel checkpointing modules; the attacker
requires to simultaneously deceive all the defender models in order to succeed. (ii) Increasing intra-
class distances in each checkpointing module; The latent defender modules are trained such that not
only the inner-class diversity is decreased, but also the distance between each pair of different classes
is increased (see Eq. (1)). (iii) Learning a separate defender module in the input space to validate the
Peak Signal-to-Noise Ratio (PSNR) level of the incoming samples as discussed in Section 3. In the
remainder of the paper, we refer to the defender modules operating on the input space as the input
defenders. PCL modules that checkpoint the intermediate data features within the DL network are
referred as latent defenders.
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(a) (b) (c)

Figure 4: (a) Illustration of the effect of security parameter (SP) on the detection policy. A high SP
leads to a tight boundary which treats most samples as adversarial examples. (b) Example feature
samples in the second-to-last layer of LeNet3 trained for classifying MNIST data. The three axis
show the first three Eigenvectors corresponding to the PCA of the data. The first three dimensions are
used for visualization purposes only, whereas, the actual data points belong to higher dimensional
spaces. (c) Latent feature samples of the same layer in the defender module after data realignment.
The majority of adversarial samples (e.g., the red dot points) reside in the regions with low density
of training samples.

2.1 RISK ANALYSIS

Detecting malicious samples can be cast as a two-category classification task. Let us refer to the
category of the legitimate samples as W1 and the category of adversarial samples as W2. If we define
ηi j = η(αi|Wj) as the misclassification penalty5 incurred for deciding Wi when the true state is Wj,
the conditional risk in each of our checkpointing modules is equal to:

R(α1|φ(x)) = η11P(W1|φ(x))+η12P(W2|φ(x)),
R(α2|φ(x)) = η21P(W1|φ(x))+η22P(W2|φ(x)).

(2)

The fundamental rule to express the minimum-risk decision is to decide W1 if R(α1|φ(x)) <
R(α2|φ(x)). In terms of the posterior probabilities, we decide W1 if:

(η21−η11)P(W1|φ(x))> (η12−η22)P(W2|φ(x)). (3)

Generally speaking, the penalty incurred for making an error is greater than the cost incurred for
being correct; thus both of the terms η21−η11 and η12−η22 are positive. Following the Bayes’
rule, we should select a sample as a legitimate one (W1) if:

(η21−η11)P(φ(x)|W1)P(W1)> (η12−η22)P(φ(x)|W2)P(W2), (4)

and select W2 otherwise. By reordering the aforementioned decision criteria we have:

P(φ(x)|W1)

P(φ(x)|W2)
>

(η12−η22)

(η21−η11)

P(W2)

P(W1)
. (5)

Note that the right-hand term in Eq. (5) is application specific and is independent of the input data
observation φ(x). In other words, the optimal decision criteria particularly rely on the cost of making
a mistake in the given task and the risk of being attacked. This term is tightly correlated with the
user-defined cut-off threshold (security parameter) depicted in Figure 4.

Under the GMM assumption, the conditional probability P(φ(x)|W1) in Eq. (5) is computed as:

p(φ(x)|yi) =
1

(2π)
N
2 |Σi|

1
2

exp{−1
2
(φ(x)−µi)

T
Σ
−1
i (φ(x)−µi)}, (6)

where yi is the output of the victim neural network (predicted class), µi and Σi are the output of the
HDDA analysis, and N is the dimension of the latent feature space in the checkpoint module.

5The misclassification penalty is a constant value which determines the cost of each decision.
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3 TRAINING CHECKPOINTING MODULES FOR THE INPUT SPACE

We leverage dictionary learning and sparse signal recovery techniques to measure the PSNR of
each incoming sample and automatically filter out atypical samples in the input space. Figure 5b
illustrates the high-level block diagram of an input defender module. As shown, devising an input
checkpoint model is performed in two main steps: (i) dictionary learning, and (ii) characterizing the
typical PSNR per class after sparse recovery.

(a) (b)

Figure 5: An input defender module is devised based on robust dictionary learning techniques to
automatically filter out test samples that highly deviate from the typical PSNR of data points within
the corresponding predicted class (output of victim model).

1 Dictionary learning; we learn a separate dictionary for each class of data by solving:

argmin
Di

1
2
‖Zi−DiV i‖2

2 + β‖V i‖1 s.t. ‖Di
k‖= 1, 0≤ k ≤ kmax. (7)

Here, Zi is a matrix whose columns are pixels extracted from different regions of input images
belonging to category i. For instance, if we consider 8× 8 patches of pixels, each column of Zi

would be a vector of 64 elements. The goal of dictionary learning is to find matrix Di that best
represents the distribution of pixel patches from images belonging to class i. We denote the number
of columns in Di by kmax. For a certain Di, the image patches Zi are represented with a sparse matrix
V i, and DiV i is the reconstructed patches. We leverage Least Angle Regression (LAR) method
to solve the Lasso problem defined in Eq. (7). In our experiments, we learn a dictionary of size
kmax = 225 for each class of data points using 150,000 randomly selected patches of training data.

For an incoming sample, during the execution phase, the input defender module takes the output of
the victim DL model (e.g., predicted class i) and uses Orthogonal Matching Pursuit (OMP) routine
(Tropp et al. (2007)) to sparsely reconstruct the input data with the corresponding dictionary Di. The
dictionary matrix Di contains a set of samples that commonly appear in the training data belonging
to class i; As such, the input sample classified as class i should be well-reconstructed as DiV ∗ with
a high PSNR value, where V ∗ is the optimal solution obtained by the OMP routine. During the
execution phase, all of the non-overlapping patches within the image are denoised by the dictionary
to form the reconstructed image.

2 Characterizing typical PSNR in each category; we profile the PSNR of legitimate samples within
each class and find a threshold that covers all legitimate training samples. If an incoming sample has
a PSNR lower than the threshold (i.e., high perturbation after reconstruction by the corresponding
dictionary), it will be regarded as a malicious data point. In particular, PSNR is defined as:

PSNR = 20log10(MAXI)−10log10(MSE), (8)
where the mean square error (MSE) is defined as the L2 difference of the input image and the re-
constructed image based on the corresponding dictionary. The MAXI term is the maximum possible
pixel value of the image (usually equivalent to 255).

Figure 6 demonstrates the impact of perturbation level on the pertinent adversarial detection rate for
three different security parameters (cut-off thresholds). In this experiment, we have considered the
FGS attack with different ε values on the MNIST benchmark.6 As shown, the use of input dictio-
naries facilitate automated detection of adversarial samples with relatively high perturbation (e.g.,

6Table 2 in Appendix A summarizes the DL model topology used in each benchmark. The latent defender
module (checkpoint) is inserted at the second-to-last layers.

6



(a) (b) (c)

Figure 6: Adversarial detection rate of the latent and input defender modules as a function of
the perturbation level for (a) SP = 0.1%, (b) SP = 1%, and (c) SP = 5%. In this experiment, the
FGS attack is used to generate adversarial samples and the perturbation is adjusted by changing its
specific attack parameter ε .

ε > 0.25) while the latent defender module is sufficient to effectively distinguish malicious samples
even with very small perturbations. We extensively evaluate the impact of security parameter on the
ultimate system performance for various benchmarks in Section 4.

4 EXPERIMENTS

We evaluate the proposed PCL methodology on three canonical machine learning datasets:
MNIST (LeCun et al. (1998b)), CIFAR10 (Krizhevsky & Hinton (2009)), and a sub-set of Ima-
geNet (Deng et al. (2009)) consisting of 10 different classes. A detailed summary of the neural
network architectures used in each benchmark along with the specific parameters used for various
attacks are provided in Appendix A. We leveraged the attack benchmark sets available at (Nico-
las Papernot (2017)) for evaluation of different state-of-the-art attacks including FGS, JSMA, Deep-
fool, and Carlini&WagnerL2 attacks.

(a) (b) (c) (d)
Figure 7: Impact of security parameter on the ultimate performance of MRR module. The false
positive rate is defined as the ratio of legitimate test samples that are mistaken for adversarial samples
by the defender modules. The true positive rate is defined as the ratio of adversarial samples correctly
classified as malicious data point over the total number of malicious samples. Note that the scales for
false positive and true positive axis are different. The false positive rate is computed by considering
legitimate samples that are correctly classified by the victim model.

In our proposed countermeasure, the input and latent defenders are jointly considered to detect
adversarial samples. In particular, we treat an input as an adversarial sample if either of the latent
or input checkpointing modules raise an alarm signal. Figure 7 demonstrates the impact of security
parameter on the ultimate false positive and true positive rates for the MNIST benchmark. As shown,
a higher security parameter results in a higher true positive detection rate while it also increases the
risk of labeling legitimate samples as possibly malicious ones.

To consider the joint decision metric for each application and attack model, we evaluate the false
positive and true positive rates and present the pertinent Receiver Operating Characteristic (ROC)
curves in Figure 8. The ROC curves are established as follows: first, we consider a latent defender
and change the security parameter (SP) in the range of [0%−100%] and evaluate the FP and TP rates
for each security parameter, which gives us the dashed blue ROC curves. Next, we consider an input
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(a) (b) (c) (d)

Figure 8: ROC performance curve of PCL methodology against FGS, JSMA, Deepfool, and Car-
lini&WagnerL2 attacks. The diagonal line indicates the trajectory obtained by a random prediction.

defender and modify the detection policy: a sample is considered to be malicious if either of the
input or latent defenders raise an alarm flag. The ROC curve for this joint defense policy is shown as
the green curves in Figure 8. The gap between the dashed blue curve and the green curve indicates
the effect of the input defender on the overall decision policy; as can be seen, the input defender has
more impact for the FGS attack. This is compatible with our intuition since, compared to the other
three attack methods, the FGS algorithm induces more perturbation to generate adversarial samples.

Table 1: PCL performance against different attack methodologies for MNIST, CIFAR10, and Ima-
geNet benchmarks. The reported numbers correspond to the pertinent false positives for achieving
particular detection rates in each scenario. The JSMA attack for the ImageNet benchmark is compu-
tationally expensive (e.g., it took more than 20min to generate one adversarial sample on an NVIDIA
TITAN Xp GPU). As such, we could not generate the adversarial samples of this attack using the
JSMA library provide by (Nicolas Papernot (2017)).

Benchmark MNIST CIFAR10 ImageNet
hhhhhhhhhhhhhAttack

Detection Rate 90% 95% 98% 99% 90% 95% 98% 99% 90% 95% 98% 99%

FGS 1.1% 4.2% 12.4% 2.84% 8.1% 21.1% 62.9% 62.9% 14.2% 26.8% 60.7% 60.7%

JSMA 2.1% 4.2% 8.0% 12.4% 8.1% 14.9% 21.1% 33.0% - - - -

Deepfool 2.8% 5.9% 8.0% 12.4% 12.0% 17.9% 33.0% 40.8% 8.1% 8.1% 14.2% 21.5%

Carlini&WagnerL2 2.8% 4.2% 8.0% 8.0% 12.0% 17.9% 33.1% 40.8% 7.9% 7.9% 14.0% 21.3%

We summarize the performance of the PCL methodology against each of the FGS, JSMA, Deepfool,
and Carlini&WagnerL2 attacks for MNIST, CIFAR10, and ImageNet in Table 1. The reported
numbers in this table are gathered as follows: we consider a few points on the green ROC curve
(marked on Figure 8), which correspond to certain TP rates (i.e., 90%, 95%, 98%, and 99%), then
report the FP rates for these points. In all our experiments, the use of only one latent defender
module to checkpoint the second-to-last layer of the pertinent victim model was enough to prevent
adversarial samples generated by the existing state-of-the-art attacks. Please refer to Appendix B
for the complete set of ROC curves for the CIFAR10 and ImageNet benchmarks.

5 DISCUSSION

Figure 9 demonstrates an example of the adversarial confusion matrices for victim neural networks
with and without using parallel checkpointing learners. In this example, we set the security pa-
rameter to only 1%. As shown, the adversarial sample generated for the victim model are not
transferred to the checkpointing modules. In fact, the proposed PCL approach can effectively re-
move/detect adversarial samples by characterizing the rarely explored sub-spaces and looking into
the statistical density of data points in the pertinent space.

Note that the remaining adversarial samples that are not detected in this experiment are crafted from
legitimate samples that are inherently hard to classify even by a human observer due to the closeness
of decision boundaries corresponding to such classes. For instance, in the MNIST application, such
adversarial samples mostly belong to class 5 that is misclassified to class 3 or class 4 misclassified
as 9. Such misclassifications are indeed the model approximation error which is well-understood
to the statistical nature of the models. As such, a more precise definition of adversarial samples
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(a) (b) (c)

Figure 9: Example adversarial confusion matrix (a) without PCL defense mechanism, and (b) with
PCL defense and a security parameter of (1%). (c) Example adversarial samples for which accurate
detection is hard due to the closeness of decision boundaries for the corresponding classes.

is extremely required to distinguish malicious samples form those that simply lie near the decision
boundaries.

We emphasize that the PCL defenders are trained in an unsupervised setting independent of the
attack strategy, meaning that no adversarial sample is used to train the defender models. This is par-
ticularly important as it corroborates the effectiveness of the proposed countermeasure in the face
of generic attack scenarios including possible future adversarial DL algorithms. Nevertheless, one
might question the effectiveness of the proposed approach for adaptive attack algorithms that target
the defender modules. A comprehensive study of possible adaptive attack algorithms is yet to be per-
formed if such attacks are developed in the future. We emphasize that, thus far, we have been able to
significantly thwart all the existing attacks with only one checkpoint model approximating the data
distribution in the second-to-last layer of the corresponding models. Our proposed PCL methodol-
ogy, however, provides a rather more generic approach that can be adapted/modified against poten-
tial future attacks by training parallel disjoint models (with diverse objectives/parameters) to further
strengthen the defense.

Figure 10 demonstrate how using multiple checkpoints with a negative correlation in parallel can
effectively reduce the number of false alarms while increasing the detection rate of adversarial sam-
ples. In this experiment, we have considered MNIST data classification using LeNet model with
4 layers and FGS attack. The checkpoints are inserted in different layers of the pertinent neural
network (first layer up to the second-to-last layer). We empirically select the mixing coefficients to
aggregate the confidence of the checkpoint defenders for rejecting an incoming sample.

Figure 10: Leveraging multiple parallel checkpoint modules can significantly improves the DL
model prediction reliability while minimizing the number of false alarms.

Note that, there is a trade-off between the computational complexity (e.g., runtime overhead) of the
PCL defenders and the reliability of the overall system. On the one hand, a high number of validation
checkpoints increases the reliability of the systems, but it also increases the computational load as
each input sample should be validated by more defender networks. On the other hand, a small
number of checkpoints may degrade the defense mechanism performance by treating adversarial
samples as legitimate ones. We are looking into automated techniques to customize the number
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of checkpoint modules and their corresponding mixing coefficients based on application data and
physical constraints such as real-time analysis requirement as future work.

6 RELATED WORK

In response to the various adversarial attack methodologies proposed in the literature (e.g., Good-
fellow et al. (2014); Papernot et al. (2016a); Moosavi-Dezfooli et al. (2016); Carlini & Wagner
(2017b)), several research attempts have been made to design DL strategies that are more robust in
the face of adversarial examples. The existing countermeasures can be classified into two distinct
categories:

(i) Supervised strategies which aim to improve the generalization of the learning models by incor-
porating the noise-corrupted version of inputs as training samples (Jin et al. (2015); Gu & Rigazio
(2014)) and/or injecting adversarial examples generated by different attacks into the DL training
phase (Huang et al. (2015); Shaham et al. (2015); Goodfellow et al. (2014); Szegedy et al. (2013)).
The proposed defense mechanisms in this category are particularly tailored for specific perturbation
patterns and can only partially evade adversarial samples generated by other attack scenarios (with
different perturbation distributions) from being effective as shown in (Gu & Rigazio (2014)).

(ii) Unsupervised approaches which aim to smooth out the underlying gradient space (decision
boundaries) by incorporating a smoothness penalty (Miyato et al. (2015); Carlini & Wagner (2017b))
as a regularization term in the loss function or compressing the neural network by removing the nui-
sance variables (Papernot et al. (2016b)). These set of works have been mainly remained oblivious
to the pertinent data density in the latent space. In particular, these works have been developed
based on an implicit assumption that the existence of adversarial samples is due to the piece-wise
linear behavior of decision boundaries (obtained by gradient descent) in the high-dimensional space.
As such, their integrity can be jeopardized by considering different perturbations at the input space
and evaluating the same attack on various perturbed data points to even pass the smoothed decision
boundaries as shown in (Carlini & Wagner (2016)). More recently, Meng & Chen (2017) propose an
unsupervised manifold projection method called MagNet to reform adversarial samples using auto-
encoders. Unlike PCL, MagNet is inattentive to the density function of the data in the space. As
shown in Carlini & Wagner (2017a), manifold projection methods including MagNet are not robust
to adversarial samples and can approximately increase the required distortion to generate adversarial
sample by only 30%.

To the best of our knowledge, the proposed PCL methodology is the first unsupervised counter-
measure developed based upon probabilistic density analysis and dictionary learning to effectively
characterize and thwart adversarial samples. The PCL method does not assume any particular attack
strategy and/or perturbation pattern. This is particularly important as it demonstrates the generaliz-
ability of the proposed approach in the face of adversarial attacks.

7 CONCLUSION

This paper proposes a novel end-to-end methodology for characterizing and thwarting adversarial
DL space. We introduce the concept of parallel checkpointing learners as a viable countermeasure
to significantly reduce the risk of integrity attacks. The proposed PCL methodology explicitly char-
acterizes statistical properties of the features within different layers of a neural network by learning
a set of complementary dictionaries and corresponding probability density functions. The effec-
tiveness of the PCL approach is evaluated against the state-of-the-art attack models including FGS,
JSMA, Deepfool, and Carlini&WagnerL2. Proof-of-concept experiments for analyzing various data
collections including MNIST, CIFAR10, and a subset of the ImageNet dataset corroborate successful
detection of adversarial samples with relatively small false-positive rates. We devise an open-source
API for the proposed countermeasure and invite the community to attempt attacks against the pro-
vided benchmarks in the form of a challenge.
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APPENDIX A

Table 2 presents the neural network architectures for the victim models used in each bench-
mark. The network for MNIST is the popular LeNet-3 architecture, the CIFAR-10 architecture
is taken from (Ciregan et al. (2012)), and the ImageNet model is inspired by the AlexNet architec-
ture (Krizhevsky et al. (2012)).

Table 2: Baseline (victim) network architectures for evaluated benchmarks. Here, 128C3(2) de-
notes a convolutional layer with 128 maps and 3×3 filters applied with a stride of 2, MP3(2) indi-
cates a max-pooling layer over regions of size 3×3 and stride of 2, and 300FC is a fully-connected
layer consisting of 300 neurons. All convolution and fully connected layers (except the last layer)
are followed by ReLU activation. A Softmax activation is applied to the last layer of each network.

Benchmark Architecture

MNIST 784−300FC−100FC−10FC

CIFAR10
3×32×32−300C3(1)−MP2(2)−300C2(1)−MP2(2)−
300C3(1)−MP2(2)−300FC−100FC−10FC

ImageNet
3×224×224−96C11(4)−256C5(1)−MP3(2)−128C3(1)−
MP3(2)−128C3(1)−128C3(1)−MP3(2)−1024FC−1024FC−10FC

We visually evaluate the perturbed examples to determine the attack parameters (e.g., perturbation
level ε and niters) such that the perturbations cannot be recognized by a human observer. Table 3
details the parameters used for the realization of different attack algorithms. The JSMA attack for the
ImageNet benchmark is computationally expensive (e.g., it took more than 20min to generate one
adversarial sample on an NVIDIA TITAN Xp GPU). As such, we could not generate the adversarial
samples of this attack using the JSMA library provided by (Nicolas Papernot (2017)).

Table 3: Details of attack algorithms for each evaluated application. The FGS method (Goodfel-
low et al. (2014)) is characterized with a single ε parameter. The JSMA attack (Papernot et al.
(2016a)) has two parameters: γ specifies the maximum percentage of perturbed features and θ de-
notes the value added to each selected feature. The Deepfool attack (Moosavi-Dezfooli et al. (2016))
is characterized by the number of iterative updates, which we denote by niters in this table. For the
Carlini&WagnerL2 attack (Carlini & Wagner (2017b)), “C” denotes the confidence, “LR” is the
learning rate, “steps” is the number of binary search steps, and “iterations” stands for the maximum
number of iterations.

Application Attack Attack Parameters

MNIST

FGS ε ∈ {0.05,0.1,0.2,0.3,0.4,0.5}
JSMA γ = 5%,θ ∈ {0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}

Deepfool niters ∈ {1,2,3,4,5,6,7,8,9,10}

Carlini&WagnerL2
C ∈ {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99}

LR = 0.1, steps = 20, iterations = 500

CIFAR

FGS ε ∈ {0.05,0.1,0.2,0.3,0.4,0.5}
JSMA γ = 5%,θ ∈ {0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}

Deepfool niters ∈ {1,2,3,4,5,6,7,8,9,10}

Carlini&WagnerL2
C ∈ {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99}

LR = 0.1, steps = 20, iterations = 500

ImageNet

FGS ε ∈ {0.01,0.05}
JSMA Attack not successful

Deepfool niters ∈ {1,2,3,4,5,6,7,8,9,10}

Carlini&WagnerL2
C ∈ {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99}

LR = 0.1, steps = 20, iterations = 500
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APPENDIX B

Corresponding ROC curves for PCL performance against FGS, JSMA, Deepfool, and Car-
lini&WagnerL2 attacks in the CIFAR10 and ImageNet benchmarks.

Figure 11: True positive versus false positive rates in CIFAR10 (top row) and ImageNet (bottom
row) benchmarks for adversarial samples generated by FGS (Goodfellow et al. (2014)), JSMA (Pa-
pernot et al. (2016a)), Deepfool (Moosavi-Dezfooli et al. (2016)), and Carlini&WagnerL2 (Carlini
& Wagner (2017b)) attacks.
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