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ABSTRACT

Most graph neural networks (GNNs) rely on the message passing paradigm to
propagate node features and build interactions. Recent studies point out that
different graph learning tasks require different ranges of interactions between
nodes. In this work, we explore the capacity of GNNs to capture multi-order
interactions between nodes, and the order represents the complexity of the con-
text where interactions take place. We study two standard graph construction
methods, namely, K-nearest neighbor (KNN) graphs and fully-connected (FC)
graphs, and concentrate on scientific problems in the 3D Euclidean space. We
demonstrate that the inductive bias introduced by KNN-graphs and FC-graphs
prevents GNNs from learning interactions of the most appropriate complexity.
We found that such a phenomenon is broadly shared by several GNNs for di-
verse graph learning tasks, so we name it a representation bottleneck. To over-
come that, we propose a novel graph rewiring approach based on interaction
strengths of various orders to adjust the receptive fields of each node dynam-
ically. Extensive experiments in molecular property prediction and dynamic
system forecast prove the superiority of our method over state-of-the-art graph
rewiring baselines. This paper provides a reasonable explanation of why sub-
graphs play a vital role in determining graph properties. The code is available at
https://github.com/smiles724/bottleneck.

1 INTRODUCTION

Over the past decade, graph neural networks (GNNs) (Kipf & Welling, 2016; Hamilton et al., 2017;
Dwivedi et al., 2020) have witnessed growing popularity thanks to their ability to deal with graphs
that have complex relationships and interdependence between objects, ranging from social net-
works (Fan et al., 2019) to computer programs (Nair et al., 2020). Particularly, GNNs show promis-
ing strength in scientific research. They are used to derive insights from structures of molecules (Wu
et al., 2018) and reason about relations in a group of interacting objects.

As a consequence, their success provokes the bottleneck question: “What are the common limi-
tations of GNNs in real-world modeling applications, such as molecules and dynamic systems?”
Knowing that GNNs are typically expressed as a neighborhood aggregation or message passing
scheme (Gilmer et al., 2017; Veličković et al., 2017), we leverage the interactions between input
variables (Deng et al., 2021) to investigate the bottleneck of GNNs. That is, we aim to analyze
which types of interaction patterns (e.g., certain physical or chemical concepts) are likely to be
encoded by GNNs, and which others are difficult to manipulate.

As a relevant answer, the preceding work observes the liability of CNNs to capture too complex
and too simple pairwise interactions (Deng et al., 2021). In this work, we first theoretically and
empirically prove that this inclination is attributed to two factors: the data distribution of image
datasets and the inductive bias of locality introduced by CNNs’ small kernel size. Then we refine
the measurement of multi-order interactions so that the metric works for both node-level and graph-
level predictions, and study two common graph construction methods in scientific domains, i.e.,
K-nearest neighbor (KNN) graphs and fully-connected (FC) graphs. Then with massive empirical
evidence from molecular representation learning and dynamic system modeling, we discover that, as
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opposed to CNNs’ behavior, GNNs are more vulnerable to the improper inductive bias induced by
the assumption of graph connectivity and can deviate significantly from the data distribution. This
imperfect inductive bias brought by KNN-graphs and FC-graphs prohibits GNNs from encoding
some particular interaction patterns, so GNNs fail to achieve the global minimum loss. Accordingly,
we name this phenomenon as a representation bottleneck of GNNs.

In order to fully release the expressiveness of GNNs and resolve the above-mentioned obstacle, we
propose a novel graph rewiring technique based on the distribution of interaction strengths, which
progressively optimizes the inductive bias of GNNs via calibrating the topological structures of input
graphs. Experiments on both synthetic and real-world datasets validate its efficacy over existing
graph rewiring baselines for GNN interpretability and generalization.

2 PRELIMINARY

Multi-order interactions. Suppose a graph has a set of n variables (a.k.a. nodes). It can represent
a macroscopic physical system with n celestial bodies, or a microscopic biochemical system with n
atoms, denoted as N = {1, ..., n}. Given a well-trained GNN model f , let f(N) represent the model
output of all input variables. For node-level tasks, the GNN forecasts a value (e.g., atomic energy)
or a vector (e.g., atomic force or velocity) for each node. For graph-level tasks, f(N) ∈ R is a
scalar (e.g., drug toxicity or binding affinity). GNNs make predictions by interactions between input
variables instead of working individually on each variable (Qi et al., 2018; Li et al., 2019; Lu et al.,
2019; Huang et al., 2020a). Previous studies (Bien et al., 2013; Tsang et al., 2017; Zhang et al.,
2020; Deng et al., 2021) concentrate on pairwise interactions and use the multi-order interaction
I(m)(i, j) to measure interactions of different complexities between two input variables i, j ∈ N .

Specifically, the m-th order interaction I(m)(i, j) measures the average interaction utility between
variables i, j under all possible contexts consisting of m variables. Mathematically, the multi-order
interaction is defined as follows:

I(m)(i, j) = ES⊆N,{i,j}⊆S,|S|=m[∆f(i, j, S)], 3 ≤ m ≤ n, (1)

where ∆f(i, j, S) = f(S) − f(S\{i}) − f(S\{j}) + f(S\{i, j}) and S ⊂ N is the context con-
sisting of m variables. f(S) is the output when we keep variables in S unchanged but alter variables
in N\S. Since it is irrational to feed an empty graph into a GNN, we demand the context S to have
at least one variable with m ≥ 3 and omit the f(∅) term. Note that Zhang et al. (2020) assume
variables i, j do not belong to the context S. Contrarily, we argue that it is more reasonable to inter-
pret m as the contextual complexity of the interaction of variables i, j are included in the context,
and provide proof in Appendix A.2 that these two cases are equivalent but from different views. An
elaborate introduction of I(m) (e.g., the connection with existing metrics) are in Appendix A.

Representation bottleneck. To measure the reasoning complexity of the DNN, researchers com-
pute the relative interaction strength J (m) of the encoded m-th order interaction as follows:

J (m) =
Ex∈Ω

[
Ei,j

[∣∣I(m)(i, j | x)
∣∣]]∑

m′

[
Ex∈Ω

[
Ei,j

[∣∣I(m′)(i, j | x)
∣∣]]] , (2)

where Ω stands for the set of all samples, and the strength J (m) is calculated over all pairs of input
variables in all data points. Remarkably, the distribution of J (m) measures the distribution of the
complexity of interactions encoded in DNNs. Then we normalize J (m) by the summation value of
I(m)(i, j | x) with different orders rather than the average value in (Deng et al., 2021) to constrain
0 ≤ J (m) ≤ 1 for explicit comparison across various tasks and datasets.

According to the efficiency property of I(m)(i, j) (Deng et al., 2021), the change of DNN parameters

∆W can be decomposed as the sum of gradients ∂I(m)(i,j)
∂W . Mathematically, we denote L as the loss

function and η as the learning rate. With U =
∑

i∈N f({i}), and R(m) = −η ∂L
∂f(N)

∂f(N)
∂I(m)(i,j)

, it is
attained by:

∆W = −η
∂L

∂W
= −η

∂L

∂f(N)

∂f(N)

∂W
= ∆WU +

n∑
m=3

∑
i,j∈N,i̸=j

R(m) ∂I
(m)(i, j)

∂W
. (3)
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3 REVISITING REPRESENTATION BOTTLENECKS OF DNNS
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Figure 1: The theoretical distributions
of F (m) under different n.

DNNs are not born to capture low-order and high-
order interactions. We first retrospect relevant findings
of DNNs’ representation bottleneck. Deng et al. (2021)
use ∆W (m)(i, j) = R(m) ∂I

(m)(i,j)
∂W in Equ. 3 to represent

the compositional component of ∆W w.r.t. ∂I(m)(i,j)
∂W and

claim that it is proportional to F (m) = n−m+1
n(n−1) /

√(
n−2
m−2

)
.

Despite their delicate theoretical framework, a simple
counterexample is when m

n → 0 or m
n → 1, F (m) ought

to be approximately the same (see Fig. 1). This is in con-
flict with the experimental curves in (Deng et al., 2021),
where J (m) of low-order (e.g., m = 0.05n) is much
higher than that of high-order (e.g., m = 0.95n). There
the empty set ∅ is disregarded as the input for DNNs. But in Appendix A.3, we demonstrate that
even if f(∅) is taken into consideration and n is large (e.g, n ≥ 100), J (m) ought to be non-zero
only when m

n → 0. This phenomenon indicates that DNNs fail to capture any middle-order or high-
order interactions, which is against the truth that DNNs perform well in tasks that require high-order
interactions such as protein interface prediction (Liu et al., 2020).

CIFAR-10 ImageNet

Figure 2: The change of interaction strengths for
ResNet on CIFAR-10 and ImageNet, measured
after various training epochs.

Inductive bias and data distributions are the
determinant factors. The inaccurate state-
ment in Deng et al. (2021) is due to their
flawed assumption. The hypothesis that the
derivatives of ∆f(i, j, S) over model parame-
ters, i.e., ∂∆f(i,j,S)

∂W , conform to normal distri-
butions should be rejected (see Appendix C.3).
∂∆f(i,j,S)

∂W , indeed, varies with the contextual
complexities (i.e., |S|), and is determined by
not only the data distribution of interaction
strengths in particular datasets but the model ar-
chitectures f .

On the one hand, we define the data distribution of interaction strengths on dataset D, denoted as
J
(m)
D , as the experimental distribution of interaction strengths for some model f with randomly

initialized parameters. We re-produce experiments in (Deng et al., 2021). Fig. 2 implies that in
CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015), J (m)

D ’s (referring
to the epoch-0 curve) low-order and high-order interactions are much stronger than middle-order,
and little difference exists between J

(m)
D and J (m) (referring to non-zero epoch curves) at different

epochs. This fact verifies our assertion that J (m) heavily depends on J
(m)
D .

CIFAR-10 ImageNet

Figure 3: The change of interaction strengths for
MLP-Mixer on CIFAR-10 and ImageNet.

On the other hand, the locality is a critical in-
ductive bias for CNNs. It assumes that enti-
ties are in spatially close proximity with one an-
other and isolated from distant ones (Battaglia
et al., 2018), hence CNNs with small kernel
sizes are bound to low-order interactions. Re-
cent studies also demonstrate that increasing
the kernel size can alleviate the local induc-
tive bias (Ding et al., 2022). To testify our
argument, we examine the change of interac-
tion strengths for MLP using MLP-Mixer (Tol-
stikhin et al., 2021) in Fig. 3. Though MLP
shares a similar J (m)

D with CNN, its J (m) is much smoother. This is because MLP-Mixer assumes
full connection of different patches and is not constrained by the inductive bias of locality, so it can
learn a more adorable J (m). The implementation details on visual tasks are in Appendix B.
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4 REPRESENTATION BOTTLENECK OF GNNS

4.1 NODE-LEVEL MULTI-ORDER INTERACTION

I(m)(i, j) in Equ. 1 is designed to analyze the influence of interactions over the integral system (e.g.,
a molecule or a galaxy) and is therefore only suitable in the circumstance of graph-level prediction.
No such metric exists to measure the effects of those interactions on each component (e.g., atom or
particle) of the system. To overcome this limitation, we propose a new metric as the following:

I
(m)
i (j) = ES⊆[N ],{i,j}⊆S,|S|=m[∆fi(j, S)], 2 ≤ m ≤ N, (4)

where ∆fi(j, S) = ∥fi(S)− fi(S\{j})∥p, and ∥.∥p is the p-norm. We denote fi(S) as the output
for the i-th variable when variables in S are kept unchanged. Then the corresponding node-level

interaction strength is defined as J (m) =
Ex∈Ω

[
Ei

[
Ej

[∣∣∣I(m)
i (j|x)

∣∣∣]]]∑
m′

[
Ex∈Ω

[
Ei

[
Ej

[∣∣∣∣I(m′)
i (j|x)

∣∣∣∣]]]] . Equ. 4 allows us to

measure the representation capability of GNNs in node-level classification or regression tasks.

4.2 GRAPH CONSTRUCTIONS FOR SCIENTIFIC PROBLEMS

Prerequisites. How to handle variables in [N ]\S is critical to I(m)(i, j). Nonetheless, the widely-
used setting in Ancona et al. (2019) for sequences or pixels is not applicable there. In real-world
scenarios, including molecules or dynamic systems, the most crucial feature of variables (atoms
or particles) is their classes (e.g., one-hot embeddings). An average over different molecules or
systems can lead to ambiguous atom or particle types. As an alternative, we consider dropping these
variables in [N ]\S instead of replacing them with a mean value. In particular, the deletion of those
variables ought to satisfy two succeeding properties: (1) The subgraph must maintain connectivity,
where entities can reach others freely. Otherwise, each disjoint subgraph is an entirely independent
system, and breaks the fundamental assumption in nature that molecules or dynamic systems are an
organic whole and indivisible. (2) No ambiguity is intrigued from both structural and feature views.
For instance, an element with an invalid atomic number of 3.64 is not permitted.

KNN vs. fully-connected graphs. To achieve these constraints, we employ KNN to build edges
based on pairwise distances in the 3D space (named KNN-graph), a common technique in macro-
molecules (Fout et al., 2017; Ganea et al., 2021; Stärk et al., 2022). When we centre on S and
ignore other variables, subgraphs are re-constructed via KNN to ensure connectivity. We also act
our analysis on fully-connected graphs (named FC-graph), where all nodes are connected to each
other (Chen et al., 2019; Wu et al., 2021; Baek et al., 2021; Jumper et al., 2021). Consequently,
removing any entity in FC-graphs will not influence the association of other pairs. More discussion
on graph construction is in Appendix A.4.

4.3 GRAPH REWIRING FOR INDUCTIVE BIAS OPTIMIZATION

The representation bottleneck of GNNs. For modern GNNs, the loss L is typically non-convex
with multiple local and even global minima (Foret et al., 2020) that may yield similar values of L
while acquiring different capacities to learn interactions (i.e., different J (m)). As declared in Prop. 1
(the explanation is in Appendix A.5), if J (m) is not equivalent to the optimal strength J (m)∗, then
the corresponding model f must be stuck in a local minimum point of the loss surface.

Proposition 1 Let J (m)∗ be the interaction strength of the function f∗ that achieves the global
minimum loss ℓ∗ on some data D. If another model f ′ converges to a loss ℓ′ after the parameters
update and J (m)′ ̸= J (m)∗, then ℓ′ must be a local minimum loss, i.e, ℓ′ > ℓ∗.

However, as analyzed in Section 3, J (m)
D and bad inductive bias can prevent DNNs from capturing

appropriate orders of interactions, namely, achieving J (m)∗. For GNNs, we empirically show in
Section 5 that bad inductive bias has a much huger impact on J (m) than J

(m)
D . This is because

graphs support arbitrary pairwise relational structures (Battaglia et al., 2018) and accordingly, the
inductive bias of GNNs is more flexible and significant. To be specific, while the local inductive
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bias of CNNs comes from their relatively small kernel size, the inductive bias of GNNs primarily
depends on the graph connectivity. For example, FC-graphs consist of all pairwise relations, while
in KNN-graphs, some pairs of entities possess a relation and others do not. These graph construction
mechanisms can bring improper inductive bias and result in poor J (m), which is far from J (m)∗.

In order to approach J (m)∗, recent work (Deng et al., 2021) imposes two losses to encourage or
penalize the learning of interactions of specific complexities. Nevertheless, they require models to
make accurate predictions on subgraphs. But variable removal brings the out-of-distribution (OOD)
problem (Chang et al., 2018; Frye et al., 2020; Wang et al., 2022), which can manipulate GNNs’
outcome arbitrarily and produce erroneous predictions (Dai et al., 2018; Zügner et al., 2018). More
importantly, these losses are based on the assumption that the image class remains regardless of
pixel removal. But it is not rational to assume the stability of molecular properties if we alter their
components. In this work, instead of intervening the loss, we rely on the modification of GNNs’
inductive bias to capture the most informative order m∗ of interactions and therefore reach J (m)∗.

Figure 4: Transformation of the training loss
with graph rewiring in the loss surface.

Graph rewiring to optimize the inductive bias.
Unfortunately, m∗ can never be known unless suf-
ficient domain knowledge is supplied. But Fig. 2
shows that in the initial training epochs (e.g., 10 or
50 epochs), CNNs do not directly dive into low-
order of interactions. Instead, they deviate from
J
(m)
D and have the inclination to learn a more in-

formative order of interactions (e.g., middle-order)
regardless of the inductive bias. Motivated by this
subtle tendency, we resort to the order of interactions
that increase the most during training in J (m) as the
guidance to reconstruct graphs and estimate J (m)∗.

To this end, we dynamically adjust the reception fields of each entity within molecules or systems
by establishing or destroying edges, as described in Algorithm 1. Such a method is often generically
referred to as graph rewiring (Topping et al., 2021). By adjusting graph topology that arouses the
inductive bias of GNNs, the representation bottleneck of GNNs is broken, and J (m) is able to grad-
ually approximate J (m)∗. Simultaneously, the training loss can finally reach the global minimum
after gradient descent (see Fig. 4). Emphatically, our algorithm (named ISGR) is applicable for both
KNN-graphs and FC-graphs, considering the latter starts with an adequately large k0 ≥ n− 1.

Algorithm 1 Interaction Strength-based Graph Rewiring (ISGR) Algorithm.
Require: nodes V , pairwise distance d, number of neighbors k0, threshold J̄ , epoch interval ∆e

Construct a KNN-graph with K = k0 based on d and compute the initial interaction strength
J
(m)
0 ;

for each ∆e epochs do
Sample a mini-batch B and calculate the corresponding interaction strengths J (m)

B ;
if the maximum increase of some order exceeds J̄ , i.e., max

(
∆J (m)

)
≥ J̄ then

Find the order whose interaction strength increases the most m∗ = argmax
m

(
∆J (m)

)
;

Increase the number of neighboring nodes k if m∗ > k, otherwise decrease k;
Reconstruct a KNN-graph with K = k and train the model with this new graph structure.

end if
end for

4.4 RELATIONS TO OTHER TYPES OF GNN BOTTLENECKS

Multiple papers uncover that GNNs may perform poorly on tasks that require long-range depen-
dencies. Under-reaching (Barceló et al., 2020) states the inability of a node to be aware of nodes
that are farther away than the number of layers. This can be naively avoided by deepening GNNs,
but universal evidence indicates that the increase of layers leads to a severe decline in prediction
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capability. Over-smoothing (Li et al., 2018; Oono & Suzuki, 2019; Chen et al., 2020) and over-
squashing (Alon & Yahav, 2020; Topping et al., 2021) are two mainstream accepted explanations
for this decline. The former owes the failure to indistinguishable node representations when tack-
ling short-range tasks that assume local dependency, while the latter believes that the compression
of information from the exponentially receptive field is the core reason for degraded performance
in long-range problems. Our work discusses the representation bottleneck of GNNs, which highly
resonates with but is essentially different from over-squashing. On the one hand, over-squashing,
the prime motivator for graph rewiring, is proposed by the information loss due to long-range de-
pendencies that are not adequately captured by GNNs. These dependencies can be also regarded as
middle or high-order interactions that are not fully captured due to improper graph connectivity. On
the other hand, our representation bottleneck is built on the theory of multi-order interactions, while
over-squashing replies on the message propagation of node features. This makes our representation
bottleneck more general than over-squashing. A detailed comparison is available in Appendix D.

5 EXPERIMENTAL RESULTS

In this section, we present four case studies where the aforementioned framework is applied to
analyze the representation bottleneck of GNNs for scientific research. Among them, Newtonian
dynamics and molecular dynamics simulations are node-level prediction tasks, while Hamiltonian
dynamics and molecular property prediction are graph-level prediction tasks. More experimental
details are elucidated in Appendix C.

5.1 DATA AND EXPERIMENTAL SETTINGS

Newtonian dynamics. Newtonian dynamics (Whiteside, 1966) describes the dynamics of parti-
cles according to Newton’s law of motion: the motion of each particle is modeled using incident
forces from nearby particles, which changes its position, velocity, and acceleration. Several impor-
tant forces in physics, such as the gravitational force, are defined on pairs of particles, analogous
to the message function of GNNs (Cranmer et al., 2020). We adopt the N-body particle simulation
dataset in (Cranmer et al., 2020). It consists of N-body particles under six different interaction laws.
More details can be referred to Appendix C.1.

Hamiltonian dynamics. Hamiltonian dynamics (Greydanus et al., 2019) describes a system’s total
energy H(q,p) as a function of its canonical coordinates q and momenta p, e.g., each particles’
position and momentum. The dynamics of the system change perpendicularly to the gradient of H:
dq
dt = ∂H

∂p , dp
dt = −dH

dq . There we take advantage of the same datasets from the Newtonian dynamics
case study, and attempt to learn the scalar total energy H of the system.

Molecular dynamics simulations. Molecular dynamics (MD) (Frenkel & Smit, 2001; Karplus &
McCammon, 2002; Tuckerman, 2010) has long been has long been the de facto choice for mod-
eling complex atomistic systems from first principles. There we adopt the ISO17 dataset (Schütt
et al., 2017, 2018), which is generated from MD simulations using the Fritz-Haber Institute ab ini-
tio simulation package (Blum et al., 2009). ISO17 consists of 129 molecules, each containing 5K
conformational geometries and total energies with a resolution of 1 femtosecond in the trajectories.
Our target is to predict the atomic forces of the molecule at different timeframes.

Molecular property prediction. The forecast of a broad range of molecular properties is a funda-
mental task in drug discovery (Drews, 2000). The properties in current molecular collections can be
mainly divided into four categories: quantum mechanics, physical chemistry, biophysics, and phys-
iology, ranging from molecular-level properties to macroscopic influences on the human body (Wu
et al., 2018). We utilize two benchmark datasets. QM7 (Blum & Reymond, 2009) is a subset of
GDB-13 and is composed of 7K molecules. QM8 (Ramakrishnan et al., 2015) is a subset of GDB-
17 with 22K molecules. Note that QM7 and QM8 provide one and twelve properties, respectively,
and we merely use the E1-CC2 property in QM8 for simplicity.

Baselines and backbones. We compare ISGR to a variety of graph rewiring methods. +FA (Alon
& Yahav, 2020) modifies the last GNN layer to be fully connected. DIGL (Klicpera et al., 2019)
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Figure 5: Distributions of interaction strengths of EGNN and Molformer in graph-level and node-
level prediction tasks. We use double-x axes to represent the order m and the ratio m

n

leverages generalized graph diffusion to smooth out the graph adjacency and promote connections
among nodes at short diffusion distances. SDRF (Topping et al., 2021) acts by alleviating a graph’s
strongly negatively curved edges. Two state-of-the-art geometric GNNs are selected to perform on
these two graph types. We pick up Equivariant Graph Neural Network (EGNN) (Satorras et al.,
2021) for KNN-graphs, and Molformer (Wu et al., 2021) with no motifs for FC-graphs. EGNN is
roto-translation and reflection equivariant without the spherical harmonics (Thomas et al., 2018).
Molformer is a variant of Transformer (Vaswani et al., 2017; Hernández & Amigó, 2021), designed
for molecular graph learning.

5.2 INVESTIGATION OF GNNS’ REPRESENTATION BOTTLENECK

The learned distribution of interaction strengths can deviate from the data distribution.
Fig. 5 reports the learned distributions J (m) and the data distributions J

(m)
D for both graph-level

and node-level tasks. The complementary plots for QM7 are available in Appendix C.4. From these
curves, it can be drawn that unlike CNNs in Fig. 2, J (m) of GNNs can be divergent from J

(m)
D .

For molecular property prediction, J (m)
D is more intensive on low-order (mn ≤ 0.3). But after

sufficient training, J (m) for EGNN mainly have high values for middle-order interactions (0.5 ≤
m
n ≤ 0.8), and the middle-order segment (0.4 ≤ m

n ≤ 0.6) of J (m) for Molformer also increases the
most. This illustrates that subgraphs with a middle size are very informative substructures to reveal
the biological or chemical properties of small molecules. This finding persistently accords with the
fact that motifs such as functional groups play a key part in determining molecular attributes (Yu
et al., 2020; Wang et al., 2021; Wu et al., 2022). While for Hamiltonian dynamic systems, J (m)

D is
majorly intense for low-order and middle-order interactions (mn ≤ 0.6). In spite of that, J (m) of
EGNN concentrates more on high-order (0.7 ≤ m

n ≤ 0.9) but neglect low-order (mn ≤ 0.5).

Regarding node-level prediction tasks, the scenery is more straightforward. Though J
(m)
D for EGNN

and Molformer are in different shapes, J (m) both moves towards low-order interactions (mn ≤ 0.3)
for MD and high-order interactions for Newtonian dynamics (mn ≥ 0.7). All those phenomenons
demonstrate considerable discrepancies between J (m) and J

(m)
D for GNNs.

The inductive bias heavily determines the change of learned distributions. Unequivocally, the
inclines of EGNN and Molformer to learn interactions of specific orders are distinct. Due to the
inductive bias introduced by KNN-graphs, EGNN is more prone to pay attention to interactions of
Kth-order (e.g., K = 8 in our setting). Contrarily, Molformer, based on FC-graphs, assumes that
all particles can affect each other directly, resulting in a more unconstrained J (m). For example, its
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Figure 7: The change of interaction strengths with different training epochs for EGNN.

J (m) on Newtonian dynamics is extremely smooth like a straight line, but its J (m) on Hamiltonian
and MD are steep curves. All these evidences bolster our proposal that the inductive bias brought
by the topological structure of input graphs significantly impacts J (m) of GNNs.

Particularly, KNN-graphs are more susceptible to improper inductive bias, which prevents EGNN
concerning interactions of orders that differ from K and can lead to worse performance. However,
FC-graphs (or KNN-graphs with a large K) are not a panacea for all tasks. Except that FC-graphs
require much more computational costs and may be prohibited in the case of tremendous entities,
the performance of Molformer severely depends on the sufficiency and quality of training data. As
shown in Tab. 2, Molformer does not surpass EGNN on all datasets. Instead, it behaves worse than
EGNN on Hamiltonian (1.250 > 0.892) and MD (0.736 > 0.713).

5.3 EFFECTIVENESS OF ISGR ALGORITHM

Table 1: Comparison of different rewiring methods for node-
level prediction tasks.

Task Newtonian Dynamics Molecular Dynamics
Model EGNN Molformer EGNN Molformer

None 6.951 ± 0.098 1.929 ± 0.051 1.409 ± 0.082 0.848 ± 0.053
+FA 5.348 ± 0.183 – 0.826 ± 0.105 –

DIGL 5.637 ± 0.147 1.902 ± 0.081 1.108 ± 0.131 0.790 ± 0.078
SDRF 5.460 ± 0.133 1.885 ± 0.068 0.942 ± 0.152 0.751 ± 0.046
ISGR 4.734 ± 0.103 1.879 ± 0.066 0.713 ± 0.097 0.736 ± 0.048(Ours)

Graph and node regression re-
sults. We conduct experiments
to examine the efficiency of our
ISGR method. Results are re-
ported with the mean and stan-
dard deviation of three repetitions
in Tab. 1 and 2, where the top two
are in bold and underlined, respec-
tively. It can be observed that our
ISGR algorithm significantly im-
proves the performance of EGNN
and Molformer upon all baselines
on both graph-level and node-level tasks. Particularly, the promotion of ISGR for EGNN is much
higher, which confirms our assertion that GNNs based on KNN-graphs are more likely to suffer from
bad inductive bias. On the other hand, the improvement for Molformer in QM7 is more considerable
than in QM8. This proves that GNNs based on FC-graphs are more easily affected by inappropriate
inductive bias (i.e., full connection) when the data is insufficient since the size of QM7 (7K) is far
smaller than QM8 (21K). We also see that +FA outweighs DIGL and SDRF, the rewiring algorithms
by edge sampling, when the graph connectivity is built on KNN. However, when encountering FC-
graphs, +FA losses efficacy and SDRF achieves a larger improvement than DIGL.
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Figure 6: The change of m∗

over epochs for EGNN.

The change of m∗ during training. We plot the variation ten-
dency of m∗ over different epochs in Fig. 6. It shows that dif-
ferent tasks enjoy various optimal K (denoted as K∗). Explic-
itly, Hamiltonian dynamics and Newtonian dynamics benefit from
full-connection (K

∗

n = 1), while the molecular property prediction
including QM7 and QM8 benefits more from middle-order inter-
actions (K∗

n ≈ 0.5). This phenomenon perfectly fits the physical
laws, because the system in Newtonian and Hamiltonian datasets is
extremely compact with close pairwise distances. Those particles
are more likely to be influenced by all the other nodes.

The change of interaction strengths during training. Fig. 7 depicts how J (m) changes when the
training proceeds with our ISGR algorithm. Although for data like QM7, QM8, and Hamiltonian
dynamics, J (m)

D mostly concentrate on low-order interactions (mn ≤ 0.4), J (m) progressively adjust
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Table 2: Comparison of different rewiring methods for graph-level prediction tasks.
Task Hamiltonian Dynamics QM7 QM8

Model EGNN Molformer EGNN Molformer EGNN Molformer

None 1.392± 0.042 1.545± 0.036 68.182± 3.581 51.119± 2.193 0.012± 0.001 0.012± 0.001
+FA 1.168± 0.043 – 55.288± 3.074 – 0.012± 0.001 –

DIGL 1.151± 0.044 1.337± 0.072 61.028± 3.804 41.188± 5.329 0.012± 0.001 0.011± 0.001
SDRF 1.033± 0.790 1.265± 0.039 59.921± 3.765 35.792± 4.565 0.011± 0.001 0.011± 0.001

ISGR (Ours) 0.892± 0.051 1.250± 0.029 53.134± 2.711 34.439± 4.017 0.011± 0.000 0.010± 0.001

to middle-order and high-order (mn ≥ 0.4). Regarding Newtonian dynamics, J (m)
D is very smooth,

but J (m) at initial epochs (i.e., 10 and 20 epochs) oddly focus on low-order interactions (mn ≤ 0.4).
Nevertheless, our ISGR method timely corrects the wrong tendency, and eventually, J (m) becomes
more intensive in segments of middle-order and high-order (mn ≥ 0.6).

6 RELATED WORK

GNNs’ expressiveness and bottlenecks. It is found that GNNs captures only a tiny fragment of
first-order logic (Barceló et al., 2020), which arises from the deficiency of a node’s receptive field.
Meanwhile, GNNs are observed not to benefit from the increase of layers due to over-smoothing (Li
et al., 2018; Klicpera et al., 2018; Chen et al., 2020) and over-squashing (Alon & Yahav, 2020;
Topping et al., 2021). To the best of our knowledge, none considers GNNs’ capacity in encoding
pairwise interactions, and we are the foremost to understand GNNs’ expressiveness from interac-
tions under different contextual complexities and link the expressive limitation with the inductive
bias of graph connectivity. More elaborate related works are in Appendix E.

GNNs’ representation capacity. It becomes an emerging area to evaluate the representation ca-
pability of DNNs (Shwartz-Ziv & Tishby, 2017; Neyshabur et al., 2017; Novak et al., 2018; Weng
et al., 2018; Fort et al., 2019), where Zhang et al. (2020) and Deng et al. (2021) pioneeringly employ
interactions between variables to inspect the limitation of DNNs in feature representations. Notwith-
standing, prior works merely highlight the behaviors of general DNNs and examine their assertions
via MLP and CNNs. In comparison, we emphasize GNNs that operate on structured graphs, distinct
from images and texts.

Graph rewiring. Rewiring is a process of altering the graph structure to control the information
flow. Among diverse existing approaches such as connectivity diffusion (Klicpera et al., 2019),
bridge-node insertion (Battaglia et al., 2018), and multi-hop filters (Frasca et al., 2020), edge sam-
pling shows great power in tackling over-smoothing and over-squashing. The sampling strategies
can be random drop (Huang et al., 2020b) or based on edge relevance (Klicpera et al., 2019; Kazi
et al., 2022). Recently, Alon & Yahav (2020) modify the last layer to a FC-graph to help GNNs grab
long-range interactions. Taking a step further, Topping et al. (2021) prove that negatively curved
edges are responsible for over-squashing and introduces a curvature-based rewiring method to al-
leviate that. Differently, our rewiring algorithm originates from a completely new motivation, i.e.,
reshaping graph structure to allow GNNs to learn the most informative order of interactions.

7 CONCLUSION

In this paper, we discover and strictly analyze the representation bottleneck of GNNs from the
complexity of interactions encoded in networks. Remarkably, inductive bias rather than the data
distribution is more dominant in the expressions of GNNs to capture pairwise interactions. This
observation also motivates us to conclude that inductive biases introduced by most graph construc-
tion mechanisms such as KNN and full connection are sub-optimal. Inspired by this gap, we design
a novel rewiring method based on the inclination of GNNs to encode more informative orders of
interactions. We conduct experiments on four synthetic and real-world tasks, verifying that GNNs
are allowed to reach the global minimum loss and break the bottleneck via our efficient algorithm.
Limitations of our work are stated in Appendix F.
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APPENDIX

The Appendix is structured as follows:

• In Appendix A we provide supplementary materials of the multi-order interaction tool for
readers who are not familiar with this field. Moreover, we prove that our reformed multi-
order interaction is equivalent to the original definition, and also offer a straightforward
explanation of the proposition that appeared in the main text.

• In Appendix B we introduce the details of our implementation in exploring the change of
interaction strengths for CNNs and MLP-Mixer on visual problems.

• In Appendix C we describe the formulation of datasets, training details, and some other
additional experimental results.

• In Appendix E we give more descriptions of prior studies in regards to the expressiveness
of GNNs.

• In Appendix D we systematically compare our representation bottleneck with exiting bot-
tlenecks of GNNs.

• In Appendix F we describe the limitations and potential negative social impact of our work.
We also point out the future direction to enrich the content of our paper.

A INTRODUCTION AND THEORETICAL ANALYSIS OF MULTI-ORDER
INTERACTIONS

A.1 INTRODUCTION OF MULTI-ORDER INTERACTIONS

In this subsection, we give a more detailed introduction of the multi-order interaction, which is
employed to analyze the representation ability of GNNs and CNNs in the main body, in case some
audiences may find it to follow. This introduction largely utilizes Zhang et al. (2020) and Deng
et al. (2021) for reference, and we strongly recommend interesting readers to take a glance at these
articles. Notably, the original multi-order interaction between input variables is defined as follows:

I(m)(i, j) = ES⊆N\{i,j},|S|=m[∆f(i, j, S)], 3 ≤ m ≤ n, (5)

where ∆f(i, j, S) = f(S ∪ {i, j})− f(S ∪ {i})− f(S ∪ {j}) + f(S) and S ⊂ N represents the
context with m variables. I(m)(i, j) denotes the interaction between variables i, j ∈ N of the m-th
order, which measures the average interaction utility between i, j under contexts of m variables.
There are five desirable properties that I(m)(i, j) satisfies:

- Linear property. If two independent games f1 and f2 are combined, obtaining g(S) = f1(S) +
f2(S), then the multi-order interaction of the combined game is equivalent to the sum of multi-order
interactions derived from f1 and f2, i.e.,I(m)

g (i, j) = I
(m)
f1

(i, j) + I
(m)
f2

(i, j).

- Nullity property. If a dummy variable i ∈ N satisfies ∀S ⊆ N\{i}, f(S∪{i}) = f(S)+f({i}),
then variable i has no interactions with other variables, i.e., ∀m, ∀j ∈ N\{i}, I(m)(i, j) = 0.

- Commutativity property. Intuitively, ∀i, j ∈ N, I(m)(i, j) = I(m)(j, i).

- Symmetry property. Suppose two variables i, j are equal in the sense that i, j have same co-
operations with other variables, i.e., ∀S ⊆ N\{i, j}, f(S ∪ {i}) = f(S ∪ {j}), then we have
∀k ∈ N, I(m)(i, k) = I(m)(j, k).

- Efficiency property (Deng et al., 2021). The output of a DNN can be decomposed into the sum
of interactions of different orders between different pairs of variables as:

f(N)− f(∅) =
∑
i∈N

µi +
∑

i,j∈N,i̸=j

n−2∑
m=0

w(m)I(m)(i, j), (6)

where µi = f({i})− f(∅) represents the independent effect of variable i, and w(m) = n−1−m
n(n−1) .
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Connection with Shapley value and Shapley interaction index. Shapley value is introduced
to measure the numerical importance of each player to the total reward in a cooperative game,
which has been widely accepted to interpret the decision of DNNs in recent years (Lundberg & Lee,
2017; Ancona et al., 2019). For a given DNN and an input sample with a set of input variables
N = {1, . . . , n}, we use 2N = {S | S ⊆ N} to denote all possible variable subsets of N . Then,
DNN f can be considered as f : 2N → R that calculates the output f(S) of each specific subset
S ⊆ N . Each input variable i is regarded as a player, and the network output f(N) of all input
variables can be considered as the total reward of the game. The Shapley value aims to fairly
distribute the network output to each individual variables as follows:

ϕi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[f(S ∪ {i})− f(S)], (7)

where f(S) denotes the network output when we keep variables in S unchanged while masking
variables in N\S by following the setting in Ancona et al. (2019). It has been proven that the Shapely
value is a unique method to fairly allocate overall reward to each player that satisfies linearity,
nullity, symmetry, and efficiency properties.

Connections between the Shapley interaction index and the Shapely value. Input variables of
a DNN usually interact with each other, instead of working individually. Based on the Shapley
value, Grabisch & Roubens (1999) further proposes the Shapley interaction index to measure the
interaction utility between input variables. The Shapley interaction index is the only axiomatic
extension of the Shapley value, which satisfies linearity, nullity, symmetry, and recursive properties.
For two variables i, j ∈ N , the Shapley interaction index I(i, j) can be considered as the change of
the numerical importance of variable i by the presence or absence of variable j.

I(i, j) = ϕ̃(i)j always present − ϕ̃(i)j always absent, (8)

where ϕ̃(i)jalways present denotes the Shapley value of the variable i computed under the specific con-
dition that variable j is always present. ϕ̃(i)j always absent is computed under the specific condition
that j is always absent.

Connections between the multi-order interaction and the Shapley interaction index. Based
on the Shapley interaction index, Zhang et al. (2020) further defines the order of interaction, which
represents the contextual complexity of interactions. It has been proven that the above Shapley
interaction index I(i, j) between variables i, j can be decomposed into multi-order interactions as
follows:

I(i, j) =
1

n− 1

n−2∑
m=0

I(m)(i, j). (9)

A.2 PROOF OF MULTI-ORDER INTERACTIONS

There we explain why I(m)(i, j) has no difference whether we include variables {i, j} in S or not.
In the setting of (Zhang et al., 2020; Deng et al., 2021), I(m)(i, j) takes the following form:

I(m)(i, j) = ES⊆N\{i,j},|S|=m[∆f(i, j, S)], (10)

where ∆f(i, j, S) = f(S ∪ {i, j}) − f(S ∪ {i}) − f(S ∪ {j}) + f(S) and i, j /∈ S. While in
our formulation, the order m′ = m + 2 corresponds to the context S′ = S ∪ {i, j}. Now we
denote our version of the multi-order interaction as I ′(m

′)(i, j) with ∆′f(i, j, S) and aim to show
that I(m)(i, j) = I ′(m

′)(i, j).

It is trivial to obtain that f(S ∪ {i, j})− f(S ∪ {i})− f(S ∪ {j}) + f(S) = f(S′)− f(S′\{i})−
f(S′\{j}) + f(S′\{i, j}), which indicates that ∆f(i, j, S) = ∆′f(i, j, S′). Therefor, we can get
I(m+2)(i, j) = I ′(m

′)(i, j).

A.3 THEORETICAL DISTRIBUTIONS OF F (m)

Fig. 8 depicts the theoretical distributions of F (m) for different n. Unlike Fig. 1, the empty set ∅ is
allowed as the input for DNNs. Apparently, when the number of variables n is very large (n ≥ 100),
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F (m) is only positive for m
n → 0. For macromolecules such as proteins, the number of atoms is

usually more than ten thousand. If the theorem in (Deng et al., 2021) that the strengths ∆W (m)(i, j)
of learning the m-order interaction is strictly proportional to F (m) holds, DNNs would be impossible
to put attention to any middle-order interactions, which is proven to be critical for modeling protein-
protein interactions (Liu et al., 2020; Das & Chakrabarti, 2021).
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Figure 8: Distributions of F (m) with different numbers of variables n where f(∅) is taken into
consideration.

A.4 GRAPH CONSTRUCTION APPROACHES

Unlike social networks or knowledge graphs, there are, indeed, no explicit edges in graphs of most
scientific problems. So in order to represent molecules or systems as graphs, KNN-graphs, fully-
connected graphs, and r-ball graphs are the three most broadly used mechanisms to build the con-
nectivity. In r-ball graphs, an edge between any atoms exists as long as their inter-atomic distance
is shorter than a threshold value. But in order to better utilize the multi-order interaction theory, the
way of graph construction must satisfy two properties: (1) The subgraph maintains the connectivity.
(2) No ambiguity should be intrigued from neither the structural nor feature view. Consequently, r-
ball graphs do not satisfy the first property. For instance, a node a (e.g., hydrogen) can be connected
to only another node b. If we remove b from the system, a would be an isolated particle, which
should be forbidden.

Apart from that, KNN-graphs (see Fig. 9 (a)) and FC-graphs (see Fig. 9 (b)) are the other two broad
practices to establish connections between entities. In fact, FC-graphs are a special type of KNN-
graphs, where K ≥ n − 1. However, FC-graphs or KNN-graphs with a large K suffer from high
computational expenditure and are usually infeasible with thousands of entities. In addition, they
are sometimes unnecessary since the impact from distant nodes is so minute to be ignored.
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Figure 9: Different graph constructions of the compound C6H6O.

A.5 EXPLANATION OF PROPOSITION 1

Prop. 1 illustrates an intuitive necessary condition for a model f to achieve the global minimum
loss. That is, the learned strength J (m) must match the optimal strength J (m)∗. Otherwise, f must
be inferior to the best predictor f∗. This proposition is very straightforward. The global minimum
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loss L∗ has its corresponding model weight f∗ and thereby a unique learned strength J (m)∗. Given
another model f , if its strength J (m) is different from J (m)∗, then f is different from f∗. As a
consequence, the loss of f must be larger than L∗. Notably, there we consider the loss function
to be non-convex. In contrast, if the loss function is convex, standard optimization techniques like
gradient descent will easily find parameters that converge towards global minima.

B CNNS AND MLP-MIXER ON VISUAL TASKS

To investigate the change of interaction strengths during the training process in image classification,
we train ResNet-50 (He et al., 2016) and MLP-Mixer (Small) (Tolstikhin et al., 2021) and calculate
the interaction strength by the official implementation provided by Deng et al. (2021). MLP-mixer is
an architecture based exclusively on multi-layer perceptrons (MLPs). It contains two types of layers:
one with MLPs applied independently to image patches (i.e. “mixing” the per-location features), and
one with MLPs applied across patches (i.e. “mixing” spatial information). We discuss MLP-mixer
to compare it with the traditional CNNs. Notably, CNNs assume the local inductive bias, while
MLP-mixer instead connects each patch with other patches (e.g., no constraint of locality).

We follow the training settings of DeiT (Touvron et al., 2021) and train 200 epochs with the input
resolution of 224× 224 on CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al.,
2015) datasets. Fig. 2 plots the corresponding strengths at different epochs, where the dotted line de-
notes the initial interaction strength without training (referring to epoch 0), i.e., the data distribution
of strengths J (m)

D .

Through visualization, it can be easily found that J (m)
D in both CIFAR-10 and ImageNet have already

obeyed a mode that the low-order (mn ≤ 0.2) and high-order (mn ≥ 0.8) interaction strengths are
much higher than middle-order (0.2 ≤ m

n ≤ 0.8). The variation of interaction strengths is very
slight with the training proceeding, which validates our statement that the data distribution has a
strong impact on the learned distribution. More importantly, we challenge the argument in Deng
et al. (2021), who believe it is difficult for DNNs to encode middle-order interaction. But in our
experiments on GNNs, we document that DL-based models are capable of capturing middle-order
interactions.

The capability of CNNs to capture desirable levels of interactions are constrained by the improper
inductive bias. Remarkably, some preceding work (Han et al., 2021; Ding et al., 2022) has proved
the effectiveness of enlarging kernel size to resolve the local inductive bias, where an adequately
large kernel size is able to improve the performance of CNNs comparable to ViT and MLP-Mixer.
Nevertheless, how to determine the scale of convolutional kernels is still under-explored. Our ISGR
algorithm provides a promising way to seek the optimal kernel size based on the interaction strength,
abandoning the exhaustive search.

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 NEWTONIAN DYNAMICS DATASET

The following six forces are utilized in the dataset of Newtonian dynamics: (1) 1/r orbital force:
−m1m2r̂/r; (2) 1/r2 orbital force −m1m2r̂/r

2; (3) charged particles force q1q2r̂/r
2 (4) damped

springs with |r − 1|2 potential and damping proportional and opposite to speed; (5) discontinuous
forces, −

{
0, r2

}
r̂, switching to 0 force for r < 2; and (6) springs between all particles, a (r − 1)2

potential. There we only use the spring force for our experiments.

C.2 TRAINING DETAILS

All experiments are implemented by Pytorch (Paszke et al., 2019) on an A100 GPU. An
Adam (Kingma & Ba, 2014) optimizer is used without weight decay, and a ReduceLROnPlateau
scheduler is enforced to adjust it with a factor of 0.6 and patience of 10. The initial learning rate
is 1e-4, and the minimum learning rate is 5e-6. The batch size is 512 for the sake of a fast training
speed. Each model is trained for 1200 epochs, and early stopping is used if the validation error fails
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to decrease for 30 successive epochs. We randomly split each dataset into training, validation, and
test sets with a ratio of 80/10/10.

For both EGNN and Molformer, the numbers of layers (i.e., depths) are 3, and the dimensions
of the input feature are 32. Besides, Molformer has 4 attention heads and a dropout rate of 0.1.
Its dimension of the feed-forward network is 128. It is worth noting that we employ multi-scale
self-attention with a distance bar of [0.8, 1.6, 3] to achieve better performance. This multi-scale
mechanism helps Molformer to concentrate more on local contexts. However, it does not harm
FC-graphs, and the connections between all pairs of entities remain. We also discover that the
multi-scale mechanism has little impact on the distribution of J (m) and J

(m)
D . Regarding the setup

of the ISGR algorithm, the threshold J̄ to adjust the number of neighbors is tuned via a grid search.
The interval of epochs ∆e is 10, and the initial k0 = 8. Concerning baselines, we follow Klicpera
et al. (2019) and Topping et al. (2021) and optimize hyperparameters by random search. Table 3
documents α, k, and ϵ for DIGL, whose descriptions can be found in Klicpera et al. (2019). Table 4
reports the maximum iterations, τ and C+ for SDRF, whose descriptions is available in Topping
et al. (2021).

Table 3: Hyperparameters for DIGL.
Task Newtonian Dynamics Molecular Dynamics Hamiltonian Dynamics QM7 QM8

Model EGNN Molformer EGNN Molformer EGNN Molformer EGNN Molformer EGNN Molformer

α 0.0259 0.1284 0.0732 0.1041 0.1561 0.3712 0.0655 0.2181 0.1033 0.1892
k 32 32 32 32 64 64 - - - -
ϵ - - - - 0.0001 - - - - 0.0002

Table 4: Hyperparameters for SDRF.
Task Newtonian Dynamics Molecular Dynamics Hamiltonian Dynamics QM7 QM8

Model EGNN Molformer EGNN Molformer EGNN Molformer EGNN Molformer EGNN Molformer

Max Iter. 15 11 39 34 16 13 22 17 25 12
tau 120 163 54 72 114 186 33 35 48 60
C+ 0.73 1.28 1.44 1.06 0.96 0.88 0.53 0.70 0.69 0.97

We create a simulated system with 10 identical particles with a unit weight for Hamiltonian and
Newtonian cases. For QM7, QM8, and ISO17 datasets, we sample 10 molecules that have the
lowest MAE. For Hamiltonian and Newtonian datasets, we sample 100 timeframes that have the
lowest prediction errors. Then for each molecule or dynamic system, we compute all pairs of entities
i, j ∈ [N ] without any sampling strategy. Moreover, we limit the number of atoms between 10 and
18 to compute the interaction strengths for QM7 and MQ8.

C.3 EXAMINATION OF THE NORMAL DISTRIBUTION HYPOTHESIS

We use scipy.stats.normaltest in the Scipy package (Virtanen et al., 2020) to test the null hypothesis
that ∂∆f(i,j,S)

∂W comes from a normal distribution, i.e, ∂∆f(i,j,S)
∂W ∼ N

(
0, σ2

)
. This test is based

on D’Agostino and Pearson’s examination that combines skew and kurtosis to produce an omnibus
test of normality. The p-values of well-trained EGNN and Molformer on the Hamiltonian dynamics
dataset are 1.97147e-11 and 2.38755e-10, respectively. The p-values of randomly initialized EGNN
and Molformer on the Hamiltonian dynamics dataset are 2.41749e-12 and 9.78953e-07, separately.
Therefore, we are highly confident in rejecting the null hypothesis (e.g., α = 0.01) and insist that
∂∆f(i,j,S)

∂W depends on the data distributions of downstream tasks and the backbone model architec-
tures.

C.4 DISTRIBUTIONS OF STRENGTHS IN QM7

Due to the limitation of space, we move Fig. 10 to the Appendix, which shows the learned dis-
tribution and data distribution of EGNN and Molformer in the QM7 dataset. The conclusions are
very similar to the discovery in QM8. Although the data distribution of strengths J

(m)
D concen-

trate on low-order (mn ≤ 0.4), the learned distribution of strengths J (m) are mainly allocated on
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middle-order interactions (0.5 ≤ m
n ≤ 0.7). Especially for EGNN, its spike of J (m) is at m = 9.

While concerning Molformer, the segment of its J (m) that increases most is dispersive between
0.3 ≤ m

n ≤ 0.5.
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Figure 10: Learned and data distributions of the interaction strength of EGNN and Molformer in the
QM7 dataset.

D COMPREHENSIVE COMPARISON TO EXISTING BOTTLENECKS OF GNNS

GNNs based on the message passing diagram show extraordinary results with a small number of
layers. Nevertheless, such GNNs fail to capture information that depends on the entire structure
of the graph and prevent the information flow from reaching distant nodes. This phenomenon is
called under-reaching (Barceló et al., 2020). To overcome this limitation, an intuitive resolution
is to increase the layers. But unfortunately, GNNs with many layers tend to suffer from the over-
smoothing (Oono & Suzuki, 2019) or over-squashing (Alon & Yahav, 2020) problems.

Over-smoothing takes place when node embeddings become indistinguishable. It occurs in GNNs
that are used to tackle short-range tasks, i.e., the accurate prediction majorly depends on the local
neighborhood. On the contrary, long-range tasks require as many layers as the range of interactions
between nodes. But this would contribute to the exponential increase of the node’s receptive field
and compress the information flow, which is named over-squashing. In our study, we do not specify
which category of problems to be addressed (i.e., long-range or short-range). Instead, we aim to ex-
plore which sort of interactions that GNNs are more likely to encode (i.e., too simple, intermediately
complex, and too complex). It is also worth noting that different tasks require different levels of in-
teractions. For instance, Newtonian and Hamiltonian dynamics demand too complex interactions,
while molecular property prediction prefers interactions of intermediate complexity. Then based
on both theoretical and empirical evidence, we discover that improper inductive bias introduced by
the way to construct graph connectivity prevents GNNs from capturing the desirable interactions,
resulting in the representation bottleneck of GNNs.

So what is the significant difference between our representation bottleneck and over-squashing?
Most foundationally and importantly, our representation bottleneck is based on the theory of multi-
order interactions, while over-squashing relies on the message propagation of node representations.
To be specific, it is demonstrated in Alon & Yahav (2020) that the propagation of messages is
controlled by a suitable power of Â (the normalized augmented adjacency matrix), which relates
over-squashing to the graph topology. In contrast, we show that the graph topology strongly de-
termines the distribution of interaction strengths J (m), i.e., whether GNNs are inclined to capture
too simple or too complex interactions. This difference in theoretical basis leads to the following
different behaviors of our representation bottleneck and over-squashing:

• The multi-order interaction technique focuses on interactions under a certain context, whose com-
plexity is measured as the number of its variables (i.e., nodes) m divided by the total number of
variables of the environment (i.e., the graph) n. Thus, the complexity of interactions is, indeed,
a relative quantity. Conversely, over-squashing (as well as under-reaching) concerns about the
absolute distance between nodes. Given a pair of nodes i and j, if the shortest path between them
is r, then at least r layers are required for i to reach out to j. More generally, long-range or
short-range tasks discussed in most GNN studies are referring to this r-distance. Over-squashing,
therefore, follows this r-distance metric and argues that the information aggregated across a long
path is compressed, which causes the degradation of GNNs’ performance.
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As a result, our representation bottleneck can occur in both short-range and long-range tasks,
but over-squashing mainly exists in long-range problems. For short-range tasks, if we assume
a KNN-graph with a large K or even fully-connected graphs (i.e., nodes can have immediate
interactions with distant nodes), then the receptive field of each node is very large and GNNs
intend to concentrate on too complex interactions but fail to capture interactions within local
neighbors. For long-range tasks, if we assume a KNN-graph with a small K (i.e., nodes only
interact with nearby nodes), then the receptive field of each node is relatively small compared to
the size of the entire graph. Consequently, GNNs prefer to capture too simple interactions but are
incapable of seizing more informative complex interactions.

• More essentially, the multi-order interaction theory of our representation bottleneck is model-
agnostic, but the starting point of over-squashing is message passing, the characteristic of most
GNN architectures. To make it more clear, the calculation of multi-order interactions (see Equ. 1
and 2) is completely independent of the network (e.g., CNNs, GNNs, RNNs). However, the
theory of over-squashing is founded on the message passing procedure. This hypothesis makes
over-squashing limited to the group of GNNs that are built on message passing. But other kinds
of GNNs such as the invariants of Transformers may not suffer from this catastrophe. Instead, the
analysis of multi-order interactions in our representation bottleneck can be utilized to any GNN
architecture, even if it abandons the traditional message passing mechanism.

To summarize, our representation bottleneck is more universal than over-squashing which is built
upon the absolute distance and merely talks about long-range tasks. This is due to the fact that our
representation bottleneck is given birth to by the theory of multi-order interactions rather than the
property of message propagation.

E MORE RELATED WORK ON EXPRESSIVENESS OF GNNS

It is well-known that MLP can approximate any Borel measurable function (Hornik et al., 1989), but
few study the universal approximation capability of GNNs (Wu et al., 2020). Hammer et al. (2005)
demonstrates that cascade correlation can approximate functions with structured outputs. Scarselli
et al. (2008a) prove that a RecGNN (Scarselli et al., 2008b) can approximate any function that
preserves unfolding equivalence up to any degree of precision. Maron et al. (2018) show that an
invariant GNN can approximate an arbitrary invariant function defined on graphs. Xu et al. (2018)
show that common GNNs including GCN (Kipf & Welling, 2016) and GraphSage (Hamilton et al.,
2017) are incapable of differentiating different graph structures. They further prove if the aggre-
gation functions and the readout functions of a GNN are injective, it is at most as powerful as the
Weisfieler-Lehman (WL) test (Leman & Weisfeiler, 1968) in distinguishing different graphs.

F LIMITATIONS AND FUTURE DIRECTIONS

Despite the reported success of our proposed ISGR, GNNs still face a few limitations. In real-world
applications such as social networks, improper modeling of interactions may lead to the failure of
classifying fake users and posts. In addition, since GNNs have been extensively deployed in assist-
ing biologists with the discovery of new drugs, inappropriate modeling can postpone the screening
progress and impose negative consequences on the drug design. Another limitation of our work is
that results are only demonstrated on small systems with few particles and two sorts of GNNs. The
generalization of our claim remains investigated on larger datasets and more architectures.
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