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ABSTRACT

Extremely large and sparse output space in a deep net classifier induces two major
challenges of high computational complexity and class ambiguity. Class ambi-
guity is usually tackled by optimizing top-k error instead of zero one loss. To
deal with computational complexity, recent work of Vincent et al. (2015) and
de Brébisson & Vincent (2016) introduced a family of spherical loss that comes
with a weight update algorithm that is independent of output space size. In this
family, Z loss is of particular interest since it outperforms other spherical losses
and log-softmax on top-k scores. However, there exists no theoretical result on the
top-k calibration of Z loss or any concrete connection between top-k scores and
hyper-parameters of Z loss. This paper provides insights on the relationship be-
tween the two and answers how and why hyper-parameters of Z loss are essential
to optimize top-k scores.

1 INTRODUCTION

Classification problems with extremely large dimensional outputs are very common in neural lan-
guage modelling tasks and becoming important in computer vision domain with the availability
of large scale datasets. The most common loss optimized for training a multi-class neural net-
works, log-softmax, scales linearly with the number of output classes. Taking into account this
bottleneck, Vincent et al. (2015) proposed an efficient algorithm for training neural networks that is
independent of number of classes. However, it only works for loss functions, belonging to spherical
family, that only require access to the non-zero entries in the output and the squared norm of the pre-
dicted output vector. For a detailed description of the algorithm, we refer the reader to Vincent et al.
(2015). Building on this work, de Brébisson & Vincent (2016; 2017) proposed a family of spherical
loss functions that satisfy the above requirements. Within this family, Z loss is of particular interest
as it outperforms log softmax on large output classes benchmarks. If µ and σ are the mean and
standard deviation of multi class output vector o and c is the index of output class, de Brébisson &
Vincent (2017) define Z loss as:

L(o, c) =
1

a
log

[
1 + exp

(
a
(
b− oc − µ

σ

))]
=

1

a
log
[
1 + exp

(
a(b− zc)

)]
(1)

where a and b are two hyper-parameters controlling the scaling of zc and zc = oc−µ
σ . This standard-

ization makes the Z loss invariant to both shifting and scaling of the outputs o whereas log-softmax
is only invariant to shifting. Empirical results on Penn Tree Bank benchmark shows that it outper-
forms log-softmax on various top-k scores. Besides, it delivers a significant speed up on One Billion
Word Language modelling task when compared to hierarchical softmax Mikolov et al. (2013).

Although the experiments of de Brébisson & Vincent (2017) show that the choice of hyper-
parameters a and b is essential to fit top-k metric empirically, no insight or an explicit relationship
between the two is given. Thus, it is hard to interpret how these hyper-parameters influence the
top-k scores. We show in next section that some empirical observations reported in de Brébisson &
Vincent (2017) directly fall out from top-k calibration condition of Z loss.

2 CONSISTENCY OF Z LOSS

In statistical learning theory, a loss function is called classification calibrated if an optimal classifier
with respect to the loss function yields the Bayes optimal solution ( Bartlett et al. (2003); Tewari
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& Bartlett (2005); Lapin et al. (2016)). For a general multi class setting with D output classes and
input dimensionality n, one learns a function f : Rn ⇒ RD and prediction at test time is done via
argmaxi=1..D fi(x). Lapin et al. (2016) defines a loss function to be top-k calibrated if the k largest
scoring components of f corresponds to the k largest conditional class probabilities. If a loss is not
top-k calibrated, it means that even in the limit of infinite data, optimizing the loss will not yield a
Bayes optimal top-k error. We refer the reader to Lapin et al. (2016) for more details. We use this
definition to chart a relationship between the top-k score and hyper-parameter values of Z loss.

In the following, our main goal is to check under what conditions the ordering of classifier scores
is same as that of conditional class probabilities. To this end, we minimize the expected Z loss
point-wise and obtain the conditions for critical points since Z loss is differentiable.

Using the tower property, we decompose the expected loss as:
E[L(o, f(X))] = E[E[L(o, f(X))|X]] (2)

To compute the condition of the Bayes optimal classifier, we minimize the expected loss point-wise
for each x given by:

E[L(o, f(X))|X = x] =

D∑
c=1

px(c)L(o, c) (3)

Since the loss is differentiable, partial derivative of the loss w.r.t individual output activation oc is
given by:

∂ E[L]
∂oc

= px(c)
∂L(o, c)

∂oc
+

D∑
r=1,r 6=c

px(r)
∂L(o, c)

∂orc 6=r

(4)

Due to space constraint, we skip the derivations of first order partial derivatives of loss functions w.r.t
output vector and write them directly here. They can also be verified in de Brébisson & Vincent
(2017)

∂L(o, c)

∂oc
=

−1
1 + exp(a(zc − b))

∗ D − 1− z2c
Dσ

(5)

∂L(o, c)

∂orr 6=c

=
1

1 + exp(a(zr − b))
∗ 1 + zczr

Dσ
(6)

Plugging the partial derivatives from Eq. 5 and Eq. 6 to Eq. 4. we get:

∂ E[L]
∂oc

=
−px(c)

1 + exp(a(zc − b))
∗ D − 1− z2c

Dσ
+

D∑
r=1,r 6=c

px(r)

1 + exp(a(zr − b))
∗ (1 + zczr)

Dσ
(7)

At any critical point, first order partial derivatives must be zero (Left side of Eq(7)),that gives the
following:

px(c) ∗ (D − 1− z2c )
1 + exp(a(zc − b))

=

D∑
r=1,r 6=c

px(r) ∗ (1 + zczr)

1 + exp(a(zr − b))
(8)

To check the the calibration condition, we impose the following ordering on the output vector:okD
> okD−1

> . . . ok2 > ok1 . Given this ordering, we pick two index k1 and k2 and set the partial
derivatives w.r.t ok1 and ok2 to zero in Eq 7:

px(k1) ∗ (D − 1− z2k1)
1 + exp(a(zk1 − b))

= px(k2) ∗
(1 + zk2zk1)

1 + exp(a(zk2 − b))
+

D∑
k=3

px(k) ∗ (1 + zk1zk)

1 + exp(a(zk − b))
(9)

px(k2) ∗ (D − 1− z2k2)
1 + exp(a(zk2 − b))

= px(k1) ∗
(1 + zk2zk1)

1 + exp(a(zk1 − b))
+

D∑
k=3

px(k) ∗ (1 + zk2zk)

1 + exp(a(zk − b))
(10)
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Subtracting Eq. 9 from Eq. 10 and grouping px(k1) and px(k2) terms separately,

px(k2) ∗ (D − z2k2 + zk2zk1)

1 + exp(a(zk2 − b))
=
px(k1) ∗ (D + zk1zk2 − z2k1)

1 + exp(a(zk1 − b))
+

D∑
k=3

px(k) ∗ (1 + zk(zk2 − zk1))
1 + exp(a(zk − b))

(11)

px(k2) ∗ (D − zk2(zk2 − zk1)
1 + exp(a(zk2 − b))

=
px(k1) ∗ (D + zk1(zk2 − zk1)

1 + exp(a(zk1 − b))
+

D∑
k=3

px(k) ∗ (1 + zk(zk2 − zk1))
1 + exp(a(zk − b))

(12)

D ∗

(
px(k2)

1 + exp(a(zk2 − b))
− px(k1)

1 + exp(a(zk1 − b))

)
=

D∑
k=1

px(k) ∗ (1 + zk(zk2 − zk1))
1 + exp(a(zk − b))

(13)

px(k2)

1 + exp(a(zk2 − b))
− px(k1)

1 + exp(a(zk1 − b))
=

1

D
∗

D∑
k=1

px(k) ∗ (1 + zk(zk2 − zk1))
1 + exp(a(zk − b))

(14)

Note that exponential is a strict monotonic function. For ok2 > ok1 , we have zk2 > zk1 , by definition.
Thus, summation in right side of Eq. 14 is always positive for a > 0 and zk > 0. The positive right
side implies that on left side, px(k2) > px(k1) since denominator of px(k2)> px(k1) for a > 0 and
zk > 0. It is easy to deduce that the Eq. 14 holds for any other two conditional class probabilities.

2.1 DISCUSSION

Since zk are normalized and scaled activation output values, some zk values will inevitably be
negative. Thus, to maintain the same ordering of conditional class probabilities, denominators in
Eq. 14 play a crucial role. In particular, value of a, in left hand side of Eq. 14, is critical to ensure
that px(k2) > px(k1) if the summation in right hand side turns out to be negative. This also implies
that we only need to fit hyper-parameter a value to optimize top-k score since (zk2 − b) > (zk1 − b)
for any constant b. This observation is in line with the empirical findings of de Brébisson & Vincent
(2017) where they report that hyper-parameter a is more important than b while optimizing for top-k
scores.

3 CONCLUSION

We provide an explicit relationship that answers how and why hyper-parameters of Z loss are es-
sential to optimize top-k scores. Our result also suggest that one only needs to tune value of hyper-
parameter a to better optimize the top-k score. Despite the dependency on the sign of zk in the
resulting Z loss calibration condition , it is also interesting to note that it outperforms log softmax on
top-k scores even though log softmax is shown to be top-k calibrated for all k by Lapin et al. (2016).
Since our work relies on computing critical points without any guarantee of a global minimum, we
believe proposing a convex upper bound of Z loss, while retaining its important properties such as
scaling and shifting, is a promising future research direction.
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