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ABSTRACT

In this paper, we describe the “implicit autoencoder” (IAE), a generative autoen-
coder in which both the generative path and the recognition path are parametrized
by implicit distributions. We use two generative adversarial networks to define the
reconstruction and the regularization cost functions of the implicit autoencoder,
and derive the learning rules based on maximum-likelihood learning. Using im-
plicit distributions allows us to learn more expressive posterior and conditional
likelihood distributions for the autoencoder. Learning an expressive conditional
likelihood distribution enables the latent code to only capture the abstract and
high-level information of the data, while the remaining information is captured
by the implicit conditional likelihood distribution. For example, we show that
implicit autoencoders can disentangle the global and local information, and per-
form deterministic or stochastic reconstructions of the images. We further show
that implicit autoencoders can disentangle discrete underlying factors of variation
from the continuous factors in an unsupervised fashion, and perform clustering and
semi-supervised learning.

1 INTRODUCTION

Deep generative models have achieved remarkable success in recent years. One of the most successful
models is the generative adversarial network (GAN) (Goodfellow et al., 2014), which employs a two
player min-max game. The generative model, G, samples the noise vector z ∼ p(z) and generates
the sample G(z). The discriminator, D(x), is trained to identify whether a point x comes from the
data distribution or the model distribution; and the generator is trained to maximally confuse the
discriminator. The cost function of GAN is

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼p(z)[log(1−D(G(z))]. (1)

GANs can be viewed as a general framework for learning implicit distributions (Mohamed &
Lakshminarayanan, 2016; Huszár, 2017). Implicit distributions are probability distributions that are
obtained by passing a noise vector through a deterministic function that is parametrized by a neural
network. In the probabilistic machine learning problems, implicit distributions trained with the GAN
framework can learn distributions that are more expressive than the tractable distributions trained
with the maximum-likelihood framework.

Variational autoencoders (VAE) (Kingma & Welling, 2014; Rezende et al., 2014) are another suc-
cessful generative models that use neural networks to parametrize the posterior and the conditional
likelihood distributions. Both networks are jointly trained to maximize a variational lower bound
on the data log-likelihood. One of the limitations of VAEs is that they learn factorized distributions
for both the posterior and the conditional likelihood distributions. In this paper, we propose the
“implicit autoencoder” (IAE) that uses implicit distributions for learning more expressive posterior
and conditional likelihood distributions. Learning a more expressive posterior will result in a tighter
variational bound; and learning a more expressive conditional likelihood distribution will result in a
global vs. local decomposition of information between the prior and the conditional likelihood. This
enables the latent code to only capture the information that we care about such as the high-level and
abstract information, while the remaining low-level information of data is separately captured by the
noise vector of the implicit decoder.

Implicit distributions have been previously used in learning generative models in works such as adver-
sarial autoencoders (AAE) (Makhzani et al., 2015), adversarial variational Bayes (AVB) (Mescheder
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Figure 1: Architecture and graphical model of implicit autoencoders.

et al., 2017), ALI (Dumoulin et al., 2016), BiGAN (Donahue et al., 2016) and other works such
as (Huszár, 2017; Tran et al., 2017). The global vs. local decomposition of information has also
been studied in previous works such as PixelCNN autoencoders (van den Oord et al., 2016), Pix-
elVAE (Gulrajani et al., 2016), variational lossy autoencoders (Chen et al., 2016b), PixelGAN
autoencoders (Makhzani & Frey, 2017), or other works such as (Bowman et al., 2015; Graves et al.,
2018; Alemi et al.). In the next section, we first propose the IAE and then establish its connections
with the related works.

2 IMPLICIT AUTOENCODERS

Let x be a datapoint that comes from the data distribution pdata(x). The encoder of the implicit
autoencoder (Figure 1) defines an implicit variational posterior distribution q(z|x) with the function
ẑ = fφ(x, ε) that takes the input x along with the input noise vector ε and outputs ẑ. The decoder
of the implicit autoencoder defines an implicit conditional likelihood distribution p(x|z) with the
function x̂ = gθ(ẑ,n) that takes the code ẑ along with the latent noise vector n and outputs a
reconstruction of the image x̂. In this paper, we refer to ẑ as the latent code or the global code,
and refer to the latent noise vector n as the local code. Let p(z) be a fixed prior distribution,
p(x, z) = p(z)p(x|z) be the joint model distribution, and p(x) be the model distribution. The
variational distribution q(z|x) induces the joint data distribution q(x, z), the aggregated posterior
distribution q(z), and the inverse posterior/encoder distribution q(x|z) as follows:

q(x, z) = q(z|x)pdata(x) ẑ ∼ q(z) =

∫
x

q(x, z)dx q(x|z) =
q(x, z)

q(z)
(2)

Maximum likelihood learning is equivalent to matching the model distribution p(x) to the data
distribution pdata(x); and learning with variational inference is equivalent to matching the joint model
distribution p(x, z) to the joint data distribution q(x, z). The entropy of the data distributionHdata(x),
the entropy of the latent code H(z), the mutual information I(x; z), and the conditional entropies
H(x|z) andH(z|x) are all defined under the joint data distribution q(x, z) and its marginals pdata(x)
and q(z). Using the aggregated posterior distribution q(z), we can define the joint reconstruction
distribution r(x, z) and the aggregated reconstruction distribution r(x) as follows:

r(x, z) = q(z)p(x|z) x̂ ∼ r(x) =

∫
z

r(x, z)dz (3)

Note that in general we have r(x, z) 6= q(x, z) 6= p(x, z), q(z) 6= p(z), and r(x) 6= pdata(x) 6= p(x).
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We now use different forms of the aggregated evidence lower bound (ELBO) to describe the IAE and
establish its connections with VAEs and AAEs.

Ex∼pdata(x)[log p(x)] ≥ −Ex∼pdata(x)

[
Eq(z|x)[− log p(x|z)]

]
︸ ︷︷ ︸

VAE Reconstruction

−Ex∼pdata(x)

[
KL(q(z|x)‖p(z))

]
︸ ︷︷ ︸

VAE Regularization

(4)

= −Ex∼pdata(x)

[
Eq(z|x)[− log p(x|z)]

]
︸ ︷︷ ︸

AAE Reconstruction

−KL(q(z)‖p(z))︸ ︷︷ ︸
AAE Regularization

− I(z;x)︸ ︷︷ ︸
Mutual Info.

(5)

= −Ez∼q(z)

[
KL(q(x|z)‖p(x|z))

]
︸ ︷︷ ︸

IAE Reconstruction

−KL(q(z)‖p(z))︸ ︷︷ ︸
IAE Regularization

− Hdata(x)︸ ︷︷ ︸
Entropy of Data

(6)

= −KL(q(x, z)‖r(x, z))︸ ︷︷ ︸
IAE Reconstruction

−KL(q(z)‖p(z))︸ ︷︷ ︸
IAE Regularization

− Hdata(x)︸ ︷︷ ︸
Entropy of Data

(7)

See Appendix A for the proof. The standard formulation of the VAE (Equation 4) only enables us to
learn factorized Gaussian posterior and conditional likelihood distributions. The AAE (Makhzani
et al., 2015) (Equation 5) and the AVB (Mescheder et al., 2017) enable us to learn implicit posterior
distributions, but their conditional likelihood distribution is still a factorized Gaussian distribution.
However, the IAE enables us to learn implicit distributions for both the posterior and the conditional
likelihood distributions. Similar to VAEs and AAEs, the IAE (Equation 6) has a reconstruction
cost function and a regularization cost function, but trains each of them with a GAN. The IAE
reconstruction cost is Ez∼q(z)

[
KL(q(x|z)‖p(x|z))

]
. The standard VAE uses a factorized decoder,

which has a very limited stochasticity. Thus, the standard VAE performs almost deterministic
reconstructions by learning to invert the deterministic mapping of the encoder. The IAE, however,
uses a powerful implicit decoder to perform stochastic reconstructions, by learning to match the
expressive decoder distribution p(x|z) to the inverse encoder distribution q(x|z). We note that there
are other variants of VAEs that can also learn expressive decoder distributions by using autoregressive
neural networks. We will discuss these models later in this section. Equation 8 contrasts the
reconstruction cost of standard autoencoders that is used in VAEs/AAEs, with the reconstruction cost
of IAEs.

Ex∼pdata(x)

[
Eq(z|x)[− log p(x|z)]

]
︸ ︷︷ ︸

AE Reconstruction

= Ez∼q(z)

[
KL(q(x|z)‖p(x|z))

]
︸ ︷︷ ︸

IAE Reconstruction

+ H(x|z)︸ ︷︷ ︸
Cond. Entropy

(8)

We can see from Equation 8 that similar to IAEs, the reconstruction cost of the autoencoder encourages
matching the decoder distribution to the inverse encoder distribution. But in autoencoders, the cost
function also encourages minimizing the conditional entropy H(x|z), or maximizing the mutual
information I(x, z). Maximizing the mutual information in autoencoders enforces the latent code to
capture both the global and local information. In contrast, in IAEs, the reconstruction cost does not
penalize the encoder for losing the local information, as long as the decoder can invert the encoder
distribution. In order to minimize the reconstruction cost function of the IAE, we re-write it in the form
of a distribution matching cost function between the joint data distribution and the joint reconstruction
distribution KL(q(x, z)‖r(x, z)) (Equation 7). This KL divergence is approximately minimized with
the reconstruction GAN. The IAE has also a regularization cost function KL(q(z)‖p(z)) that matches
the aggregated posterior distribution with a fixed prior distribution. This is the same regularization
cost function used in AAEs (Equation 5), and is approximately minimized with the regularization
GAN. Note that the last term in Equation 7 is the entropy of the data distribution that is fixed.

Training Process. We now describe the training process. We pass a given point x ∼ pdata(x) through
the encoder and the decoder to obtain ẑ ∼ q(z) and x̂ ∼ r(x). We now train the discriminator of the
reconstruction GAN to identify the positive example (x, ẑ) from the negative example (x̂, ẑ). Suppose
this discriminator function at its optimality is D∗(x, z). We try to confuse this discriminator by
backpropagating through the negative example (x̂, ẑ) 1 and updating the encoder and decoder weights.

1We could also back-propagate through both the positive example (x, ẑ) and the negative example (x̂, ẑ)
to optimize the reconstruction cost. We observed that in the deterministic decoder case, it does not make any
difference in the performance; but in the stochastic decoder case, it results in learning less useful representations,
since it enables the encoder to change its weights freely in a way that is not compatible with the decoder.
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More specifically, the generative loss of the reconstruction GAN is T ∗(x, z) = − logD∗(x, z),
which defines the reconstruction cost of the IAE. We use the re-parametrization trick to update the
encoder and decoder weights by computing the unbiased Monte Carlo estimate of the gradient of the
reconstruction cost T ∗(x, z) with respect to (φ,θ) as follows:

∇(φ,θ)Er(x,z)

[
T ∗(x, z)

]
= ∇(φ,θ)Eqφ(z)pθ(x|z)

[
T ∗(x, z)

]
(9)

= Ex∼pdata(x)EεEn

[
∇(φ,θ)T

∗(gθ(fφ(x, ε),n), fφ(x, ε))
]

(10)

We call this process the adversarial reconstruction. Similarly, we train the discriminator of the
regularization GAN to identify the positive example z ∼ p(z) from the negative example ẑ ∼ q(z).
This discriminator now defines the regularization cost function, which can provide us with a gradient
to update only the encoder weights. We call this process the adversarial regularization. Optimizing
the adversarial regularization and reconstruction cost functions encourages p(x|z) = q(x|z) and
p(z) = q(z), which results in the model distribution capturing the data distribution p(x) = pdata(x).

We note that in this work, we use the original formulation of GANs (Goodfellow et al., 2014) to
match the distributions. As a result, the gradient that we obtain from the adversarial training, only
approximately follows the gradient of the variational bound on the data log-likelihood. However,
as shown in (Nowozin et al., 2016), the objective of the GAN can be modified to optimize any
f -divergence including the KL divergence.

Bits-Back Interpretation of the IAE Objective. In Appendix B, we describe an information theo-
retic interpretation of the ELBO of IAEs (Equation 7) using the Bits-Back coding argument (Hinton
& Van Camp, 1993; Chen et al., 2016b; Graves et al., 2018).

Global vs. Local Decomposition of Information in IAEs. In IAEs, the dimension of the latent
vector along with its prior distribution defines the capacity of the latent code, and the dimension of the
latent noise vector along with its distribution defines the capacity of the implicit decoder. By adjusting
these dimensions and distributions, we can have a full control over the decomposition of information
between the latent code and the implicit decoder. In one extreme case, by removing the noise vector,
we can have a fully deterministic autoencoder that captures all the information by its latent code. In
the other extreme case, we can remove the global latent code and have an unconditional implicit
distribution that can capture the whole data distribution by itself. The global vs. local decomposition
of information in IAEs is further discussed in Appendix C from an information theoretic perspective.

In IAEs, we can choose to only optimize the reconstruction cost or both the reconstruction and
the regularization costs. In the following, we discuss four special cases of the IAE and establish
connections with the related methods.

1. Deterministic Decoder without Regularization Cost

In this case, we remove the noise vectors from the IAE, which makes both q(z|x) and p(x|z)

deterministic. We then only optimize the reconstruction cost Ez∼q(z)

[
KL(q(x|z)‖p(x|z))

]
. As a

result, similar to the standard autoencoder, the deterministic decoder p(x|z) learns to match to the
inverse deterministic encoder q(x|z), and thus the IAE learns to perform exact and deterministic
reconstruction of the original image, while the latent code is learned in an unconstrained fashion. In
other words, in standard autoencoders, the Euclidean cost explicitly encourages x̂ to reconstruct x, and
in case of uncertainty, performs mode averaging by blurring the reconstructions; however, in IAEs,
the adversarial reconstruction implicitly encourages x̂ to reconstruct x, and in case of uncertainty,
captures this uncertainty by the local noise vector (Case 3), which results in sharp reconstructions.

2. Deterministic Decoder with Regularization Cost

In the previous case, the latent code was learned in an unconstrained fashion. We now keep the decoder
deterministic and add the regularization term which matches the aggregated posterior distribution to
a fixed prior distribution. In this case, the IAE reduces to the AAE with the difference that the IAE
performs adversarial reconstruction rather than Euclidean reconstruction. This case of the IAE defines
a valid generative model where the latent code captures all the information of the data distribution.
In order to sample from this model, we first sample from the imposed prior p(z) and then pass this
sample through the deterministic decoder.
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3. Stochastic Decoder without Regularization Cost

In this case of the IAE, we only optimize KL(q(x, z)‖r(x, z)), while p(x|z) is a stochastic implicit
distribution. Matching the joint distribution q(x, z) to r(x, z) ensures that their marginal distributions
would also match; that is, the aggregated reconstruction distribution r(x) matches the data distribution
pdata(x). This model by itself defines a valid generative model in which both the prior, which in this
case is q(z), and the conditional likelihood p(x|z) are learned at the same time. In order to sample
from this generative model, we initially sample from q(z) by first sampling a point x ∼ pdata(x) and
then passing it through the encoder to obtain the latent code ẑ ∼ q(z). Then we sample from the
implicit decoder distribution conditioned on ẑ to obtain the stochastic reconstruction x̂ ∼ r(x). If
the decoder is deterministic (Case 1), the reconstruction x̂ would be the same as the original image
x. But if the decoder is stochastic, the global latent code only captures the abstract and high-level
information of the image, and the stochastic reconstruction x̂ only shares this high-level information
with the original x. This case of the IAE is related to the PixelCNN autoencoder (van den Oord
et al., 2016), where the decoder is parametrized by an autoregressive neural network which can learn
expressive distributions, while the latent code is learned in an unconstrained fashion.

4. Stochastic Decoder with Regularization Cost

In the previous case, we showed that even without the regularization term, r(x) will capture the data
distribution. But the main drawback of the previous case is that its prior q(z) is not a parametric
distribution that can be easily sampled from. One way to fix this problem is to fit a parametric
prior p(z) to q(z) once the training is complete, and then use p(z) to sample from the model.
However, a better solution would be to consider a fixed and pre-defined prior p(z), and impose it on
q(z) during the training process. Indeed, this is the regularization term that the ELBO suggests in
Equation 7. By adding the adversarial regularization cost function to match q(z) to p(z), we ensure
that r(x) = pdata(x) = p(x). Now sampling from this model only requires first sampling from the
pre-defined prior z ∼ p(z), and then sampling from the conditional implicit distribution to obtain
x̂ ∼ r(x). In this case, the information of data distribution is captured by both the fixed prior and the
learned conditional likelihood distribution. Similar to the previous case, the latent code captures the
high-level and abstract information, while the remaining local and low-level information is captured by
the implicit decoder. We will empirically show this decomposition of information on different datasets
in Section 2.1.1 and Section 2.1.2. This decomposition of information has also been studied in other
works such as PixelVAE (Gulrajani et al., 2016), variational lossy autoencoders (Chen et al., 2016b),
PixelGAN autoencoders (Makhzani & Frey, 2017) and variational Seq2Seq autoencoders (Bowman
et al., 2015). However, the main drawback of these methods is that they all use autoregressive
decoders which are not parallelizable, and are much more computationally expensive to scale up than
the implicit decoders. Another advantage of implicit decoders to autoregressive decoders is that in
implicit decoders, the local statistics is captured by the local code representation; but in autoregressive
decoders, we do not learn a vector representation for the local statistics.

Connections with ALI and BiGAN. In ALI (Dumoulin et al., 2016) and BiGAN (Donahue et al.,
2016) models, there are two separate networks that define the joint data distribution q(x, z) and the
joint model distribution p(x, z). The parameters of these networks are trained using the gradient that
comes from a single GAN that tries to match these two distributions. However, in the IAE, similar to
VAEs or AAEs, the encoder and decoder are stacked on top of each other and trained jointly. So the
gradient that the encoder receives comes through the decoder and the conditioning vector. In other
words, in the ALI model, the input to the conditional likelihood is the samples of the prior distribution,
whereas in the IAE, the input to the conditional likelihood is the samples of the variational posterior
distribution, while the prior distribution is separately imposed on the aggregated posterior distribution
by the regularization GAN. This makes the training dynamic of IAEs similar to that of autoencoders,
which encourages better reconstructions. Recently, many variants of ALI have been proposed for
improving its reconstruction performance. For example, the HALI (Belghazi et al., 2018) uses a
Markovian generator to achieve better reconstructions, and ALICE (Li et al., 2017) augments the
ALI’s cost by a joint distribution matching cost function between (x, x̂) and (x,x), which is different
from our reconstruction cost.
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(a) (b) (c) (d)

Figure 2: MNIST dataset. (a) Original images. (b) Deterministic reconstructions with 20D global
vector. (c) Stochastic reconstructions with 10D global and 100D local vector. (d) Stochastic
reconstructions with 5D global and 100D local vector.

2.1 EXPERIMENTS OF IMPLICIT AUTOENCODERS

2.1.1 GLOBAL VS. LOCAL DECOMPOSITION OF INFORMATION

In this section, we show that the IAE can learn a global vs. local decomposition of information
between the latent code and the implicit decoder. We use the Gaussian distribution for both the global
and local codes, and show that by adjusting the dimensions of the global and local codes, we can
have a full control over the decomposition of information.

Figure 2 shows the performance of the IAE on the MNIST dataset. By removing the local code and
using only a global code of size 20D (Figure 2b), the IAE becomes a deterministic autoencoder. In
this case, the global code of the IAE captures all the information of the data distribution and the
IAE achieves almost perfect reconstructions. By decreasing the global code size to 10D and using a
100D local code (Figure 2c), the global code retains the global information of the digits such as the
label information, while the local code captures small variations in the style of the digits. By using a
smaller global code of size 5D (Figure 2d), the encoder loses more local information and thus the
global code captures more abstract information. For example, we can see from Figure 2d that the
encoder maps visually similar digits such as {3, 5, 8} or {4, 9} to the same global code, while the
implicit decoder learns to invert this mapping and generate stochastic reconstructions that share the

(a) (b) (c)

Figure 3: SVHN dataset. (a) Original images. (b)
Deterministic reconstructions with 150D global
vector. (c) Stochastic reconstructions with 75D
global and 1000D local vector.

(a) (b) (c)

Figure 4: CelebA dataset. (a) Original images. (b)
Deterministic reconstructions with 150D global
vector. (c) Stochastic reconstructions with 50D
global and 1000D local vector.
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(a) Original data (b) GAN (c) IAE

Figure 5: Learning the mixture of Gaussian distribution by the standard GAN and the IAE.

same high-level information with the original images. Note that if we completely remove the global
code, the local code captures all the information, similar to the standard unconditional GAN.

Figure 3 shows the performance of the IAE on the SVHN dataset. When using a 150D global
code with no local code (Figure 3b), similar to the standard autoencoder, the IAE captures all the
information by its global code and can achieve almost perfect reconstructions. However, when using a
75D global code along with a 1000D local code (Figure 3c), the global code of the IAE only captures
the middle digit information as the global information, and loses the left and right digit information.
At the same time, the implicit decoder learns to invert the encoder distribution by keeping the middle
digit and generating synthetic left and right SVHN digits with the same style of the middle digit.

Figure 4 shows the performance of the IAE on the CelebA dataset. When using a 150D global code
with no local code (Figure 4b), the IAE achieves almost perfect reconstructions. But when using a
50D global code along with a 1000D local code (Figure 4c), the global code of the IAE only retains
the global information of the face such as the general shape of the face, while the local code captures
the local attributes of the face such as eyeglasses, mustache or smile.

2.1.2 CLUSTERING AND SEMI-SUPERVISED LEARNING

In IAEs, by using a categorical global code along with a Gaussian local code, we can disentangle the
discrete and continuous factors of variation, and perform clustering and semi-supervised learning.

Clustering. In order to perform clustering with IAEs, we change the architecture of Figure 1 by using
a softmax function in the last layer of the encoder, as a continuous relaxation of the categorical global
code. The dimension of the categorical code is the number of categories that we wish the data to be
clustered into. The regularization GAN is trained directly on the continuous output probabilities of
the softmax simplex, and imposes the categorical distribution on the aggregated posterior distribution.
This adversarial regularization imposes two constraints on the encoder output. The first constraint is
that the encoder has to make confident decisions about the cluster assignments. The second constraint
is that the encoder must distribute the points evenly across the clusters. As a result, the global code
only captures the discrete underlying factors of variation such as class labels, while the rest of the
structure of the image is separately captured by the Gaussian local code of the implicit decoder.

Figure 5 shows the samples of the standard GAN and the IAE trained on the mixture of Gaussian
data. Figure 5b shows the samples of the GAN, which takes a 7D categorical and a 10D Gaussian
noise vectors as the input. Each sample is colored based on the one-hot noise vector that it was
generated from. We can see that the GAN has failed to associate the categorical noise vector to
different mixture components, and generate the whole data solely by using its Gaussian noise vector.
Ignoring the categorical noise forces the GAN to do a continuous interpolation between different
mixture components, which results in reducing the quality of samples. Figure 5c shows the samples
of the IAE whose implicit decoder architecture is the same as the GAN. The IAE has a 7D categorical
global code (inferred by the encoder) and a 10D Gaussian noise vector. In this case, the inference
network of the IAE learns to cluster the data in an unsupervised fashion, while its generative path
learns to condition on the inferred cluster labels and generate each mixture component using the
stochasticity of the Gaussian noise vector. This example highlights the importance of using discrete
latent variables for improving generative models. A related work is the InfoGAN (Chen et al., 2016a),
which uses a reconstruction cost in the code space to prevent the GAN from ignoring the categorical
noise vector. The relationship of InfoGANs with IAEs is discussed in details in Section 3.
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Figure 6: Disentangling the content and style of the MNIST digits in an unsupervised fashion with
implicit autoencoders. Each column shows samples of the model from one of the learned clusters.
The style (local noise vector) is drawn from a Gaussian distribution and held fixed across each row.

Figure 6 shows the clustering performance of the IAE on the MNIST dataset. The IAE has a 30D
categorical global latent code and a 10D Gaussian local code. Each column corresponds to the
conditional samples from one of the learned clusters (only 20 are shown). The local code is sampled
from the Gaussian distribution and held fixed across each row. We can see that the discrete global
latent code of the network has learned discrete factors of variation such as the digit identities, while
the writing style information is separately captured by the continuous Gaussian noise vector. This
network obtains about 5% error rate in classifying digits in an unsupervised fashion, just by matching
each cluster to a digit type.

Semi-Supervised Learning. The IAE can be used for semi-supervised classification. In order
to incorporate the label information, we set the number of clusters to be the same as the number
of class labels and additionally train the encoder weights on the labeled mini-batches to minimize
the cross-entropy cost. On the MNIST dataset with 100 labels, the IAE achieves the error rate of
1.40%. In comparison, the AAE achieves 1.90%, and the Improved-GAN (Salimans et al., 2016)
achieves 0.93%. On the SVHN dataset with 1000 labels, the IAE achieves the error rate of 9.80%. In
comparison, the AAE achieves 17.70%, and the Improved-GAN achieves 8.11%.

3 FLIPPED IMPLICIT AUTOENCODERS

In this section, we describe the “Flipped Implicit Autoencoder” (FIAE), which is a generative model
that is very closely related to IAEs. Let z be the latent code that comes from the prior distribution p(z).
The encoder of the FIAE (Figure 7) parametrizes an implicit distribution that uses the noise vector n
to define the conditional likelihood distribution p(x|z). The decoder of the FIAE parametrizes an
implicit distribution that uses the noise vector ε to define the variational posterior distribution q(z|x).
In addition to the distributions defined in Section 2, we also define the joint latent reconstruction
distribution s(x, z), and the aggregated latent reconstruction distribution s(z) as follows:

s(x, z) = p(x)q(z|x) ẑ ∼ s(z) =

∫
x

s(x, z)dx (11)

The objective of the standard variational inference is minimizing KL(q(x, z)‖p(x, z)), which is
the variational upper-bound on KL(pdata(x)‖p(x)). The objective of FIAEs is the reverse KL
divergence KL(p(x, z)‖q(x, z)), which is the variational upper-bound on KL(p(x)‖pdata(x)). The
FIAE optimizes this variational bound by splitting it into a reconstruction term and a regularization
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Figure 7: Architecture and graphical model of flipped implicit autoencoders.

term as follow:

KL(p(x)‖pdata(x)) ≤ KL(p(x, z)‖q(x, z))︸ ︷︷ ︸
Variational Bound

(12)

= KL(p(x)‖pdata(x))︸ ︷︷ ︸
InfoGAN Regularization

+Ez∼p(z)

[
Ep(x|z)[− log q(z|x)]

]
︸ ︷︷ ︸

InfoGAN Reconstruction

− H(z|x)︸ ︷︷ ︸
Cond. Entropy

(13)

= KL(p(x)‖pdata(x))︸ ︷︷ ︸
FIAE Regularization

+Ex∼p(x)

[
KL(p(z|x)‖q(z|x))

]
︸ ︷︷ ︸

FIAE Reconstruction

(14)

= KL(p(x)‖pdata(x))︸ ︷︷ ︸
FIAE Regularization

+ KL(p(x, z)‖s(x, z))︸ ︷︷ ︸
FIAE Reconstruction

(15)

where the conditional entropyH(z|x) is defined under the joint model distribution p(x, z). Similar to
the IAE, the FIAE has a regularization term and a reconstruction term (Equation 14 and Equation 15).
The regularization cost uses a GAN to train the encoder (conditional likelihood) such that the model
distribution p(x) matches the data distribution pdata(x). The reconstruction cost uses a GAN to train
both the encoder (conditional likelihood) and the decoder (variational posterior) such that the joint
model distribution p(x, z) matches the joint latent reconstruction distribution s(x, z).

Connections with ALI and BiGAN. In ALI (Dumoulin et al., 2016) and BiGAN (Donahue et al.,
2016) models, the input to the recognition network is the samples of the real data pdata(x); however,
in FIAEs, the recognition network only gets to see the synthetic samples that come from the simulated
data p(x), while at the same time, the regularization cost ensures that the simulated data distribution
is close the real data distribution. Training the recognition network on the simulated data in FIAEs is
in spirit similar to the “sleep” phase of the wake-sleep algorithm (Hinton et al., 1995), during which
the recognition network is trained on the samples that the network “dreams” up. One of the flaws
of training the recognition network on the simulated data is that early in the training, the simulated
data do not look like the real data, and thus the recognition path learns to invert the generative path
in part of the data space that is far from the real data distribution. As the result, the reconstruction
GAN might not be able to keep up with the moving simulated data distribution and get stuck in a
local optimum. However, in our experiments with FIAEs, we did not find this to be a major problem.

Connections with InfoGAN. InfoGANs (Chen et al., 2016a), similar to FIAEs, train the variational
posterior network on the simulated data; however, as shown in Equation 13, InfoGANs use an explicit
reconstruction cost function (e.g., Euclidean cost) on the code space for learning the variational
posterior. In order to compare FIAEs and InfoGANs, we train them on a toy dataset with four
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(a) True Posterior (b) Variational Posterior

Figure 8: InfoGAN on a toy dataset. (a) True
posterior. (b) Factorized Gaussian variational pos-
terior.

(a) True Posterior (b) Variational Posterior

Figure 9: Flipped implicit autoencoder on a toy
dataset. (a) True posterior. (b) Implicit variational
posterior.

Figure 10: Reconstructions of the flipped implicit autoencoder on the MNIST dataset. Top row
shows the MNIST test images, and bottom row shows the deterministic reconstructions.

data-points and use a 2D Gaussian prior (Figure 8 and Figure 9). Each colored cluster corresponds to
the posterior distribution of one data-point. In InfoGANs, using the Euclidean cost to reconstruct the
code corresponds to learning a factorized Gaussian variational posterior distribution (Figure 8b)2.
This constraint on the variational posterior restricts the family of the conditional likelihoods that
the model can learn by enforcing the generative path to learn a conditional likelihood whose true
posterior could fit to the factorized Gaussian approximation of the posterior. For example, we can see
in Figure 8a that the model has learned a conditional likelihood whose true posterior is axis-aligned,
so that it could better match the factorized Gaussian variational posterior (Figure 8b). In contrast, the
FIAE can learn an arbitrarily expressive variational posterior distribution (Figure 9b), which enables
the generative path to learn a more expressive conditional likelihood and true posterior (Figure 9a).

One of the main flaws of optimizing the reverse KL divergence is that the variational posterior will
have the mode-covering behavior rather than the mode-picking behavior. For example, we can see
from Figure 8b that the Gaussian posteriors of different data-points in InfoGAN have some overlap;
but this is less of a problem in the FIAE (Figure 9b), as it can learn a more expressive q(z|x). This
mode-averaging behavior of the posterior can be also observed in the wake-sleep algorithm, in which
during the sleep phase, the recognition network is trained using the reverse KL divergence objective.

The FIAE objective is not only an upper-bound on KL(p(x)‖pdata(x)), but is also an upper-bound
on KL(p(z)‖q(z)) and KL(p(z|x)‖q(z|x)). As a result, the FIAE matches the variational posterior
q(z|x) to the true posterior p(z|x), and also matches the aggregated posterior q(z) to the prior p(z).
For example, we can see in Figure 9b that q(z) is very close to the Gaussian prior. However, the
InfoGAN objective is theoretically not an upper-bound on KL(p(x)‖pdata(x)), KL(p(z)‖q(z)) or
KL(p(z|x)‖q(z|x)). As a result, in InfoGANs, the variational posterior q(z|x) need not be close to
the true posterior p(z|x), or the aggregated posterior q(z) does not have to match the prior p(z).

3.1 EXPERIMENTS OF FLIPPED IMPLICIT AUTOENCODERS

Reconstruction. In this section, we show that the variational posterior distribution of the FIAE can
invert its conditional likelihood function by showing that the network can perform reconstructions of
the images. We make both the conditional likelihood and the variational posterior deterministic by
removing both noise vectors n and ε. Figure 10 shows the performance of the FIAE with a code size
of 15 on the test images of the MNIST dataset. The reconstructions are obtained by first passing the
image through the recognition network to infer its latent code, and then using the inferred latent code
at the input of the conditional likelihood to generate the reconstructed image.

2In Figure 8b, we have trained both the mean and the standard deviation of the Gaussian posteriors.
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Clustering. Similar to IAEs, we can use FIAEs for clustering. We perform an experiment on the
MNIST dataset by choosing a discrete categorical latent code z of size 10, which captures the digit
identity; and a continuous Gaussian noise vector n of size 10, which captures the style of the digit.
The variational posterior distribution q(z|x) is also parametrized by an implicit distribution with a
Gaussian noise vector ε of size 20, and performs inference only over the digit identity z. Once the
network is trained, we can use the variational posterior to cluster the test images of the MNIST dataset.
This network achieves the error rate of about 2% in classifying digits in an unsupervised fashion by
matching each categorical code to a digit type. We observed that when there is uncertainty in the
digit identity, different draws of the noise vector ε results in different one-hot vectors at the output of
the recognition network, showing that the implicit decoder can efficiently capture the uncertainty.

4 CONCLUSION

In this paper, we proposed the implicit autoencoder, which is a generative autoencoder that uses
implicit distributions to learn expressive variational posterior and conditional likelihood distributions.
We showed that in IAEs, the information of the data distribution is decomposed between the prior
and the conditional likelihood. When using a low dimensional Gaussian distribution for the global
code, we showed that the IAE can disentangle high-level and abstract information from the low-level
and local statistics. We also showed that by using a categorical latent code, we can learn discrete
factors of variation and perform clustering and semi-supervised learning.
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APPENDIX A DERIVATION OF THE ELBO OF IMPLICIT AUTOENCODERS

Ex∼pd(x)[log p(x)] ≥ Ex∼pd(x)

[
Eq(z|x) log

p(x, z)

q(z|x)

]
(16)

=

∫
q(x, z) log

p(x, z)

q(z|x)
dxdz (17)

= −
∫

q(x, z) log
q(z|x)
p(x|z)

dxdz +

∫
q(z) log p(z)dz (18)

= −
∫

q(x, z) log
q(z|x)
p(x|z)

dxdz−
∫

pd(x) log pd(x)dx +

∫
q(z) log p(z)dz +

∫
pd(x) log pd(x)dx

(19)

= −
∫

q(x, z) log
pd(x)q(z|x)

p(x|z)
dxdz +

∫
q(z) log p(z)dz−Hdata(x) (20)

= −
∫

q(x, z) log
q(x, z)

p(x|z)
dxdz +

∫
q(z) log q(z)dz−

∫
q(z) log

q(z)

p(z)
dz−Hdata(x) (21)

= −
∫

q(x, z) log
q(x, z)

q(z)p(x|z)
dxdz− KL(q(z)‖p(z))−Hdata(x) (22)

= −KL(q(x, z)‖r(x, z))− KL(q(z)‖p(z))−Hdata(x) (23)

APPENDIX B BITS-BACK INTERPRETATION OF THE IAE OBJECTIVE

In this section, we describe an information theoretic interpretation of the ELBO of IAEs (Equation 7)
using the Bits-Back coding argument (Hinton & Van Camp, 1993; Chen et al., 2016b; Graves
et al., 2018). Maximizing the variational lower bound is equivalent to minimizing the expected
description length of a source code for the data distribution pdata(x) when the code is designed
under the model distribution p(x). In order to transmit x, the sender uses a two-part code. It
first transmits z, which ideally would only require H(z) bits; however, since the code is designed
under p(z), the sender has to pay the penalty of KL(q(z)‖p(z)) extra bits to compensate for the
mismatch between q(z) and p(z). After decoding z, the receiver now has to resolve the uncertainty
of q(x|z) in order to reconstruct x, which ideally requires the sender to transmit the second code
of the lengthH(x|z) bits. However, since the code is designed under p(x|z), the sender has to pay
the penalty of Ez∼q(z)

[
KL(q(x|z)‖p(x|z))

]
extra bits on average to compensate for the fact that the

conditional decoder p(x|z) has not perfectly captured the inverse encoder distribution q(x|z); i.e.,
the autoencoder has failed to achieve perfect stochastic reconstruction. But for a given x, the sender
could use the stochasticity of q(z|x) to encode other information. Averaged over the data distribution,
this would get the senderH(z|x) “bits back” that needs to be subtracted in order to find the true cost
for transmitting x:

`CIAE = H(z) + KL(q(z)‖p(z)) +H(x|z) + KL(q(x, z)‖r(x, z))−H(z|x) (24)
= Hdata(x) + KL(q(x, z)‖r(x, z)) + KL(q(z)‖p(z)) (25)

From Equation 25, we can see that the IAE only minimizes the extra number of bits required for
transmitting x, while the VAE minimizes the total number of bits required for the transmission.

Continuous Variables. The Bits-Back argument is also applicable to continuous random variables.
Suppose x and z are real-valued random variables. Let h(x) and h(z) be the differential entropies of
x and z; andH(x) andH(z) be the discrete entropies of the quantized versions of x and z, with the
quantization interval of ∆x and ∆z. We have

H(x)→ h(x)− log ∆x, as ∆x→ 0 (26)
H(z)→ h(z)− log ∆z, as ∆z→ 0 (27)

The sender first transmits the real-valued random variable z, which requires transmission ofH(z) =
h(z) − log ∆z bits, as well as KL(q(z)‖p(z)) extra bits. As ∆z → 0, we will have H(z) → ∞,
which, as expected, implies that the sender would need infinite number of bits to source code and send
the real-valued random variable z. However, as we shall see, we are going to get most of these bits
back from the receiver at the end. After the first message, the sender then sends the second message,
which requires transmission of h(x|z)− log ∆x bits, as well as Ez∼q(z)

[
KL(q(x|z)‖p(x|z))

]
extra
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bits. Once the receiver decodes z, and form that decodes x, it can decode a secondary message of
the average lengthH(z|x) = h(z|x)− log ∆z, which needs to be subtracted in order to find the true
cost for transmitting x:

`CIAE = h(z)− log ∆z + KL(q(z)‖p(z)) + h(x|z)− log ∆x + KL(q(x, z)‖r(x, z))− (h(z|x)− log ∆z)

= h(x)− log ∆x + KL(q(x, z)‖r(x, z)) + KL(q(z)‖p(z))

= Hdata(x) + KL(q(x, z)‖r(x, z)) + KL(q(z)‖p(z)) (28)

From Equation 28, we can interpret the IAE cost as the extra number of bits required for the
transmission of x.

APPENDIX C GLOBAL VS. LOCAL DECOMPOSITION OF INFORMATION IN
IMPLICIT AUTOENCODERS

In IAEs, the global code (prior) captures the global information of data, while the remaining local
information is captured by the local noise vector (conditional likelihood). In this section, we describe
the global vs. local decomposition of information from an information theoretic perspective. In
order to transmit x, the sender first transmits z and then transmits the residual bits required for
reconstructing x, using a source code that is designed based on p(x, z). If p(z) and p(x|z) are
powerful enough, in theory, they can capture any q(x, z), and thus regardless of the decomposition
of information, the sender would only need to send Hdata(x) bits. In this case, the ELBO does not
prefer one decomposition of information to another. But if the capacities of p(z) and p(x|z) are
limited, the sender will have to send extra bits due to the distribution mismatch, resulting in the
regularization and reconstruction errors. But now different decompositions of information will result
in different numbers of extra bits. So the sender has to decompose the information in a way that is
compatible with the source codes that are designed based on p(z) and p(x|z). The prior p(z) that
we use in this work is a low-dimensional Gaussian or categorical distribution. So the regularization
cost encourages the sender to encode low-dimensional or simple concepts in z that is consistent with
p(z); otherwise, the sender would need to pay a large cost for KL(q(z)‖p(z)). The choice of the
information encoded in z would also affect the extra number of bits of Ez∼q(z)

[
KL(q(x|z)‖p(x|z))

]
,

which is the reconstruction cost. This is because the conditional decoder p(x|z) with its limited
capacity is supposed to capture the inverse encoder distribution q(x|z). So the sender must encode
the kind of information in z that after being observed, can maximally remove the stochasticity
of q(x|z) so as to lower the burden on p(x|z) for matching to q(x|z). So the reconstruction cost
encourages learning the kind of concepts that can remove as much uncertainty as possible from the
data distribution. By balancing the regularization and reconstruction costs, the latent code learns
global concepts which are low-dimensional or simple concepts that can maximally remove uncertainty
from data. Examples of global concepts are digit identities in the MNIST dataset, objects in natural
images or topics in documents.

APPENDIX D IMPLEMENTATION DETAILS

D.1 GLOBAL CODE CONDITIONING

There are two methods to implement how the reconstruction GAN conditions on the global code.

Location-Dependent Conditioning. Suppose the size of the first convolutional layer of the discrim-
inator is (batch, width, height, channels). We use a one layer neural network with
1000 ReLU hidden units to transform the global code of size (batch, global_code_size)
to a spatial tensor of size (batch, width, height, 1). We then broadcast this tensor across
the channel dimension to get a tensor of size (batch, width, height, channels), and
then add it to the first layer of the discriminator as an adaptive bias. In this method, the latent vector
has spatial and location-dependent information within the feature map. This is the method that we
used in deterministic and stochastic reconstruction experiments.

Location-Invariant Conditioning. Suppose the size of the first convolutional layer of the discrimi-
nator is (batch, width, height, channels). We use a linear mapping to transform the
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global code of size (batch, global_code_size) to a tensor of size (batch, channels).
We then broadcast this tensor across the width and height dimensions, and then add it to the first layer
of the discriminator as an adaptive bias. In this method, the global code is encouraged to learn the
global information that is location-invariant such as the class label information. We used this method
in all the clustering and semi-supervised learning experiments.

D.2 NETWORK ARCHITECTURES FOR DETERMINISTIC AND STOCHASTIC RECONSTRUCTIONS

The regularization discriminator in all the experiments is a two-layer neural network, where each
layer has 2000 hidden units with the ReLU activation function. The architecture of the encoder, the
decoder and the reconstruction discriminator for each dataset is as follows.

MNIST:

Encoder Decoder Disc. Reconstruction GAN

x ∈ R28×28 ẑ ∈ R20 and n ∈ R100 (x, ẑ) or (x̂, ẑ)
FC. 2000 ReLU. FC. 1024 ReLU. BN 4× 4 Conv. 64 ReLU. Stride 2. BN
FC. 2000 ReLU. FC. 128× 7× 7 ReLU. BN 4× 4 Conv. 128 ReLU. Stride 2. BN
FC. 20 Linear. BN 4× 4 UpConv. 64 ReLU. Stride 2. BN FC. 1024 ReLU. BN

4× 4 UpConv. 1 Sigmoid. Stride 2. FC. 1 Linear

SVHN:

Encoder Decoder Disc. Reconstruction GAN

x ∈ R32×32×3 ẑ ∈ R75 and n ∈ R1000 (x, ẑ) or (x̂, ẑ)
4× 4 Conv. 64 ReLU. Stride 2. BN FC. 256× 4× 4 ReLU. BN 4× 4 Conv. 64 ReLU. Stride 2. BN
4× 4 Conv. 128 ReLU. Stride 2. BN 4× 4 UpConv. 128 ReLU. Stride 2. BN 4× 4 Conv. 128 ReLU. Stride 2. BN
4× 4 Conv. 256 ReLU. Stride 2. BN 4× 4 UpConv. 64 ReLU. Stride 2. BN 4× 4 Conv. 256 ReLU. Stride 2. BN
FC. 75 Linear. BN 4× 4 UpConv. 3 Tanh. Stride 2. FC. 1 Linear

CelebA:

Encoder Decoder Disc. Reconstruction GAN

x ∈ R48×48×3 ẑ ∈ R50 and n ∈ R1000 (x, ẑ) or (x̂, ẑ)
6× 6 Conv. 128 ReLU. Stride 2. BN FC. 512× 6× 6 ReLU. BN 6× 6 Conv. 128 ReLU. Stride 2. BN
6× 6 Conv. 256 ReLU. Stride 2. BN 6× 6 UpConv. 256 ReLU. Stride 2. BN 6× 6 Conv. 256 ReLU. Stride 2. BN
6× 6 Conv. 512 ReLU. Stride 2. BN 6× 6 UpConv. 128 ReLU. Stride 2. BN 6× 6 Conv. 512 ReLU. Stride 2. BN
FC. 50 Linear. BN 6× 6 UpConv. 3 Tanh. Stride 2. FC. 1 Linear
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