
Under review as a conference paper at ICLR 2019

SEQUENCE MODELLING WITH AUTO-ADDRESSING
AND RECURRENT MEMORY INTEGRATING NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Processing sequential data with long term dependencies and learn complex transi-
tions are two major challenges in many deep learning applications. In this paper,
we introduce a novel architecture, the Auto-addressing and Recurrent Memory
Integrating Network (ARMIN) to address these issues. The ARMIN explicitly
stores previous hidden states and recurrently integrate useful past states into cur-
rent time-step by an efficient memory addressing mechanism. Compared to ex-
isting memory networks, the ARMIN is more light-weight and inference-time ef-
ficient. Our network can be trained on small slices of long sequential data, and
thus, can boost its training speed. Experiments on various tasks demonstrate the
efficiency of the ARMIN architecture. Codes and models will be available.

1 INTRODUCTION

Recurrent neural networks, such as the Long Short-Term Memory (LSTM) (Hochreiter & Schmid-
huber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) have shown promising performance
for processing sequential data. However, it’s known that RNNs suffer from gradient vanishing prob-
lem. Moreover, as pointed out by Rae et al. (2016), the number of parameters grows proportionally
to the square of the size of the hidden units, which carry the historical information. Recent memory-
based approaches exhibit potential to address these issues, by decoupling memory capacity from
model parameters, and backpropagating the gradients through the memory.

Neural Turing Machine (NTM) (Graves et al., 2014) first emerged as a recurrent model that incor-
porates external memory abilities. NTM maintains a memory matrix, and at every time-step, the
network reads and writes (with erasing) to the memory matrix using certain soft-attentional mech-
anism, controlled by an LSTM that produces read and write vectors. NTM and its successor, the
Differentiable Neural Computer(Graves et al., 2016), have shown success on some algorithmic tasks
such as copying, priority sorting and some real-world tasks such as question answering. But one lim-
itation of the NTM is that due to its smooth read and write mechanism, NTM has to do propagations
on the entire memory, usually causing huge amount of memory consumption. To this end, Rae et al.
(2016) proposes the Sparse Access Memory(SAM) network, by thresholding memory modifications
to a sparse subset, i.e. all read and write operations are limited to several memory words. This
allows memory and time efficient propagations while maintaining NTM’s performance. However,
these external memory models have relatively complicated memory addressing mechanisms, mak-
ing them suitable for only large-scale memory. Moreover, the RNN in these models plays a simple
role of being a controller, but the gradient vanishing problem of RNN itself is not given attention.
In contrast to these networks, our network uses a light-weight read mechanism to address a small
external memory, and relieves the gradient vanishing problem by directly concatenating memory
word to output.

Inspired by prior memory models, efforts have been made to build a bridge between simple RNNs
and complicated memory models. Kurach et al. (2015) propose the Neural Random-access Machines
(NRAM) that can manipulate and dereference pointers to an external variable-size random-access
memory. Danihelka et al. (2016) improve LSTM with ideas from Holographic Reduced Represen-
tations (Plate, 2003) that enables key-value storage of data. Grave et al. (2016) propose a method
of augmenting LSTM by storing previous (hidden state, input word) pairs in memory and using
the current hidden state as a query vector to recover historical input words. This method requires
no backpropagation through memory and is well-suited to word-level language tasks. Grefenstette

1

Under review as a conference paper at ICLR 2019

et al. (2015); Dyer et al. (2015); Joulin & Mikolov (2015) augment RNNs with a stack structure that
works as a natural parsing tool, and use them to process algorithmic and nature language process-
ing (NLP) tasks; nonetheless, the speed of stack-augmented RNNs is rather slow due to multiple
push-pop operations at every time-step. Ke et al. (2018) propose the Sparse Attentive Backtrack-
ing (SAB) architecture, which recalls a few past hidden sates at every time-step and do “mental”
backpropogations to the nearby hidden states with respect to the past hidden states. Gulcehre et al.
(2017) propose the TARDIS network, which is an LSTM-resembled RNN that directly stores a
fixed number of previous hidden states with learned key parameters for memory addressing. At ev-
ery time-step, the network reads out one historical state rt from the memory, and uses it, along with
the input xt and last hidden state ht−1, to produce new hidden state ht, then overwrites ht to the
location of rt. TARDIS optionally uses the gumbel-softmax estimator(Maddison et al., 2016; Jang
et al., 2016) to sample the location of rt (we will explain this in section 2.1), so the whole network is
differentiable. However, the TARDIS still involves some hand-crafted memory addressing method
and its addressing mechanism requires a considerable amount of memory and time consumption.

Inspired by the TARDIS, we introduce the ARMIN architecture, a more light-weight and memory-
based architecture with a very simple memory addressing mechanism and in-depth modification of
the existing LSTM structure. Concretely, our contributions are as follows:

• We distill previous memory addressing methods and propose a simple yet effective memory ad-
dressing mechanism for the external memory, namely Auto-addressing, by encoding the information
for memory addressing directly via the inputs xt and the hidden states ht−1.

• We propose a novel recurrent cell that combines the gating advantages of LSTM and allows
direct gradient backpropagation from output to memory. With only a single cell, it learns better
representations than many hierarchical RNN structures.

• We show in our ablation study that the ARMIN is robust to small iteration lengths when training
long sequential data, which enables training with large batch sizes and boost its training speed.
We further demonstrate in char-level language modelling task that the ARMIN obtain 40% training
speed gain than LSTM while keeping similar performance and memory consumption.

• We demonstrate competitive results on various tasks while keeping efficient time and memory
consumption during training and inference time.

2 BACKGROUND

2.1 GUMBEL-SOFTMAX ESTIMATOR

Categorical distribution is a natural choice for representing discrete structure in the world; however,
it’s rarely used in neural networks due to its inability to backpropagate through samples(Jang et al.,
2016). To this end, Maddison et al. (2016) and Jang et al. (2016) propose a continuous relaxation of
categorical distribution and the corresponding gumbel-softmax gradient estimator that replaces the
non-differentiable sample from a categorical distribution with a differentiable sample. Specifically,
given a probability distribution p = (π1, π2, ..., πk) over k categories, the gumbel-softmax estimator
produces an one-hot sample vector y with its i-th element calculated as follows:

yi =
exp((log(πi) + gi)/τ)∑k
j=1 exp((log(πj) + gj)/τ)

for i = 1, 2, ..., k, (1)

where g1, ..., gk are i.i.d samples drawn from Gumbel distribution(Gumbel, 1954):

gi = − log(− log(ui)) , ui ∼ Uniform(0, 1), (2)

and τ is the temperature parameter. In practice, we usually start at a high temperature and anneal
to a small but non-zero temperature (Jang et al., 2016).

3 AUTO-ADDRESSING AND RECURRENT MEMORY INTEGRATING NETWORK

In this section, we describe the structure of the ARMIN network as shown in Figure 1. It consists of
a recurrent cell and a small external memory that stores historical hidden states. While processing

2

Under review as a conference paper at ICLR 2019

O
ne

-h
ot

Ve

ct
or

ARMIN
Cell

FC with Gumbel-
Softmax

Next
 Time-step

Last
 Time-step

Read

Memory

Write

Figure 1: The ARMIN structure. At each time-step, the ARMIN performs read operation, cell
processing and write operation in chronological order: (a) It reads out a historical hidden state rt
from memory with an one-hot read vector produced via passing xt and ht−1 to a fully connected
layer followed by a gumbel-softmax function. (b) The ARMIN cell receives xt, ht−1 and rt as
inputs and outputs ot and ht. ot is passed to output layers, and ht is passed to next time-step. (c)
ht is written to the previous location of rt.

sequential data, the ARMIN performs reading from memory, cell processing and writing to mem-
ory operations in chronological order during each time-step. In the following subsections, we first
explain the structure of the recurrent cell, and then discuss the read and write operations.

3.1 THE RECURRENT CELL OF ARMIN

Inspired by classical LSTM structure (please refer to APPENDIX A for details in RNN and LSTM
structures), we propose a novel memory-augmented recurrent cell structure, namely the ARMIN
cell. At every time-step, it takes in an input xt, the last hidden state ht−1 and a recovered historical
hidden state rt chosen by a read operation, and produces an output vector ot and the new hidden
state ht. The computation process is as follows:

{
ght
grt

}
=

{
σ

σ

}
Wig[xt,ht−1, rt] + big , (3)

hgt−1 = ght ◦ ht−1 , (4)

rgt = grt ◦ rt , (5)

it

ft

gt

oht
ort

=

σ

σ

tanh

σ

σ

Wgo[xt,h

g
t−1, r

g
t] + bgo , (6)

ht = ft ◦ ht−1 + it ◦ gt , (7)

ot = [oht ◦ tanh(ht) ,ort ◦ tanh(rt)] . (8)

where ht−1,ht ∈ Rdh , rt ∈ Rdr ,xt ∈ Rdi , and Wig ∈ R2dh×(di+dh+dr),Wgo ∈
R(4dh+dr)×(di+dh+dr), big ∈ Rdh+dr , bgo ∈ R4dh+dr ,ot ∈ Rdh+dr . We refer to dh as the
hidden size of the recurrent cell of ARMIN. Usually we have dh = dr and allocate equal number
of weight parameters for ht and rt.

3

Under review as a conference paper at ICLR 2019

In equation 3 ∼ 5, two gates are calculated to control the information flow for ht−1 and rt respec-
tively, generating gated hidden state hgt−1 and historical state rgt ; using this method, we can filter
out the irrelevant information for the current time-step. Then as shown in equation 6, we compute
the input gate it, forget gate ft, cell state gt and output gate oht for the new hidden state just like in
classical LSTM structure. Additionally, an output gate ort for historical state rt is computed. Next
in equation 7, we compute new hidden state ht that is the sum of ht−1 and cell state gt, leveraged
by forget gate ft and input gate it. Finally in equation 8, we calculate the output of this time-
step, which is the concatenation of the gated contents from ht and rt. Using this method, we can
selectively backpropagate gradients from the output to the historical state rt. We involve rt (or
rgt) in all gates’ computations.

Intuitively, the ht−1 acts as the old working memory, and rt is treated as the long-term memory.
The cell processes them with the input xt to generate the new working memory ht and the output
ot. More specifically, each rt is a summary of historical hidden states selected by auto-addressing
mechanism. The ARMIN cell learns to recurrently integrate the summary of long-term information
from rt into the working memory ht. We will demonstrate the efficiency of recurrent memory
integration in language modelling tasks.

Unlike the LSTM that passes a tuple of (ht, ct) to the next recurrence and outputs ht at the same
time, the ARMIN only passes one hidden state ht and separately uses ot as output, which has 2
benefits: one is that it takes lower memory consumption to store one hidden state rather than two,
and the other is we can decouple the information needed for the output ot, from the information
(i.e. ht) that is needed for memorizing and being used at later time-steps. Furthermore, we list 3
important differences between the ARMIN cell and TARDIS cell, please refer to APPENDIX B.1.

3.2 READ OPERATION WITH AUTO-ADDRESSING

The ARMIN maintains a memory matrix M ∈ Rnmem×dh , where the constant nmem denotes the
number of memory slots. At each recurrence, the ARMIN chooses a historical state rt from memory
according to the information in xt and ht−1 ,which is formulated as follows:

st = gumbel-softmax(Ws[xt ,ht−1] + bs) , (9)

rt =

n−1∑
i=0

st(i)M(i, :) . (10)

where Ws ∈ Rnmem×(di+dh), bs ∈ Rnmem , st is a one-hot vector sampled by gumbel-softmax
function, st(i) denotes the i-th element of st, M(i, :) denotes the i-th row of M .

As opposed to previous memory networks such as Santoro et al. (2016) and Gulcehre et al. (2017),
we don’t use any extra usage vectors and learnable key parameters that manually encode memory
addressing information to assist memory addressing. As our ablation study (Appendix E) shows,
the hidden state ht−1 is sufficient to encode the historical memory accessing information. Further-
more, the TARDIS addressing mechanism requires concatenating xt and ht to every memory cell,
which usually causes large extra memory and time consumption in practical scenes. Please refer to
APPENDIX B.2 for more precise comparison regarding addressing mechanism of the ARMIN and
TARDIS networks.

3.3 WRITE OPERATION

After the reading and cell processing stages, the ARMIN writes the new hidden state ht to the
memory M . Following the TARDIS network (Gulcehre et al., 2017), we simply overwrite ht to
the memory slot where we just read out the rt (for conditions where dh is not equal to dr, we first
use a linear layer to transform ht from dh dimension to dr dimension). But at the initial time-steps,
we write the hidden states to the empty memory slots, until all empty slots are filled with historical
states. In this way, we can maximally preserve useful historical information, because the ARMIN
cell can learn to copy the useful information from rt to ht, and then write ht to the previous location
of rt. The read/write mechanism can be viewed as a form of a skip-connection of hidden states. By
training the whole network, the ARMIN can easily learn long-term dependencies via direct access
to historical hidden states. From this point of view, our network is similar to the Skip RNN proposed

4

Under review as a conference paper at ICLR 2019

by Campos Camunez et al. (2018), which differs from our network in that they use a binary state
update gate to select whether the state of the RNN will be updated or copied from the previous
time-step.

4 EXPERIMENTS

We evaluate our model on algorithmic tasks, character-level language modelling task and temporal
action detection and proposal task. We compare our network with NTM (with an LSTM controller),
TARDIS and vanilla LSTM networks. We also directly compare the auto-addressing against the
TARDIS addressing mechanism, by replacing auto-addressing with the TARDIS addressing method
in ARMIN. We refer to this network as ARMIN+TARDIS-addr in our experiments. Please refer to
APPENDIX C for some universal setups used in all our experiments below.

4.1 ALGORITHMIC TASKS

Along with the NTM, Graves et al. (2014) introduced a set of synthetic algorithm tasks which con-
sists of copy, repeat copy, associative recall, N-gram and priority sort tasks. Here we use four out
of five of these tasks (excluding the N-gram task) to examine if our network can choose correct
time-steps from the past and effectively make use of them. Please refer to APPENDIX C.1 for more
explanations and hyperparameter setups with respect to these tasks. Note that we have a strong
LSTM baseline with about 4 times larger parameter count than memory networks, and the train-
ing of our copy and priority sort tasks are more challenging than the original tasks in Graves et al.
(2014), for having more than 2 times longer input and target sequences. The models are optimized to
minimize the averaged binary cross-entropy loss on the target multi-bit binary sequences. Following
Gulcehre et al. (2017); Campos Camunez et al. (2018), in all tasks, we consider a task solved if the
validation loss is at least two orders of magnitude below the initial cost which is around 0.70, i.e.
the validation loss (the validation set is generated randomly) converges to less than 0.01 (with less
than 30% in 10 consecutive validation of sharp losses that are higher than 0.01). In our evaluation,
we are interested in if a model can successfully solve the task in 100k iterations and the elapsed
training time and iterations till the model succeeds on the task. For all networks we ensure the sim-
ilar total parameter counts. All important hyperparameters are shown in APPENDIX C.1. We run
all experiments with batch size of 1 under 2.8 GHz Intel Core i7 CPU and report the wall clock time
and the number of iterations for solved tasks of each model. For models that fail to converge to less
than 0.01 loss in 100k iterations, we report the average loss of the final 10 validations (denoted in
underlines) and the elapsed training time for 100k iterations. The results are shown in Table 1. The
training curves for each task are shown in APPENDIX D.

The results show that the ARMIN can solve 3 out of 4 tasks in a fast converge speed. By comparing
the ARMIN with NTM, we observe that the NTM is able to almost solve all of the tasks, but with
a much slower training speed compared to the ARMIN, for example, the training time of NTM is
5 times larger than ARMIN to solve the copy task. In fact, the training speed of ARMIN for each
iteration is about 3 ∼ 4 times faster than the NTM’s speed. We observe that the TARDIS and
ARMIN+TARDIS-addr fail to solve 3 out 4 tasks in the given 100k iterations. By comparing them
with the ARMIN, we confirm the efficiency of the auto-addressing of ARMIN, for bringing a fast

Table 1: The average elapsed time(min) and iterations(k) of different networks till task solved in
given 100k iterations. The wall clock training time for 100k iterations and the average loss of final
10 validations (denoted in underlines) are shown for the unsolved tasks.

Copy Repeat
Copy

Associative
Recall

Priority
Sort

time iter. time iter. time iter. time iter.
LSTM 66 0.359 45 0.016 34 0.325 32 37.0
NTM 32 12.4 171 0.014 22 19.6 360 0.012

TARDIS 157 0.451 97 0.166 66 0.330 133 62.6
ARMIN+TARDIS-addr 152 0.410 95 0.297 64 0.336 151 71.4

ARMIN 6 7.6 36 67.8 33 0.052 37 33.4

5

Under review as a conference paper at ICLR 2019

Table 2: Bits-per-character on Penn Treebank and enwik8 test set.

PTB enwik8
Model BPC Params BPC Params

LSTM 1.36 – 1.45 –
LSTM+Zoneout (Krueger et al., 2016) 1.27 – – –
LSTM+Layer Norm(1000 units)1 1.267 4.26M – –
LSTM+Layer Norm+Zoneout(1024 units)2 1.24 4.79M – –

HM-LSTM+Layer Norm (Chung et al., 2016) 1.24 – 1.32 35M
HyperLSTM+Layer Norm(Ha et al., 2016) 1.219 14.41M 1.340 26.5M
NASCell (Zoph & Le, 2016) 1.214 16.28M – –
IndRNN (21 layers) (Li et al., 2018) 1.21 – – –
Recurrent Highway Hypernetwork (Suarez, 2017) 1.19 15.5M – –
Fast-Slow LSTM (Mujika et al., 2017) 1.190 7.2M 1.277 27M

NTM(800 units, nhead = 1, pdropout=0.6) 1.535 8.28M – –
TARDIS(paper) 1.25 – – –
TARDIS(1000 units,pdropout=0.6) 1.268 9.2M – –
ARMIN+TARDIS-addr(800 units,pdropout=0.6) 1.223 10.2M – –
ARMIN (500 units, pdropout=0.4) (Ours) 1.236 4.03M – –
ARMIN (800 units, pdropout=0.6) (Ours) 1.202 9.8M – –
ARMIN (800 units, 2 layer) (Ours) – – 1.331 21.6M

converge speed and short training time. We also find that the LSTM, when given enough parameter
counts (4 times larger than memory networks), is able to solve the priority sort task quickly and
converge to a better performance than TARDIS and ARMIN+TARDIS in other tasks. We believe
there are 2 possible reasons for the poor performance of the TARDIS addressing mechanism: a) The
tanh activation (see equation 21 in APPENDIX B.2) might cause the gradient vanishing problem
when it cooperates with the gumbel-softmax function. b) The multiple inputs of xt,ht,Mt[i],ut
in equation 21 cause the network hard to initialize to keep equal input and output variances for
the linear layer and might also cause gradient dispersion. The auto-addressing has neither of these
two issues and can better integrately backpropogate gradients, therefore it can perform well and
quickly on these tasks. However, we would like to point out 2 limitations of the auto-addressing: a)
The associative recall task shows the auto-addressing might have problems in establishing indirect
references among memory data. b) The auto-addressing is relatively hard to generalize to unseen
longer sequence in tasks such as copy and repeat copy due to its simplicity, whereas the NTM is
able to do that. We leave these 2 issues for future work.

4.2 CHARACTER-LEVEL LANGUAGE MODELLING

The character-level language modelling task consists of predicting the probability distribution of the
next character given all the previous ones, and we use the widely used Penn Treebank and Hutter
Prize Wikipedia (also known as enwik8) datasets for this task. We compare our network with vanilla
LSTMs and other memory networks on Penn Treebank, and compare with some popular RNN
variants on both datasets. We ensure similar parameter counts and hyperparameters for all mem-
ory networks. Following prior works, we apply truncated backpropagation through time(TBPTT)
(Rumelhart et al., 1986; Elman, 1990) to approximate the gradients: at each iteration, the network
predict the next 150 characters, and the hidden state ht and memory state M are passed to the next
iteration. The gradients are truncated between different iterations. Please refer to APPENDIX C.2
for more experimental details.

The results are shown in table 2. On Penn Treebank dataset, our best performing network achieves
competitive 1.202 BPC on Penn Treebank dataset, which is the best single cell performance that we
are aware of, with relatively small parameter count. By comparing TARDIS and ARMIN+TARDIS-

1As implemented in Ha et al. (2016).
2Our implementation. We don’t see performance growth when we further increase the hidden size.

6

Under review as a conference paper at ICLR 2019

addr, we observe about 4 points of improvement, which shows the efficiency of the ARMIN cell. By
comparing ARMIN+TARDIS-addr, we observe a further improvement of around 2 points, which
shows the efficiency of the auto-addressing mechanism. We also find that the same architecture of
NTM that performs well in algorithmic tasks fails to converge to a lower BPC than vanilla LSTM,
even with various regularizations we add to NTM.

The results on Penn Treebank show our single ARMIN cell learns better representations than many
hierarchical RNN structures, such as the HM-LSTM, 2-Layer HyperLSTM and 21 layer IndRNN.
Our network is outperformed by Recurrent Highway Hypernetwork and Fast-slow LSTM which are
both multi-scale and deep transition RNNs and are state-of-the-art results without any auxiliary tech-
nics on this dataset. By saying “better representations”, we refer to the concatenation of the gated
contents from ht and rt as in equation 8. For example, if we remove the gated contents of rt from
ot, the ARMIN undergoes a BPC performance drop from 1.202 to 1.220, which is still better than
the best performing BPC of 1.24 of the LSTM. We believe the rest of the performance gain comes
from the recurrent memory integration of the ARMIN cell, which also favors a paradigm of deep
transition, as is shown by the success of the deep transition RNNs on this task. For more ablation
study regarding the auto-addressing mechanism and the ARMIN cell please refer to APPENDIX E
(where we show the robustness of ARMIN to small TBPTT length).

The result on enwik8 demonstrates a simple 2-layer ARMIN can achieve competitive BPC perfor-
mance of 1.33, with less parameter count compared to the HyperLSTM and HM-LSTM. By con-
structing deeper ARMIN network or even combining with other multi-scale and hierarchical RNN
architectures, we believe the performance can be further improved.

4.3 TEMPORAL ACTION DETECTION AND PROPOSALS ON THUMOS’ 14

In this subsection, we evaluate the ARMIN on a more complicated real-world task concerning video
analysis, i.e. the temporal action detection and proposals, which consists of taking an input video
and producing a set of temporal intervals that are likely to contain human actions (Buch et al., 2017).
We use the Single-Stream Temporal Action Proposal(SST) (Buch et al., 2017) as our framework, and
evaluate the model on the THUMOS’ 14 dataset (Jiang et al., 2014), which contains 20+ hours of
video with 200 train/validation and 213 test untrimmed video sequences. The SST consists of a GRU
and a fully connected output layer. In our experiment, we replace the GRU encoder in SST with a
single ARMIN cell, and we call the modified network MA-SST. For fairness, we also implement a
modified SST with LSTM encoder and compare them with the original SST in Buch et al. (2017).
Please refer to APPENDIX C.3 for more experimental details.

Table 3: Comparison of proposal generation per-
formance in terms of recall at 1000 proposals.
We choose tIoU=0.6 and 0.8 to compare for con-
sistency with Buch et al. (2017). Our MA-SST
achieves highest recall at tIoU=0.8.

Model tIoU=0.6 tIoU=0.8
SST (Paper) 0.920 0.672
SST (We implement) 0.897 0.732
MA-SST(Ours) 0.911 0.759

Table 4: Comparison for performance and cost of
different setups on Penn Treebank dataset.

Model ARMIN LSTM
Setup 1 2 1 2

Hidden size 500 550 1k 1k
nparam(M) 4.02 4.81 4.79 4.79
nmem 5 10 – –
Ttrunc 50 50 100 150

batch size 384 300 128 128
Memory(GB) 3.49 3.56 2.36 3.27

Speed
(chars/s) 98k 75k 71k 70k

BPC 1.238 1.226 1.27 1.24

The average recall under different proposal numbers and tIoUs3 are depicted in figure 2. MA-SST
outperforms the original SST and our SST simultaneously. To the best of our knowledge, MA-SST
achieves highest performance of recall at around tIoU=0.8 (see table 3), even if other competitive
non-RNN networks (Escorcia et al., 2016; Caba Heilbron et al., 2016; Gao et al., 2017; Guo et al.,
2018) are taken into account. The MA-SST tends to precisely generate proposals that has a high
overlapping area with the ground truth action intervals, leading to high recall performance at high

3tIoU denotes temporal Intersection over Union between a proposal and its maximally overlapped ground
truth action. Applying bigger tIoU threshold make the generated proposals higher in quality but less in quantity.

7

Under review as a conference paper at ICLR 2019

Av
er

ag
e

re
ca

ll

0

0.2

0.4

0.6

0.8

Average number of proposals
10.0 100.0 1000.0 10000.0

MA-SST(Ours) SST(Our implementation) SST(Paper)

Re
ca

ll
of

 1
00

0
pr

op
os

al
s

0

0.2

0.4

0.6

0.8

1

tIoU
0.50 0.60 0.70 0.80 0.90 1.0

MA-SST(Ours) SST(Our implementation) SST(Paper)

Figure 2: Comparison of proposal generation performance. For data generation, we use the code
offered in Buch et al. (2017) for consistency. (Left) The average number of proposals v.s. average
recall for tIoU ≥ 0.5. The MA-SST outperforms our SST when average number of proposals is less
than 500, and outperforms the original SST when average number of proposals is more than 500.
(Right) Different tIoU v.s. recall of 1000 average proposals. The MA-SST strongly outperforms the
original SST and outperform our SST by a maximal margin of 2.7%.

tIoUs. We believe the MA-SST has better performance than the SST mainly because of the direct
access to historical states from which it can better locate the starting frame of an action.

5 TOWARDS MORE LIGHT-WEIGHT RECURRENT MEMORY NETWORKS

It’s known that the speed and computer memory consumption have important influences on the prac-
ticability of an RNN, especially when external memory is involved. We have shown in some of the
algorithmic tasks that the ARMIN can be trained 3 4 times faster than the NTM in terms of wall clock
time. Next we conduct a more thorough comparison experiment among the vanilla LSTM and mem-
ory networks under different hidden sizes. The experiment is based on the character-level language
modelling task on Penn Treebank dataset, without the loss of generality. For a fair comparison, we
implement all networks with near-optimal implementations using Pytorch, an efficient deep-learning
framework. We use the aforementioned experiment setup, and keep all memory matrices the same
size, i.e. 20 × dh. We run the experiment using single-precision floating point calculations under
a Titan XP GPU that has 12GB memory space. The results are depicted in figure 3. From the re-
sults we observe 2 important phenomena: a) The ARMIN consistently outperform other memory
networks shown in the graph in terms of running speed both at training and inference stages, and
the main contribution to this comes from the simple auto-addressing mechanism of the ARMIN.
Moreover, at inference stage, we can replace the memory matrix with a list of discrete memory
slots, and update memory by simply replacing the old hidden states with the new ones, furthermore,
we can replace the gumbel-softmax function with argmax. Using these methods, ARMIN’s infer-
ence speed obtains significant improvement than in training stage. b) The ARMIN outperforms
TARDIS and ARMIN+TARDIS-addr in terms of training memory consumption, mainly because
the TARDIS addressing mechanism requires concatenating xt and ht−1 to every memory cell for
parallelization. At inference stage, we observe TARDIS have smaller memory consumption than
ARMIN and ARMIN+TARDIS-addr, mainly because TARDIS has smaller parameter counts under
the same hidden size. However, we would like to point out that under the same parameter counts
the ARMIN usually outperforms TARDIS as we show in algorithm and language modelling tasks.
We also observe the NTM has the largest memory consumption at inference time, mainly because
its complex addressing mechanism.

We have shown in the ablation study (see APPENDIX E) that our network is robust to small iteration
length when trained with TBPTT. We realize that we can use this feature to enable large batch size,
and boost ARMIN’s training speed while keeping better performance than LSTM. To validate this
benefit, we conduct an experiment to compare the performance and cost of ARMIN against our
best performing LSTM. We also provide the test result of the same LSTM under TBPTT length
Ttrunc = 100 for better comparing. The hyperparameter setups and results are shown in Table 4.

8

Under review as a conference paper at ICLR 2019

By comparing ARMIN setup 1 with LSTM setup 2, we observe that with only 6.7% more memory
consumption, we obtain 40% training speed gain while keeping a slightly better BPC performance
and 16% less parameter count; by comparing ARMIN setup 2 with LSTM setup 2, we observe that
with only 8.8% more memory consumption, we obtain about 1.5 points of BPC performance gain
and 7.1% training speed gain under similar parameter count.

M
em

or
y

C
on

su
m

pt
io

n(
G

B)

0

2.75

5.5

8.25

11

 R
un

ni
ng

 S
pe

ed
(C

ha
rs

/s
)

0

22500

45000

67500

90000

Hidden Size
100 200 300 400 500 600 700 800 900 1000 1100

Speed(NTM)
Speed(TARDIS)
Speed(ARMIN+TARDIS-addr)
Speed(ARMIN)
Speed(LSTM)
Memory(LSTM)
Memory(ARMIN)
Memory(NTM)
Memory(TARDIS)
Memory(ARMIN+TARDIS-addr)

(a) Training (batch size=128)

M
em

or
y

C
on

su
m

pt
io

n(
G

B)

0

0.25

0.5

0.75

1

Ru
nn

in
g

Sp
ee

d(
C

ha
rs

/s
)

0

500

1000

1500

2000

Hidden Size
100 200 300 400 500 600 700 800 900 1000 1100

(b) Inference (batch size=1)

Figure 3: The running speed and memory consumption at the training and inference stages
(nmem = 20). The solid blocks shows the memory consumption and the curves denote the run-
ning speed in characters/s. (a) shows the training stage, and (b) shows the inference stage (note
that ARMIN+TARDIS-addr has basically the same memory consumption with ARMIN, so it’s not
shown in the graph).

6 CONCLUSION

In this paper, we have introduced the ARMIN, a light-weight and memory-augmented RNN ar-
chitecture with a novel ARMIN cell. The ARMIN incorporates an efficient external memory with
the light-weight auto-addressing mechanism. We demonstrate competitive performance of ARMIN
in various tasks, and shows the generality of our model. Our ablation study suggests the efficacy
of our external memory and addressing mechanism, and notably, our network is robust to short-
length TBPTT which enables using large batch size to speed up the training and further increase
performance on sequence modelling tasks. Further research may lead to the efficient hierarchical
and multi-scale structures of the ARMIN and its successful applications in Seq2Seq models and
complicated reasoning tasks.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Shyamal Buch, Victor Escorcia, Chuanqi Shen, Bernard Ghanem, and Juan Carlos Niebles. Sst:
Single-stream temporal action proposals. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6373–6382. IEEE, 2017.

Fabian Caba Heilbron, Juan Carlos Niebles, and Bernard Ghanem. Fast temporal activity propos-
als for efficient detection of human actions in untrimmed videos. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1914–1923, 2016.

Victor Campos Camunez, Brendan Jou, Xavier Giró Nieto, Jordi Torres Viñals, and Shih-Fu Chang.
Skip rnn: learning to skip state updates in recurrent neural networks. In Sixth International
Conference on Learning Representations: Monday April 30-Thursday May 03, 2018, Vancouver
Convention Center, Vancouver:[proceedings], pp. 1–17, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

9

Under review as a conference paper at ICLR 2019

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback recurrent
neural networks. In International Conference on Machine Learning, pp. 2067–2075, 2015.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural net-
works. arXiv preprint arXiv:1609.01704, 2016.

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and Alex Graves. Associative long
short-term memory. In Proceedings of the 33rd International Conference on International Con-
ference on Machine Learning-Volume 48, pp. 1986–1994. JMLR. org, 2016.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A Smith. Transition-based
dependency parsing with stack long short-term memory. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), volume 1, pp. 334–343, 2015.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles, and Bernard Ghanem. Daps: Deep
action proposals for action understanding. In European Conference on Computer Vision, pp.
768–784. Springer, 2016.

Jiyang Gao, Zhenheng Yang, Chen Sun, Kan Chen, and Ram Nevatia. Turn tap: Temporal unit
regression network for temporal action proposals. In Computer Vision (ICCV), 2017 IEEE Inter-
national Conference on, pp. 3648–3656. IEEE, 2017.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a
continuous cache. arXiv preprint arXiv:1612.04426, 2016.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471, 2016.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to
transduce with unbounded memory. In Advances in Neural Information Processing Systems, pp.
1828–1836, 2015.

Caglar Gulcehre, Sarath Chandar, and Yoshua Bengio. Memory augmented neural networks with
wormhole connections. arXiv preprint arXiv:1701.08718, 2017.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series
of lectures. Number 33. US Govt. Print. Office, 1954.

Dashan Guo, Wei Li, and Xiangzhong Fang. Fully convolutional network for multiscale temporal
action proposals. IEEE Transactions on Multimedia, 2018.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

YG Jiang, Jingen Liu, A Roshan Zamir, G Toderici, I Laptev, Mubarak Shah, and Rahul Sukthankar.
Thumos challenge: Action recognition with a large number of classes, 2014.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. In Advances in neural information processing systems, pp. 190–198, 2015.

10

Under review as a conference paper at ICLR 2019

Nan Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Michael C Mozer, Chris Pal,
and Yoshua Bengio. Sparse attentive backtracking: Temporal creditassignment through remind-
ing. arXiv preprint arXiv:1809.03702, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

David Krueger, Tegan Maharaj, Janos Kramar, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary
Ke, Anirudh Goyal, Yoshua Bengio, Aaron Courville, and Christopher Pal. Zoneout: Regularizing
rnns by randomly preserving hidden activations. 2016.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. arXiv
preprint arXiv:1511.06392, 2015.

Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neural network
(indrnn): Building a longer and deeper rnn. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5457–5466, 2018.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink, and Jan Cer-
nocky. Subword language modeling with neural networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8, 2012.

Asier Mujika, Florian Meier, and Angelika Steger. Fast-slow recurrent neural networks. In Advances
in Neural Information Processing Systems, pp. 5915–5924, 2017.

Tony A Plate. Holographic reduced representation: Distributed representation for cognitive struc-
tures. 2003.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Senior, Gregory Wayne,
Alex Graves, and Tim Lillicrap. Scaling memory-augmented neural networks with sparse reads
and writes. In Advances in Neural Information Processing Systems, pp. 3621–3629, 2016.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533, 1986.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. One-
shot learning with memory-augmented neural networks. arXiv preprint arXiv:1605.06065, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Joseph Suarez. Language modeling with recurrent highway hypernetworks. In Advances in Neural
Information Processing Systems, pp. 3267–3276, 2017.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In Proceedings of the IEEE international
conference on computer vision, pp. 4489–4497, 2015.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

11

Under review as a conference paper at ICLR 2019

APPENDIX A RNN AND LONG SHORT-TERM MEMORY

A recurrent neural network (RNN) is a class of neural network that recurrently processes a sequence
of inputs {x1,x2, ...,xT }, and returns a sequence of outputs {y1,y2, ...,yT } where xt ∈ Rdi ,
yt ∈ Rdo , and di, do is the input size and output size, respectively. In a vanilla RNN, yi is given by
following equations:

ht = σ(Uxt +Wht−1 + b) , (11)

yt = V ht + c , (12)

where the hidden state ht ∈ Rdh is passed to the next recurrence. dh is the hidden size, and
U ,W ,V , b, c are learnable parameters.

The LSTM (Hochreiter & Schmidhuber, 1997) is designed to overcome the gradient vanishing and
exploding problem in vanilla RNN and learn long-term dependencies, by passing a tuple of (ht, ct)
to the next recurrence. Its computation process is defined as follows:

it

ft

gt

ot

 =

σ

σ

tanh

σ

W0[xt,ht−1] + b0 , (13)

ct = ft ◦ ct−1 + it ◦ gt , (14)

ht = ot ◦ tanh(ct), (15)

where ◦ is the element-wise product, W0 ∈ R4dh×(di+dh), b0 ∈ R4dh , it,ft, gt ot are the input
gate, forget gate, cell state, output gate at time t, respectively, and they control the information flow
in the LSTM.

APPENDIX B DIFFERENCES BETWEEN TARDIS AND ARMIN

The major differences between ARMIN and TARDIS networks are the recurrent cell computation
and read operation. We show these differences respectively in subsections below:

B.1 CELL COMPUTATIONS

The cell computation process of TARDIS is as follow:

it

ft

ot

 =

σ

σ

σ

W [xt,ht−1, rt] + b , (16)

{
αt

βt

}
=

{
gumbel-sigmoid
gumbel-sigmoid

}{
wα>

wβ>

}
[xt,ht−1, rt] , (17)

gt = tanh(W g[xt, αtht−1, βtrt] + bg), (18)

ct = ft ◦ ct−1 + it ◦ gt , (19)

ht = ot ◦ tanh(ct) , (20)

where ht−1,ht, ct, it,ft,ot, gt ∈ Rdh , rt ∈ Rdr ,xt ∈ Rdi ,wα,wβ ∈ Rdi+dh+dr , and W ∈
R3dh×(di+dh+dr),W g ∈ Rdh×(di+dh+dr), b ∈ R3dh , bg ∈ Rdh . The output of TARDIS is the
concatenation of ht and rt.

There are 3 important points that distinguish the ARMIN cell from TARDIS cell, which are as
follows:

12

Under review as a conference paper at ICLR 2019

• The TARDIS uses two binary scalar gates αt, βt to control the information flow in equation 17.
The two scalar gates are activated using gumbel-sigmoid (which is similar to gumbel-softmax and
the output is close to binary), whereas the ARMIN uses two soft vector gates to control the infor-
mation flow, which is more flexible and enable larger model capacity. For example, in the char-
level language modelling experiments, if we replace the sigmoid activations in equation 3 with the
element-wise gumbel-sigmoid, the BPC performance immediately drops from 1.202 to 1.235.

• The TADIS apply information control only when calculating the cell state gt, whereas the ARMIN
apply information control immediately after the read operation. Our main motivation to this change
is that if we don’t filter out irrelevant information in rt and ht at first, these noisy information will
cause the weight parameters hard to learn. Furthermore, if the read operation chooses the wrong
past state, we can block the information flow for rt at the first place.

• The ARMIN has an extra gate ort to control the output from rt as in equation 8, which the
TARDIS doesn’t have. If we remove this gate and directly output rt like in TARDIS, we get a BPC
performance drop from 1.202 to 1.219 in char-level language modelling task.

Finally, despite that the ARMIN has 3 more vector gates than the TARDIS, we have shown in the
pMNIST and Penn Treebank experiments that the ARMIN can still outperform the TARDIS under
similar parameter counts.

B.2 READ OPERATION

The memory matrix Mt of TARDIS has disjoint address section At ∈ Rnmem×dk and content
section Ct ∈ Rnmem×dr , Mt = [At;Ct]. The controller reads both the address and the content
parts of the memory, but it will only write into the content section of the memory.

The TARDIS paper explored two ways to sample the read locations——using reinforce and using
gumbel-softmax function, respectively. The gumbel-softmax way shows a better performance and
its read operation can be formulated as follow:

πt[i] = a> tanh(W γ [ht,xt,Mt[i],ut] + bγ), (21)

st = gumbel-softmax(πt). (22)

where {a,W γ , bγ} are learnable parameters (note that in our experiments, we always set the di-
mension of a to about 1/4 of the hidden size) and ut is a hand-crafted usage vector which denotes
the frequency of accesses to each cell in the memory.

There are two important differences with respect to TARDIS addressing mechanism and our auto-
addressing mechanism:

• In practice, equation 21 requires concatenating xt and ht to every memory cells Mt[i] for par-
allelization, which often causes significant extra memory and time consumption compared to the
auto-addressing of ARMIN, as we show in the algorithmic tasks and char-level language modelling
task.

• The auto-addressing omits the learnable address section At, the hand-crafted ut vector, the tanh
activation and an auxiliary vector a compared to TARDIS addressing mechanism. The TARDIS
also requires manually subtracting 100 in unnormalized probability at last read location to avoid
repeated read, whereas the auto-addressing doesn’t need to. With these simplifications, we found
the auto-addressing mechanism easier to train and it leads to a much faster converge speed, as we
show in the algorithmic tasks. We also observe a BPC performance growth from 1.223 to 1.202 in
char-level language modelling task when we switch from ARMIN+TARDIS-addr to ARMIN with
auto-addressing.

APPENDIX C EXPERIMENT SETUPS

We first describe some universal setups in all our experiments (unless we mention them again with
different setup). Our model can be trained end-to-end, due to the utilization of gumbel-softmax
function. As pointed out in Maddison et al. (2016), when the temperature τ ≤ (n − 1)−1, the

13

Under review as a conference paper at ICLR 2019

Table 5: Hyperparameters of the models for algorithmic tasks.

Model Hidden
Size

memory
Size

Param
Count

LSTM 300 – 376k
NTM 120 128×20 88k

TARDIS 120 50×32 90k
ARMIN+TARDIS 100 50×32 91k

ARMIN 100 50×32 90k

Table 6: Hyperparameters of the algorithmic tasks.

Task Setup

Copy copy length = 1∼50

Repeat Copy copy length = 1∼10
number of repeats = 1∼10

Associative Recall item size = 3×6
item number = 2∼6

Priority Sort Sort length = 40

density function of gumbel-softmax estimator is log-convex, which gives us a good guarantee for
optimization. However, smaller τ will also bring higher variance of the gradients (Jang et al., 2016).
So in all experiments, we initialize the reciprocal of τ as 1, and increase it by 1 after each epoch,
until the reciprocal equals to n− 1. This scheme has shown better performance than other schemes.

We apply Layer Normalization(Ba et al., 2016) to all networks. In the ARMIN case, layer norm
is applied to equation 3, 6 and 7, which we find important to regulate the hidden state when scale
grows. To avoid overfitting, we apply dropout (Srivastava et al., 2014) to the input and output
layers, and Zoneout(Krueger et al., 2016) is applied for recurrent connections. The networks are
trained with Adam optimizer (Kingma & Ba, 2014). All weight matrices in RNNs are initialized
to orthogonal matrices, and the bias of the forget gate ft is initialized to 1. For all models using
TARDIS addressing mechanism, we set the memory key size to about 1/5 of the memory content
size.

C.1 ALGORITHMIC TASKS

In all algorithmic experiments below, following Graves et al. (2014), we apply RMSProp optimizer
(Tieleman & Hinton, 2012) with a momentum of 0.9. The learning rate is 0.0001 and gradient
norms are clipped to 10.0. No regularization is used as the size of the networks is small. Following
Graves et al. (2014), we have learned bias of initial hidden states and memory matrices for all
memory networks. For TARDIS, ARMIN+TARDIS-addr and ARMIN we increase the reciprocal of
temperature τ by 1 for every 200 iterations. The hyperparamters for models and tasks are shown in
Table 5 and Table 6, respectively. We explain these tasks in detail in subsections below:

C.1.1 COPY

The copy task tests whether a recurrent model can correctly store and recall a long sequence of
arbitrary information. In our experiment, the networks are given randomly generated eight-bit binary
sequences with its length ranging from 1 to 50, followed by a finish indicator. Then the networks
are asked to output the same sequence with the input.

C.1.2 REPEAT COPY

The repeat copy task is a repeat version of the copy task. The main motivation was to see if a
recurrent model could memorize input information and repeatedly reuse them at later time-steps. In

14

Under review as a conference paper at ICLR 2019

our experiment, the networks are asked to repeatedly copy the randomly generated input sequence
with length ranging from 1 to 10 to output for 1 to 10 times.

C.1.3 ASSOCIATIVE RECALL

This task test whether a memory network has the ability to retrieve memory data indirectly. The
networks are given a sequence of items and then a query with one of the items, and are asked to
output the subsequent item. In our experiments, each item consists of three six-bit binary vectors,
and the number of items are ranging from 2 to 6.

C.1.4 PRIORITY SORT

This task test whether a recurrent model can do priority sort——a classic elementary algorithm. This
task is more challenging than previous ones as it not only require memorizing the input sequences
but also making efficient use of the mutual relations of the items in the input sequences. In our
experiments, the networks are given 40 eight-bit random binary keys with scalar priority values in a
sequence, and are asked to output the top 30 keys in descending order of priority.

C.2 CHARACTER-LEVEL LANGUAGE MODELLING ON PENN TREENBANK DATASET

C.2.1 PENN TREEBANK DATASET

We use the train/validation/test split outlined in Mikolov et al. (2012). The train/validation/test batch
size are 128/64/1 respectively. Following prior works on this task (Ha et al., 2016; Suarez, 2017;
Mujika et al., 2017), the model is optimized over the cross-entropy loss between the predictions and
the training labels, and evaluated using a bits-per-character measure. We use a single ARMIN cell of
different hidden sizes, with a fully connected layer to output the predictive probabilities. The input
embedding size di is set to 128. The number of memory slots nmem is 20. The zoneout probability
is 0.3. We train the networks for 200 epochs with a learning rate of 0.002, and decay with a factor
of 10 at the last 20 epochs. We clip the gradients to a maximum norm of 1.0.

C.2.2 HUTTER PRIZE WIKIPEDIA DATASET

We use the train/validation/test split outlined in Chung et al. (2015). The train/validation/test batch
size are 128/64/1 respectively, and the vocabulary size is 205. The zoneout and dropout probabilities
are 0.3 and 0.2, respectively. The input embedding size is 256. Our ARMIN network has 2 layer
and 800 units at each layer, connected by a linear layer to convert 1600-dimensional features from
layer 1 to 256 dimension as input to layer 2. nmem for each layer is set to 10. We train the networks
for 50 epochs with a learning rate of 0.001, and decay with a factor of 10 at the last 10 peochs. We
clip the gradients to a maximum norm of 1.0.

C.3 TEMPORAL ACTION DETECTION AND PROPOSALS ON THUMOS’ 14

The SST takes in sequential inputs of a video and outputs the existing probability predictions of
action proposals with different time lengths that end at each time-step, and uses a multi-label loss to
optimize its parameters. The sequential inputs are 4096-dimensional features extracted from every
16 consecutive video frames using C3D network (Tran et al., 2015), followed by PCA to downsize
the input feature dimensionality.

Our experiment setup is basically the same as the SST paper, except that we use a simple fully
connected layer to downsize the input features instead of using PCA. The input size of the two
networks are both set to 256. The MA-SST have 256 hidden units, while the SST with LSTM have
512 hidden units. This ensures the 2 networks have roughly the same parameter count. The dropout
and zoneout probabilities are both set to 0.2 and 0.3. nmem of the MA-SST is set to 35. We train
the networks for 300 epochs with initial learning rate of 0.002, and decay with a factor of 10 at the
last 60 epochs.

15

Under review as a conference paper at ICLR 2019

Bi
na

ry
 C

ro
ss

 E
nt

ro
py

 L
os

s

0

0.4

0.8

1.2

1.6

Iterations
0 20000 40000 60000 80000

LSTM
NTM
TARDIS
ARMIN+TARDIS-addr
ARMIN

(a) BCE Loss

Er
ro

r i
n

Bi
ts

-p
er

-s
eq

ue
nc

e

0

30

60

90

120

Iterations
200 20200 40200 60200 80200

LSTM
NTM
TARDIS
ARMIN+TARDIS-addr
ARMIN

(b) Error in Bits-per-sequence

Figure 4: Copy task.

Bi
na

ry
 C

ro
ss

 E
nt

ro
py

 L
os

s

0

0.25

0.5

0.75

1

Iterations
0 20000 40000 60000 80000

LSTM
NTM
TARDIS
ARMIN+TARDIS-addr
ARMIN

(a) BCE Loss

Er
ro

r i
n

Bi
ts

-p
er

-s
eq

ue
nc

e

0

30

60

90

120

Iterations
200 20200 40200 60200 80200

LSTM
NTM
TARDIS
ARMIN+TARDIS-addr
ARMIN

(b) Error in Bits-per-sequence

Figure 5: Repeat copy task.

Bi
na

ry
 C

ro
ss

 E
nt

ro
py

 L
os

s

0

0.25

0.5

0.75

1

Iterations
0 20000 40000 60000 80000

LSTM
NTM
TARDIS
ARMIN+TARDIS-addr
ARMIN

(a) BCE Loss

Er
ro

r i
n

B
its

-p
er

-s
eq

ue
nc

e

0

2.5

5

7.5

10

Iterations
200 20200 40200 60200 80200

LSTM
NTM
TARDIS
ARMIN+TARDIS-addr
ARMIN

(b) Error in Bits-per-sequence

Figure 6: Associative recall task.

16

Under review as a conference paper at ICLR 2019

Bi
na

ry
 C

ro
ss

 E
nt

ro
py

 L
os

s

0

0.2

0.4

0.6

0.8

Iterations
0 20000 40000 60000 80000

LSTM
NTM
TARDIS
ARMIN+TARDIS-addr
ARMIN

(a) BCE Loss

Er
ro

r i
n

Bi
ts

-p
er

-s
eq

ue
nc

e

0

20

40

60

80

Iterations
200 20200 40200 60200 80200

LSTM
NTM
TARDIS
ARMIN+TARDIS-addr
ARMIN

(b) Error in Bits-per-sequence

Figure 7: Priority sort task.

Table 7: Ablation on Penn Treebank (dh=800).

Abaltion Model BPC
No Control Gates 1.354
LSTM (TBPTT length=50) 1.390
ARMIN (TBPTT length=50) 1.220
Random Read 1.224
Queue-style Write 1.352
Independent Read/write 1.245
Smooth Read/write 1.212

APPENDIX D TRAINING CURVES ON ALGORITHMIC TASKS

APPENDIX E ABLATION STUDY ON MEMORY AND ADDRESSING MECHANISM

In this subsection, we show the efficacy of our external memory and addressing mechanism by
ablation experiments. We choose the char-level language modelling task to do the ablation re-
search as it is a relatively standard benchmark task and has appropriate medium scale. We use the
aforementioned experiment setup. To validate the efficacy of our external memory, we conduct the
experiments as follows and the results are depicted in table 7:

• Short TBPTT Length We shorten the truncated length in TBPTT from 150 to 50. The gradients
are truncated so we can’t do backpropagation on hidden states or memory from last iteration, but
the ARMIN still has direct access to historical hidden states. By comparing the performance of the
LSTM and ARMIN under such circumstances, we can know the efficacy of the external memory.
The results show that the LSTM has a dramatic performance drop of 1.390 BPC while the ARMIN
only has a minor performance drop of 1.220 BPC. The results confirm that the direct access to mem-
ory is crucial when the networks can’t access historical information by backpropagating gradients.
And notably, our experiment shows that the ARMIN is very robust to short-length TBPTT, i.e. small
iteration length, which means lower memory consumption. It enables using very large batch size to
speed up the training and further increasing performance on sequence modelling tasks.

• No Control Gates We remove the control gate ght and grt in ARMIN cell as depicted in equation
3, and directly use xt and ht−1 to compute the gates in equation 6. The result shows a BPC of 1.354
that has a dramatic performance drop compared the 1.202 BPC of normal ARMIN. From this, we
deduce that the control gates successfully filter out irrelevant information. Without the control gates,
the historical state rt would have bring more noise than useful information.

To validate the efficacy of the addressing mechanism of the ARMIN, we do the following modifica-
tions to the read/write operations of the ARMIN, and the results are also depicted in table 7:

17

Under review as a conference paper at ICLR 2019

• Random Read The ARMIN randomly chooses a historical state while reading. The result shows
a BPC of 1.224, compared to the 1.202 BPC of normal ARMIN. It proves that the read regime we
proposed in section 3.2 is effective and can choose more useful historical state than random read.
• Queue-style Write While writing, the ARMIN follows a fashion of first-in-first-out, i.e. always
chooses the oldest memory slot to write. It makes the memory M stubbornly store the hidden states
of the last 20 time-steps. The result shows a BPC of 1.352, which proves our normal read/write
mechanism has much more flexibility and can learn long-term patterns.
• Independent Read/write While writing, the ARMIN doesn’t write to the last read memory slot,
but independently choose a memory slot to overwrite according to xt and ht, in a similar fashion
with the read operation we presented in section 3.2. The result shows a BPC of 1.245, proving that
the normal writing regime in the ARMIN can better learn long-term patterns and maximally preserve
historical information, as we explain in section 3.3.
• Smooth Read/write We replace the gumbel-softmax function with the vanilla softmax function,
so the ARMIN reads and writes in a smooth way. The results show a minor performance drop of
1.212 BPC. The result shows that our discrete read/write regime is still better. Moreover, the smooth
read/write regime would consume much more memory at both training and inference stages.

18

	Introduction
	Background
	Gumbel-softmax estimator

	Auto-addressing and Recurrent Memory Integrating Network
	The recurrent cell of ARMIN
	Read operation with Auto-addressing
	Write operation

	Experiments
	Algorithmic tasks
	Character-level language modelling
	Temporal action detection and proposals on THUMOS' 14

	Towards more light-weight recurrent memory networks
	Conclusion
	RNN and Long Short-Term Memory
	Differences between TARDIS and ARMIN
	Cell computations
	Read Operation

	Experiment Setups
	Algorithmic tasks
	Copy
	Repeat Copy
	Associative Recall
	Priority Sort

	Character-level language modelling on Penn Treenbank dataset
	Penn Treebank dataset
	Hutter prize wikipedia dataset

	Temporal action detection and proposals on THUMOS' 14

	Training curves on algorithmic tasks
	Ablation study on memory and addressing mechanism

