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Abstract

A challenge in fetal echocardiography is the unpredictable relative motions be-1

tween the fetus being assessed and the probe which manifests as a change in the2

viewing state of a relevant anatomy on the ultrasound video monitor. It is a difficult3

transition for automatic medical video analysis pipelines. We treat the detection of4

such spatiotemporally stochastic transitions as an anomaly detection case and use a5

novel statistical decision method over learnt spatiotemporal representations from6

convolutional LSTM models to encode partwise distance measures across local7

regions from multiple frames in video segments as discrete probability distributions8

compared by a Matusita coefficient score.This helps compute divergences be-9

tween discrete probability distributions so obtained and allows segregation between10

normal and anomalous spatiotemporal representations out of video segments.11

1 Introduction12

There has been a considerable focus on automation of workflows in medical image analysis, but13

while most machine learning methods account for variability in spatial feature representations,14

there has been little effort to account for unforeseen variation in the spatiotemporal regime. Such15

random or unexpected motion is not uncommon in physiological cases, particularly in the case16

of the developing fetus where stochastic motion of the fetus relative to the uterus, or due to the17

patient and the probe, poses challenges in obtaining requisite standard viewing planes for anatomical18

observation in ultrasound sessions. Here, we attempt to identify such stochastic motions between the19

fetus and probe visible on the ultrasound video. Anomaly detection has been attempted for natural20

videos using techniques like multiple instance learning[1] and sparse coding[2]. Such methods are21

not well-posed for our task of inferring random motions in fetal ultrasound as durations of normal22

behaviour are not strictly confined to the beginnings or ends of input videos. Generative techniques23

using autoencoders[3] have also been attempted to perform novelty detection. In most anomaly or24

novelty detection problems with videos of natural scenes where an anomaly manifests as a significant25

spatial difference across a temporal length. Also, optical flow definition is relatively well-developed26

and sudden motion can be interpreted jointly with the actual frame level and flow based features.27

However, our task of assessing unpredictable, stochastic relative motions between the probe and the28

fetus from video sequences obtained in fetal echocardiography has significant differences which make29

it challenging.Here, arbitrary motions show up as sudden movements of the heart structure being30

viewed (akin to an unanticipated jerk in natural videos) as a complex combination of translations and31

rotations, a sudden change in the visibility of the heart or sudden lapses into the background due to32

unfavourable positioning of the fetus with respect to the ultrasound probe or an unplanned alteration33

in the viewing plane(our dataset has three standard planes [4] – four chamber(4C), three vessel(3V)34

and the left ventricular outflow tract(LVOT) view) due to the motion. Also, optical flow definition is35

poor in our ultrasound videos because of speckle and fine structural motion. This makes it difficult to36

use a two-stream CNN [5] for segregating unexpected motion patterns in fetal ultrasound.37
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2 Methodology38

The task of determining sudden motion of the fetus, an unexpected relative motion between the probe39

and the patient or a sudden change in the fetal cardiac views can be fundamentally treated as that of a40

spatiotemporal superposition of a stochastic motion pattern over that of the deterministic physiological41

motion – in our case the base cardiac rhythm in a standard fetal echocardiography sequence. As42

such, the separation of superimposed motion is a non-trivial problem with the complexity increased43

due to non-deterministic occurrence in fetal ultrasound sequences. So, the idea of determining the44

temporal instances of the onset and conclusion of such motion patterns and a quantification of the45

displacement of visible structures in the coordinate system fixed to a frame is of interest. The added46

complication is that the ultrasound modality has a strong influence of speckle and enhancements47

which are an extraneous influence on optical flows, and render the latter unsuitable for this task. With48

these constraints, we propose modelling the problem as one of supervised spatiotemporal anomaly49

detection, by relying on successive alterations in local spatial cues in a temporal sequence relative50

to sequences labelled as being normal. Essentially, we use a formulation of utilising distance based51

similarity measures and implementing them as probability distributions over localised patches and52

expanding over the temporal dimension. The idea is to enable the model to simultaneously learn to53

identify similar normal videos and to be able to discriminate between normal and anomalous video54

sequences. This is done by feeding in training samples grouping triplets of 8-frame video clips with55

two of them being normal and the third being an anomalous instance different from the other two.56

Over the individual video inputs in the group of three, we divide individual frames in a 8-frame57

video sequence into quadrant regions, and quadrants similarly located in the same frames of three58

comparator videos are fed to a triplet network which is trained to calculate a L1 distance between59

them. The distance metric so calculated is normalised using sigmoid activation, and a distribution60

of distances so computed is obtained for a given pair (so, this would be a discrete probability61

distribution with 32 instances if each frame in 8-frame videos is divided into 4 regions). Such62

probability distributions are compared using a Matusita metric [6]as it estimates overlap of discrete63

probability distributions without being impaired by the singularity problem that arises with more64

common measures like the Chi-squared metric in cases of similar distributions[7]. Our minimization65

objective is created as the Matusita measure between the two sets of normalised distances obtained in66

between the similar sequences and those in between the dissimilar sequences, in a training instance67

so chosen that two of them are labelled as similar and are different to the third instance. Sequences68

that are similar and therefore have similar probability distributions would have a small Matusita69

metric, whereas dissimilar distributions would have a larger value for the same. A labelled dataset70

where normal and abnormal sequences are identified can be used to train a triplet network with two71

branches’ fully-connected layers used to calculate quadrant level distances, which are normalised,72

and used to feed to a layer evaluating the Matusita metric where similar distributions (labelled ‘0’)73

and dissimilar distributions (labelled ‘1’) are classified with a binary cross-entropy function.74

Triplet architecture We implement modified Triplet Networks [8]with parallel strands accepting75

inputs as parts of triplets of 8-frame videos (from same or different class, i.e, both normal,identified76

as of ‘same’ class or 0, and two normal-one abnormal triplet, or a ‘different’ class or 1). The triplet77

legs process each input stream independently and jointly compute a L1 distance followed by a78

loss function using the L1 output sequences to calculate a Matusita coefficient and optimising it to79

corresponding labelled values of 0 or 1 by learning to classify ‘same’ and ‘different’ classes. Inputs80

are pre-processed as sequences of relevant quadrants to ensure efficient dataset curation and tractable81

distance computation. This implies that quadrants chosen for same locations in corresponding frames82

of three input sequences are processed by parallel strands of the triplet Network. This is done for83

all the quadrant pairs obtained for any two inputs (thus, two 8-frame videos are compared using84

a distribution of 32 normalised distances serving to input discrete probability distributions to the85

Matusita metric layers).A strand has 8 convolutional layers with 3x3 filters, ReLU activation and86

alternate max-pooling. This is followed by LSTM layers of 512 units to allow progression on the87

temporal video scale. Next is a 512-way fully-connected layer encoding representations for distance88

computation. Each input is separately computed upon using shared weights leading to three feature89

representations from each input pair example. We encode similarity between images by an L190

distance between the FC layers from pairwise parallel strands. This enables us to obtain two L191

distances for every input triplet.These two L1 distances are constrained between 0 and 1 with a92

sigmoid operation and used to compute a Matusita measure as the function to be optimised feeding93

into a binary cross-entropy classification to classify between 0 (similar) and 1 (different) classes.So94
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Figure 1: A triplet of videos is taken as an input instance – the triplet would include two video
instances with normal motions and one with anomalous motion (onset marked with a blue rectangle
on the left video – this is a sudden viewing plane change). Each frame divided into quadrants,
patchwise evaluated in a triplet network to obtain patchwise L1 distances. This is repeated for a total
of 32 patches (4 patches and 8 frames). The distribution of the normalised distances is interpreted as
a discrete probability distribution to be compared using a Matusita metric. (expanded in Appendix)

we have a classification scheme by using the constraint that similar videos would have a distribution of95

local image level distances similar to each other due to the similar phases of spatial level changes over96

time and those with anomalies would show a different distribution due to non-deterministic changes97

in spatial features over time,i.e, given the deterministic nature of normal physiological motion,two98

videos starting at a similar landmark would evolve similarly in the absence of any abnormal motion99

and so local features would match.100

Objective function For comparison of two discrete probability distributions, which is how we101

interpret the set of distance values of the divided quadrants from frames in the triplet of sequences, we102

model the divergence as a proxy for the dynamic similarity between the sequences. This is done using103

the Matusita measure, originally devised as a measure of risk in the analysis of statistical decision104

functions and defines the distance between two probability distributions as:
N∑
i=1

(
√
p(i)−

√
p′(i))2105

Here, N is the number of quadrant triplets to be considered for every training or test instance, i106

identifies the triplet worked upon, p(i) is the normalised distance between the first two quadrants in107

the triplet, and p’(i) is the normalised distance between the second and the third. The input to the108

Matusita loss function are the respective L1 distances activated using a sigmoid layer to be between 0109

and 1. This essentially converts the normal versus anomalous video instances classification problem110

into a similarity measure optimisation task, with the objective being the class label of either 0 or 1.111

Training We begin with 3624 8-frame echo clips,with 2424 clips tagged normal, and 1200 with112

one of the three types of motion anomalies studied here. The training to test data split is at a 80:20113

ratio. The clips are pre-processed to include sequences of similarly positioned quadrants across the114

sequential video frames for each of the input videos, thereby leading to an effective number of four115

clips per input clip at runtime. These are fed together as parts of the same triplet so as to generate a116

combined discrete probability distribution per video pair. To create input triplets, we follow a strategy117

relying on the ordering of the dataset and choose a triplet such that two instances are normal and the118

third could be either normal or abnormal in a randomised selection, and correspondingly attach a119

label of 0 or 1. Here it is ensured that no more than half the total number of triplets are labelled 0 or 1120

(or contain all normal or a normal-abnormal combination). Following the preparation of the input set,121

the three-way triplet network is trained for 50 epochs with a batch size of 20 and a learning rate of122
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Table 1: Results with overall anomaly data, and with subsets of the anomaly data considered

Classification Accuracy (percentage)

Name Overall Visibility shift Viewing plane shift Sudden motion

Triplet Net 69.32 66.67 76.54 69.20
Autoencoder 54.86 61.17 68.50 67.35
Resnet-50 62.35 63.47 75.90 56.05
VGG-16 58.50 60.12 74.20 51.48

0.01. The experiments are conducted in four stages. First, all of the anomaly videos dataset is used123

for generating triplets. Following this, three other runs are performed with each of the classes of124

anomalies (Visibility shift, Viewing plane shift, Sudden motion) considered as the sole dataset for125

an anomalous case for triplet generation. We use baseline results derived using direct classification126

from a VGG-16 and Resnet-50 adapted(input of 8-frame clips at first layer[4]) with same training127

protocols as the triplet network. Also, an autoencoder baseline is used to represent reconstruction128

based anomaly detection, using 5 convolutional layers with 3x3 kernels in both upsampling and129

downsampling stages, trained to reconstruct non-anomalous patterns over classes. The classification130

is by sigmoid normalising the reconstruction error and estimating the class (normal, abnormal).131

3 Results132

The evaluation metric for our three-way distance encoded convolutional-LSTM formulation is the133

classification accuracy as normal and abnormal triplets are labelled. At test time, triplet inputs were134

designed that a test video was used with two normal videos,to have a triplet whose class label would135

be 0 (all three normal) or 1 (two normal, one anomalous video). The trained triplet network would136

output a label to be compared with the ground truth label of the input triplet. This was done for137

separate types of anomalies discernible in our videos – sudden fetal/probe motions, sudden changes138

in visibility and sudden changes in cardiac plane. In our data, unlike natural videos, the notion139

of spatiotemporal anomaly is not confined to cases of drastically different spatial cues emerging140

over short time instances. Rather, the nature of anomalies is such that overall spatial definitions141

across a single frame often stays constant, with an evolving variation in the orientation or linear142

shifts over temporal distances. This implies that a model relying on overall feature representation143

across frames is sub-optimal. So, using quadrants to compare distance based embeddings of local144

regions per frame of compared videos shows a performance gain and the method of comparison of145

probability distributions derived from consecutive local distances across pairs of videos is amenable to146

complexities of fetal and probe motion observation in the ultrasound videos considered. The relative147

difference between the classification accuracies in the case of Viewing Plane shift is the lowest overall148

compared across methods.In this class, there is a substantial change in frame level image description149

on the whole as the standard viewing plane of the fetus abruptly changes, causing a significant150

change in the global frame level features as to be amenable to an end-to-end training for classification.151

Contrarily, compared to other methods the Triplet Net does relatively much better on cases of sudden152

motion as these instances are characterised by overall frame level similarities but in the aggregate153

of multiple frames, manifest as a departure from the normal motion pattern. The average Matusita154

coefficient over the test data is reported for the test normal instances as 0.1125 and the test abnormal155

instances as 0.8944. Ideally, the Matusita coefficient would be 0 for normal and 1 for the abnormal156

instances. The overall digression from ideal values is indicative of a degree of error in modelling the157

similarity and dissimilarity of video instances, explained as a result of the loss of certain local level158

comparisons due to not going into any finer division than a quadrant level assessment. Note that the159

Overall accuracy here does not refer to an aggregate of the Visibility anomaly accuracies, the viewing160

plane anomaly accuracies and the sudden motion anomaly accuracies. This is because these are four161

different runs with the latter three conducted on separated anomaly video datasets. To conclude, we162

detect unanticipated motion in echocardiography videos by treating it as an anomaly over normal163

motion patterns, with a caveat that abrupt patterns may not lead to overall changes in global spatial164

features visible frame-to-frame but would manifest as discernible local changes. This scheme allows165

us to consider patchwise embeddings for a distance measure recast as a sequence of probabilities166

being compared on a triplet network thus overcoming limitations of simple CNNs caused by local167

pose and orientation invariance.168
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Figure 2: A magnified version of figure 1. A triplet of videos is taken as an input instance – in half
training and test data used the triplet would include two video instances with normal motions and
one with anomalous motion (onset marked with a blue rectangle on the left video – this is a sudden
viewing plane change). Each frame divided into quadrants, patchwise evaluated in a triplet network
to obtain patchwise L1 distances. This is repeated for a total of 32 patches (4 patches and 8 frames).
The distribution of the normalised distances is interpreted as a discrete probability distribution to be
compared using a Matusita metric.
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