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ABSTRACT

Supervised models suffer from domain shifting where distribution mismatch across
domains greatly affect model performance. Particularly, noise scattered in each
domain has played a crucial role in representing such distribution, especially in
various natural language processing (NLP) tasks. In addressing this issue, training
data selection (TDS) has been proven to be a prospective way to train supervised
models with higher performance and efficiency. Following the TDS methodology,
in this paper, we propose a general data selection framework with representation
learning and distribution matching simultaneously for domain adaptation on neural
models. In doing so, we formulate TDS as a novel selection process based on a
learned selection distribution from the input data, which is produced by a trainable
selection distribution generator (SDG) that is optimized by reinforcement learning
(RL). Then, the model trained by the selected data not only predicts the target
domain data in a specific task, but also provides input for the value function of the
RL, which exactly helps update the parameters of SDG in a policy gradient way.
Experiments are conducted on three typical NLP tasks, namely, part-of-speech
tagging, dependency parsing, and sentiment analysis. Results demonstrate the
validity and effectiveness of our approach.

1 INTRODUCTION
Learning with massive data suffers from “Pyrrhic victory” where huge amounts of resource, e.g.,
computation, annotation, storage, etc., are consumed with many issues. One well-known issue for
data-driven approaches is that data quality considerably affects the performance of learned models.
Especially in NLP, such phenomenon is incredibly significant where noise and inaccurate annotations
are demolishing models’ robustness when applying them to various scenarios (Akopyan & Khashba,
2017; Zhang et al., 2016), one of which is cross-domain NLP tasks. In this scenario, many data and
their labels are considered noisy and inaccurate when they are used across domains, resulting in the
mismatch of distribution between training and test data. To reduce the impact of the noise in data
and annotations, reasonable selection of training samples is proved to be an useful strategy that can
help supervised models achieving equivalent performance with less computational efforts (Fan et al.,
2017; Feng et al., 2018). Particularly, it is also confirmed that appropriate data selection strategy can
benefit domain adaptation (Ruder & Plank, 2017) by preventing negative transfer (Rosenstein et al.,
2005) from irrelevant data and noisy labels, meanwhile providing a more efficient learning process
compared with other domain adaptation methods such as sample reweighing (Borgwardt et al., 2006),
feature distribution matching (Tzeng et al., 2014) and representation learning (Csurka, 2017).

Although various data selection-based domain adaptation approaches were proposed for NLP tasks
(III, 2007; Blitzer et al., 2007; Søgaard, 2011), most of them only consider scoring or ranking learning
samples under a certain metric over the entire dataset, then select the top n (or a proportion, which
is usually a predefined hyper-parameter) items to learn. However, such pre-designed metrics is not
always able to cover effective characteristics for transferring domain knowledge and meanwhile
suffers from their inflexibility. Even though some methods learn measures across domains and models
(Ruder & Plank, 2017), their hyper-parameter setting, such as the n, still demands further explorations.
Fortunately, recent studies confirmed that RL is an effective solution for data selection in training
neural networks with improving their efficiency (Fan et al., 2017) and accuracy (Feng et al., 2018). A
natural extension of using RL for data selection can be considered for the cross-domain scenario.
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Yet, to apply RL to data selection for domain adaptation is not a straightforward mission as those
RL application for in-domain tasks. To tackle this mission, in this paper, we propose a general
data selection approach for domain adaptation via RL that jointly learns data representations and
matches them from the source and target domain. There are two major components in our approach:
a selection distribution generator (SDG) and a task-specific predictor with a feature extractor and
a classifier1. The SDG and the predictor are pipelined by taking each others’ output as input and
optimized accordingly via RL. As a result, in our approach, two major problems in domain adaptation
are addressed: some redundant or noisy data across domains gives little or negative contribution
to adaptation; useful information from the source domain is usually not properly organized and
exploited for the target domain. Experimental results from three NLP tasks, namely, part-of-speech
(POS) tagging, dependency parsing and sentiment analysis, illustrate that our approach achieve
state-of-the-art performance, which confirm the validity and effectiveness of our approach.
2 THE APPROACH
Our approach is in the line of the unsupervised domain adaptation (Roark & Bacchiani, 2003),
where one has no access to any labels of target domain data. Particularly, for a task T , we take
labeled data instances for the task from a source domain DS as the input to our approach, and some
unlabeled data from a target domain DT as the guidance. The approach is then expected to generate
an optimal selected data set and a model trained on the set for T . An overview illustration of the
entire architecture for our approach is demonstrated in Figure 1. In detail, for each step, the key
component for selection, SDG, produces a distribution vector based on the representation of the
selected source data from last step, then data instances are selected according to the vector and new
reward is generated for next round data selection. To update the SDG, different measurements can
be used to assess the discrepancy between the representations of the selected source data and the
guidance set and then approximates the value function for updating. For the predictor, the loss from
the classifier on the domain-specific task is used to guide the parameter updating for the feature
extractor and the classifier. The details is unfolded in the following subsections, in which we firstly
give the details of the two major components and then the joint training algorithm.
2.1 THE PREDICTOR

The predictor is the main component to perform a particular task T . In our approach we decompose
the predictor into two parts, the feature extractor and a classifier, and use them separately. The
feature extractor serves as the representation learning module that transform input data to dense
representations, while the classifier takes the representations for T in the target domain. In doing
so, the predictor is a neural model in this study so that the aforementioned separation can be done.
Therefore, the feature extractor is normally the first n-1 layers of the predictor given that it has n
layers in total. As a result, the classifier is the last layer dedicated for model output.

The Feature Extractor Data in its original form, especially as natural language, is usually difficult
to be exploited in neural computation. The feature extractor is thus serving as a critical component
in our approach to transform the data into distributed representations for their efficient use and
computation. There are two-way inputs for the feature extractor. One is the guidance set XT

g =

{xT1 , xT2 , ..., xTm}, a collection of unlabeled data drawn from the target domain, serving as the
reference for the selection process. The other input is the selected data from the source domain
in a “data bag”, which is a batch of a certain amount of samples to facilitate the selection in
this study. Let XS = {xS1 , xS2 , ..., xSn}, ∀xSi ∈ XS denote the data from the source domain, we
uniformly partitions the entire data set into N disjoint data bags marked as {B1, B2, ..., BN}, with
Bj = {xS(j−1)n/N+1, x

S
(j−1)n/N+2, ..., x

S
jn/N}, j ∈ {1, 2, ..., N}. Through the feature extractor, the

outputs of the guidance set and the selected data are two collections of distribution vectors.2

The Classifier Once data selection is done, the classifier is combined with the feature extractor and
trained on the selected data for a particular task. Note that the training is conducted in the source
domain and the output of the classifier is used to generate gradients for back-propagation. Then the
parameters of the classifier and the feature extractor are updated accordingly (with a learning rate β).
2.2 THE SELECTION DISTRIBUTION GENERATOR

A multi-layer perceptron (MLP) model is used as the SDG, which learns the selection policy
optimized by the reward from the representations of the guidance set and the selected data by RL.
In doing so, at each time step, the SDG is fed by a collection of data representations for a data
bag from the feature extractor. We denote the collection as ΦBj = {rj1, r

j
2, ..., r

j
|Bj |}, where rjl

1It is not necessarily a classifier, e.g., such as a tagger. However we use the term classifier for simplicity.
2The formal description of such representations are given in the next section.
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Figure 1: The architecture of a predictor with a selection distribution generator. All black solid arrows
refer to data flow, while the red dashed arrow denotes reward and the orange dotted arrows indicating
back-propagation of gradients from training the predictor.

(l = 1, 2, ..., |Bj |) is the vector of the l-th sample3 in Bj .4 Then ΦBj is mapped by the SDG to
a vector DBj = (pj1, p

j
2, ..., p

j
|Bj |), pjl (l = 1, 2, ..., |Bj |), which represents the probability for each

sample that whether it should be selected individually. To learn the SDG, each ΦBj is measured with
Φt to give the reward in an RL framework, which is described as follows.

RL Components in Learning the SDG

• State (s1, s2, ...sj , ...sN ) includes a collection of states for all j with respect to N data bags,
where each sj indicates a status including data bag B̂j and parameters of the feature extractor for
the selected instances B̂j from Bj . For simplicity we use ΦB̂j

and Φt to represent state sj .
• Action For each state, the action space A is a 0-1 judgment to decide if selecting an instance (1) or

not (0). An action a = {ak}
|Bj |
k=1 ∈ {0, 1}|Bj |, which is obtained from DB̂j

. After each action, data
selection gives new ΦB̂j

, then transforms state s into s′. Thus we define the policy as PW(a|s).
• Reward Since the data selection process is to ensure that the selected data fitting the distribution

of the target domain, we set a reward r(s, a, s′) to assess the distance between ΦB̂j
and Φt in the

current state (s′) and its previous state (s):

r(s, a, s′) = d(Φs
B̂j−1

,Φs
t )− γd(Φs′

B̂j
,Φs′

t ) (1)

where d(·, ·) is a distribution discrepancy measurement, which can be implemented by different
information-bearing functions. γ ∈ (0, 1) is a discounting constant that decreases the impact from
future distribution difference. Note that Eq. (1) is conducted in a sequence based on two adjacent
data bags Bj−1 and Bj , of which Φs′

B̂j
are impacted by Φs

B̂j−1
via parameters Ψ of the feature

extractor updated by B̂j−1. Consequently, the state transition probability P(s′|s, a) is determined
by stochastic optimization and other randomness in training, e.g., dropout (Srivastava et al., 2014).
When better instances are selected, the reward is then expected to produce a higher value because
the measurement for the previous state d(Φs

B̂j−1
,Φs

t ) supposes to give a larger distance between
ΦB̂j−1

and Φt than that for the current state.

Distribution Discrepancy Measurement To measure each B̂j and the XT
g , let P be the element-

wise average of ΦB̂j and Q the average of Φt, we use the following measurements for d(·, ·) in this
paper:
• JS: The Jensen-Shannon divergence (Lin, 1991). d(P,Q) = 1

2 [DKL(P ||M) + DKL(Q||M)]

where DKL(P ||Q) =
∑n
i=1 pi log pi

qi
, with M = 1

2 (P +Q).
• MMD: The maximum mean discrepancy (Borgwardt et al., 2006). d(P,Q) = ‖P −Q‖.
• RÉNYI: The symmetric Rényi divergence (Rényi, 1961). d(P,Q) = 1

2 [Ry(P,M) +Ry(Q,M)],
Ry(P,Q) = 1

α−1 log(
∑n
i=1

pαi
qα−1
i

). We set α=0.99 following Van Asch & Daelemans (2010).

3Representations in the collection follow the same order of their corresponding data instances in the bag.
4Similarly, the representation collection of the guidance set is denoted as Φt.
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Algorithm 1: Joint training algorithm of our approach

Input: Epochs L; Training data B = {B1, B2, ..., BN}. W (SDG), Ψ (Predictor), Θ (feature extractor); Loss
function of the predictor F (Ψ, B̂j); nJ ; d(·, ·); γ.

Output: Updated W and Ψ (Θ).
Initialize W and Ψ(Θ) with standard Gaussian distribution;
for epoch l = 1 to L do

Σ = 0;
for k = 1 to nJ do

Σr = 0;
Shuffle {B1, B2, ..., BN};
for each Bj ∈ B do

Φ
sj
Bj
← Θj−1(Bj); Φ

sj
t ← Θj−1(XT

g );

On current bag state sj , Dj ←W(Φ
sj
t ); select Φ

sj

B̂j
from Φ

sj
Bj

via Dj (take action aj);

r(sj−1, aj , sj)← d(Φ
sj−1

B̂j−1
,Φ

sj−1
t )− γd(Φ

sj
Bj
,Φ

sj
t )

Σr ← Σr + γj−1r(sj−1, aj , sj)

Ψ← Ψ− β∇ΨF (Ψ, B̂j); ( Θj ← Θj−1 − β∇ΘF (Ψ, B̂j) ) ;
end
Σ← Σ +

∑N
j=1∇W log πW(akj |skj )Σr;

end

∇WJ̃(W)← 1

nJ
Σ;

W←W + τ∇WJ̃(W);
end

• LOSS: The guidance loss. d = − 1
m

∑m
i=1

∑
yt∈Yt yt log pΦ(yt|xTi ) where yt is the label of

instance t from the guidance set, and pφ the learned conditional probability of the predictor. Note
that, different from aforementioned measurements, LOSS requires labels from the target domain,
thus is only set as a comparison to our approach with using annotated data through the predictor.

Optimization The following object is optimized to obtain the optimal distribution generation policy.

J(W) = EPW(a|s)[

N∑
j=1

γj−1r(sj , aj)] (2)

Then the parameters of the SDG, i.e., W, is updated via policy gradient (Sutton et al., 1999) by
W←W + τ∇WJ̃(W) (3)

where τ is the discounting learning rate5, the gradient ∇WJ(W) is approximated by ∇WJ̃(W) =
1

nJ

∑nJ
k=1

∑N
j=1∇W log πW(akj |skj )

∑N
j=1 γ

j−1r(skj , a
k
j ), where j refers to the j-th step (corre-

sponding to the j-th data bag) in RL; i denotes the i-th selection process to estimate∇WJ(W ). Note
that∇WJ(W ) is estimated after nJ times of selection over all N data bags, where nJ is a predefined
hyper-parameter.

2.3 JOINT TRAINING

We jointly train the SDG and the predictor with policy gradient method (Sutton et al., 1999), which
favors actions with high rewards from better selected samples. The entire joint training process is
described in Algorithm 1. Following Feng et al. (2018), we choose the whole Bj for the predictor to
compute r(sj−1, aj , sj) when B̂j = ∅ at time step j to help exclude noisy bags.

3 EXPERIMENT

To evaluate our approach, we conduct experiments on three typical NLP tasks: POS tagging, de-
pendency parsing, and sentiment analysis. Details about our experiments are described as follows.

3.1 DATASETS

Two popular datasets are used in our experiments. For POS tagging and dependency parsing, we
use the dataset from the SANCL 2012 shared task (Petrov & McDonald, 2012), with six different
domains. For sentiment analysis, we use the product review dataset from Blitzer et al. (2006), with

5τ and the aforementioned β can be self-adapted by the optimizer, such as Adam (Kingma & Ba, 2014).
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TASK POS TAGGING/DEPENDENCY PARSING SENTIMENT ANALYSIS

DOMAIN A EM N R WB WSJ B D K E

LBL. 3.5K 4.9K 2.4K 3.8K 2.0K 3.0K 2K 2K 2K 2K
UNL. 27K 1,194K 1,000K 1,965K 525K 30K 4.5K 3.6K 5.7K 5.9K

Table 1: The statistics of all datasets used in our experiments, with the number presenting labeled
(LBL.) or unlabeled (UNL.) samples in each domain. The domain abbreviations in different tasks are
explained as follows. A:Answer, EM:Email, N:News, R:Reviews, WB:Weblogs, WSJ:Wall Street
Journal, and B:Book, D:DVD, K:Kitchen, E:Electronics.

four domains. Note that for all datasets, there exists both labeled and unlabeled samples. The statistics
and the domains for the aforementioned datasets are reported in Table 1.

3.2 COMMON SETTINGS

A major difference between our approach and other data selection methods is that the number of
instances to be selected, n, is not fixed in our approach. Instead, it chooses the most effective one
automatically. For fair comparison, we record the resulted n from our approach in different tasks and
use it in other methods to guide their selection. In all experiments, the source domain includes all
labeled data from the dataset except that for the target domain, i.e., we take turns selecting a domain
as the target domain, and use the union of the rest as the source domain. N is set according to a
uniform bag size of around 1K. For the guidance set, we follow Ruder & Plank (2017) and randomly
select half of the instances from all the test data in the target domain discarding their labels.

A EM N R WB WSJ

JS-E 93.16 93.77 94.29 93.32 94.92 94.08
JS-D 92.25 93.43 93.54 92.84 94.45 93.32
T-S 93.59 94.65 94.76 93.92 95.32 94.44
TO-S 93.36 94.65 94.43 94.65 94.03 94.22
T+TO-S 94.33 92.55 93.96 93.94 94.51 94.98
T-S+D 93.64 94.21 93.57 93.86 95.33 93.84
TO-S+D 94.02 94.33 94.62 94.19 94.93 94.67
MDAN 94.83 95.69 95.97 95.14 95.88 95.23

RANDOM 92.76 93.43 93.75 92.62 93.53 92.68
ALL 95.16 95.90 95.90 95.03 95.79 95.64

SDG (JS) 95.37 95.45 96.23 95.64 96.19 95.74
SDG (MMD) 95.75 96.23 96.40 95.51 96.95 96.12
SDG (RÉNYI) 95.52 96.31 96.62 95.97 96.75 96.35
SDG (LOSS) 95.46 95.77 95.92 95.50 96.03 95.82

Table 2: POS tagging results (accuracy %) for each domain.

Considering that the starting reward
needs to be calculated from a re-
liable feature extractor, before the
regular training, we pre-train the
predictor on all source data for 2
epochs, then initialize parameters
of SDG with Gaussian variables.
Later the predictor and SDG fol-
lows ordinary updating paradigm
in each training epoch. In all exper-
iments, we use Adam (Kingma &
Ba, 2014) as the optimizer, and set
γ to 0.99 following Fan et al. (2017)
and nJ to 3.All the deep learning
based methods are configured with
the same neural networks as our cor-
responding experiments.

3.3 POS TAGGING

The Predictor We use the Bi-LSTM tagger proposed in Plank et al. (2016) as the predictor.

Baselines Following Ruder & Plank (2017), we compare our approach to five baselines: 1) JS-E: top
instances selected using Jensen-Shannon divergence. 2) JS-D: top instances selected from the most
similar source domain, where the similarity between domains are determined by Jensen-Shannon
divergence. 3) Bayesian optimization (Brochu et al., 2010) with the following settings: T-S, term
distribution similarity; TO-S, topic distribution similarity; T+TO-S, joint term and topic distribution
similarity; T-S+D, term distribution similarity and diversity; TO-S+D, topic distribution similarity
and diversity. 4) MDAN: a recent multiple source domain adaptation with adversarial learning (Zhao
et al., 2018). 5) RANDOM: a random selection model that selects the same number of instances
according to our proposed approach. 6) ALL: The predictor is trained on all available source data.

Results POS tagging results are reported in Table 2. Overall, our approach with different distribution
discrepancy metrics outperforms all baselines based on the same feature extractor. This observation
demonstrates the excellent adaptability of our approach on this tasks with complicated structural
variance in sentences. Among the four metrics, Rényi divergence achieve the best overall performance,
which is slightly surpassed by MMD in the ANSWER and WEBLOGS domain. It is observed that the
convergence of our approach results in around 50% of the source data selected.
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3.4 DEPENDENCY PARSING

A EM N R WB WSJ

JS-E 81.02 80.53 83.25 84.66 85.36 82.43
JS-D 82.80 79.93 81.77 83.98 83.44 80.61
T-S 83.79 81.09 82.68 84.66 84.85 82.57
TO-S 82.87 81.43 82.07 83.98 84.98 82.90
T+TO-S 82.87 81.13 82.97 84.65 84.43 82.43
T-S+D 83.72 81.60 82.80 84.62 85.44 82.87
TO-S+D 82.60 80.83 84.04 84.45 85.89 82.33
MDAN 83.56 84.45 84.12 84.96 85.38 84.91

RANDOM 81.28 83.41 81.03 82.67 82.46 80.74
ALL 85.65 87.78 86.07 87.27 85.51 85.56

SDG (JS) 84.03 85.98 84.17 86.25 86.22 85.24
SDG (MMD) 84.19 86.25 84.87 86.80 85.57 84.37
SDG (RÉNYI) 84.55 85.11 85.27 86.93 85.65 85.79
SDG (LOSS) 83.97 85.86 84.05 86.21 86.03 84.98

Table 3: Dependency parsing results (LAS) for each domain.

The Predictor The Bi-LSTM
parser proposed by Kiperwasser &
Goldberg (2016) is the predictor.

Baselines For dependency pars-
ing, we use the same baselines in-
troduced in the POS tagging task.

Results The performance (labeled
attachment scores, LAS) of depen-
dency parsing is reported in Table
3. Similar to POS tagging, MDAN
stand out among the baselines and
the term distribution-based method
(T-S) as well as its combination
with diversity features (T-S+D)
surpass other Bayesian optimiza-
tion baselines, while our mod-
els outperform the measurement-
based as well as neural network
based ones significantly in most domains. However, different from POS tagging, in this task,
the predictor trained on the entire source data still performs the best on some domains, which can be
explained by the complexity of the task. Yet, our models, e.g., the SDG (JS) and SDG (RÉNYI),
outperform the ALL model in the last two domains, with only half of the source data used.
3.5 SENTIMENT ANALYSIS

B D E K

JS-E 72.49 68.21 76.78 77.54
JS-D 75.28 73.75 72.53 80.05
T-S 75.39 76.27 81.91 83.41
TO-S 76.07 75.92 81.69 83.06
T+TO-S 75.75 76.62 81.74 83.39
T-S+D 76.20 77.60 82.66 84.98
TO-S+D 77.16 79.00 81.92 84.29
MDAN 78.65 80.72 84.46 86.04

RANDOM 76.78 75.28 78.25 82.27
ALL 78.48 79.68 80.58 84.50

SCL 74.57 76.30 78.93 82.07
SST 76.32 78.77 83.57 85.19
DAM 75.61 77.57 82.79 84.23
SDAMS-LS 77.95 78.80 83.98 85.96
SDAMS-SVM 77.86 79.02 84.18 85.78

SDG (JS) 79.37 81.06 82.38 85.78
SDG (MMD) 79.57 81.08 82.68 85.69
SDG (RÉNYI) 80.07 82.07 82.28 86.18
SDG (LOSS) 79.57 80.58 81.88 85.08

Table 4: Sentiment analysis results (accuracy %).

The Predictor We use the CNN classifier pro-
posed by Kim (2014) as the predictor in this task.

Baselines In addition to the baselines used in
POS tagging and dependency parsing, we use
a series of extra baselines from previous stud-
ies: 1) SCL, the structural correspondence learn-
ing proposed by Blitzer et al. (2006); 2) SST,
the sentiment sensitive thesaurus method (Bolle-
gala et al., 2011); 3) DAM, a general-purpose
multiple source domain adaptation method pro-
posed by Mansour et al. (2008); 4) SDAMS-LS
and SDAMS-SVM, the specially designed senti-
ment domain adaptation approach (Wu & Huang,
2016) for multiple sources with square loss and
hinge loss, respectively.

Results Table 4 presents the results of sentiment
analysis. Similar to previous tasks, it is observed
that our approach still performs competitively in
this task, even though compared with the algo-
rithms dedicatedly designed for sentiment anal-
ysis (e.g., SDAMS) and a general deep learning
based multiple source domain adaptation method
(MDAN). A potential reason for our weaker re-
sults on Electronics target domain is that dedicatedly designed methods include relation graphs among
key words as prior knowledge, while our model aims for a wider application without task-specific
consideration. Slightly different from previous tasks, in this task, around 40% source data are selected
upon the convergence of our models.

3.6 DISCUSSION

In all three tasks, our approach achieve the best overall performance when there are half or less than
half source data selected to train the predictor. The comparisons between our approach and the basic
distribution measure-based methods, the general-purpose multiple source approach as well as the
previous models (in sentiment analysis) across all tasks illustrate the effectiveness of our approach
in selecting the most useful instances for the target domain while eliminating the noise. However,
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domain variance still plays an important role affecting model performance, where it is also task-
specific. Compared to POS tagging and dependency parsing, in sentiment analysis there exists more
significant bias across domains, e.g., “small” could be positive in one domain but negative in another.

(a) Accuracies of different models
against training epochs.

(b) % of data selected by different
models against training epochs.

Figure 2: Investigation of using different models on the DVD
domain for sentiment classification.

Consequently, topic related do-
mains express similar sentiment
expressions. The investigation
of the selected data indicates
that our approach chooses more
instances from the similar do-
mains in sentiment analysis (e.g.,
BOOK ⇒ DVD), while the se-
lected instances in POS tag-
ging and dependency parsing are
more balanced across domains.
This observation suggests the ef-
fectiveness of our approach in
adapting different tasks with the
most appropriate strategy. In addition, there still exist side effects while leveraging noise filtering and
relevant instance selection, which can be observed from the slightly weaker results on Electronics
domain in sentiment analysis and the fact that our approach is outperformed by training on all of
the sources in parsing task. Such phenomenon implies that filtering some irrelevant instances may
lose intrinsic beneficial information for target domain classification, and policy gradient method with
partial data sometimes converges to a local optima given structured data with many indirect relations.

4 ABLATION STUDIES

4.1 PERFORMANCE AND EFFICIENCY OF DIFFERENT MODELS

To better understand the behavior of our model with different measurements, we investigate their
performance using a case study on the DVD domain in sentiment analysis. We record the accuracy
curves of different models with respect to their training epochs, as shown in Figure 2(a). In general,
our models show similar performance and are significantly better than the RANDOM one. Interestingly,
their curves are also similar to the ALL model but shows a much stable performance with the epoch
increasing. This observation demonstrates that there exist severe noise when using all source data
directly, while our models are able to overcome such limitation.

Another investigation is to study how much data are selected by different measurements in our
approach. We display the number of instances selected by the four measurements in Figure 2(b),
using the same domain and task setting as that in Figure 2(a). Overall our models with different
measurements share similar behavior in selecting source data in terms of selection numbers. They
tend to select more data at the beginning stage, i.e., before 10 epochs, then reduces selected instances
to a smaller set and keeps the performance of the predictor (comparing with the curve in Figure 2(a)).
Among all measurements, Rényi divergence tend to select less data instances while achieving a better
performance when we match the numbers with the results reported in Table 4.

4.2 DISTRIBUTION VISUALIZATION

To better demonstrate the effect of our approach, we use the sentiment analysis for the DVD domain
with SDG (RÉNYI) for visualized comparison among the distributions of instances in different
scenarios. Following Tzeng et al. (2014), we plot in Figure 3 the t-SNE visualizations of the feature
vectors learned from the feature extractor in four settings: vectors before training (learning with
initialized weights) (Figure 3(a)), trained with SDG (Figure 3(b)), trained with JS-E (Figure 3(c)),
and directly trained on all source data (Figure 3(d)). It is observed that, in original vectors, DVD
and BOOKS are similar, while ELECTRONICS and KITCHEN are different from them as well as to
each other. When trained with all source data, feature vectors could show some change in their
distributions where instances from different domains are mixed and closer to the target domain. In
the case where JS divergence is minimized for each domain, we can see a further mixture with closer
representation matching. However, their domain adaptation capability is limited since the vectors are
not optimized for the target domain. On the contrary, when trained with our approach, the selected
instances result in a highly similar distribution as that in the target domain, as shown in Figure 3(b)
the matched shape between the points in red and other colors, which is more beneficial than the
structure in non-RL based embeddings (3(c)). Consider that it is a dynamic selection process in our
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(a) before training (b) with SDG (c) with JS-E (d) trivial training

Figure 3: t-SNE visualization of learned features for sentiment analysis on the DVD domain in
different settings. Red cross, blue triangle, green star, and orange circle represent DVD, BOOKS,
ELECTRONICS, and KITCHEN (best viewed in color with enlarged figures).

approach, the observation from Figure 3 confirms that such process ensures that the selected data
could shape a target domain alike distribution without redundant instances.

5 RELATED WORK

Many studies have been conducted recently for domain adaptation with neural networks (Long et al.,
2015; 2016; Shu et al., 2018; Shankar et al., 2018). Their methodologies include representation
learning (Glorot et al., 2011; Chen et al., 2012; Baktashmotlagh et al., 2013; Zhao et al., 2018),
reweighing samples from the source domain (Borgwardt et al., 2006; III, 2007; Gong et al., 2013),
and seeking a way for explicit feature space transformation (Gopalan et al., 2011; Pan et al., 2011;
Long et al., 2013), etc.

Normally, the transferable knowledge across domains are derived from some particular data, while
others contribute less and are costly to be learned from (Axelrod et al., 2011; Ruder & Plank, 2017).
Thus, previous studies conduct domain adaptation through selecting relative and informative source
data according to the nature of the target domain, such as entropy-based source data selection (Song
et al., 2012), Bayesian optimization based selection (Ruder & Plank, 2017), etc. Especially in various
NLP tasks, Training data selection has been widely used, such as multilingual NER (Murthy et al.,
2018), machine translation (Chen et al., 2016; van der Wees et al., 2017), and language model (Moore
& Lewis, 2010). Consider that data selection in general is a combinatorics’ optimization problem
with exponential complexity, it thus needs to be reduced to a series of sequential decisions, while
RL provides a good solution in this case. For example, in Feng et al. (2018), they used sequential
one-step actions for each single instance where every action is decided based on the previous one.
In doing so, the selection is a consuming process where the complexity is related to the amount of
the source data. Fan et al. (2017) sought to allocate appropriate training data at different training
stages, which helps achieving comparative accuracy with less computational efforts compared with
the model trained on the entire data.

Another line of research related to this work is the representation adaptation across domains (Mansour
et al., 2008), which is the main strategy of domain adaptation for neural network models. Compared
to the aforementioned studies, the proposed approach in this paper combines dynamic data selection
and transferable representation learning in a unified RL framework, and is conducted in an effective
way on data batches. Especially different from previous work that requires a predefined selection
number, our approach not only ensures the selection of related instances in a dynamic manner, but
also effectively controls negative transfer (Rosenstein et al., 2005) with limited noise.

6 CONCLUSION

In this paper, we proposed a general data selection framework for domain adaptation via reinforcement
learning. In detail, the framework matches the representations of the selected data from the source
domain and the guidance set from the target domain and pass their similarity in different time steps as
rewards to guide the selection distribution generator. Through the generator, different instances from
the source domain are selected to train the task-specific predictor. Experiments were conducted on
POS tagging, dependency parsing, and sentiment analysis. Results from all tasks demonstrate that our
approach outperforms different baselines, especially the one trained on all source data. Ablation study
was also provided in analyzing the factors that affects the performance of our approach. Investigations
on model convergence, selection numbers, as well as distribution visualizations confirm the validity
and effectiveness of our approach.
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A INSIGHT OF REWARD FUNCTION DESIGN

In this section, we will briefly illustrate the motivation to formulate the one-step reward function as
Eq. (1). The main idea is to reduce the variance for exploring a path in the state space. By summing
up the discounted reward in a exploring path, we can obtain the value function:

V (s) =

N∑
j=1

γj−1r(sj−1, aj , sj) =

N∑
j=1
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= d(Φs0 ,Φs0
t )− γNd(ΦsN

B̂N
,ΦsN

t ),

where s0 denotes the the final state in last epoch served as an initial state for the current iteration. It
shows that the value function for our reinforcement learning process only rely on the initial state and
the final state, with a stronger dependency on the initial state as γ < 1. Such a result complies with the
intuition to minimize the current distribution discrepancy between source and target representations,
i.e., d(Φs0 ,Φs0

t ), as the objective, which implies that different exploring paths with similar initial
and final states gives alike total value function for policy updates. Hence we achieve the crucial idea
to minimize the trivial discrepancy loss in a reinforced exploring way that allows finding optima
closer to the global one and a lower path sampling variance.
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