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ABSTRACT

Normalization methods are a central building block in the deep learning toolbox.
They accelerate and stabilize training, while decreasing the dependence on manu-
ally tuned learning rate schedules. When learning from multi-modal distributions,
the effectiveness of batch normalization (BN), arguably the most prominent nor-
malization method, is reduced. As a remedy, we propose a more flexible approach:
by extending the normalization to more than a single mean and variance, we de-
tect modes of data on-the-fly, jointly normalizing samples that share common
features. We demonstrate that our method outperforms BN and other widely used
normalization techniques in several experiments, including single and multi-task
datasets.

1 INTRODUCTION

A challenge in optimizing deep learning models is the change in input distributions at each
layer, complicating the training process. Normalization methods, such as batch normalization
(BN, Ioffe & Szegedy, 2015) aim to overcome this issue — often referred to as internal covariate
shift (Shimodaira, 2000).1 When applied successfully in practice, BN enables the training of very
deep networks, shortens training times by supporting larger learning rates, and reduces sensitivity to
parameter initializations. As a result, BN has become an integral element of many state-of-the-art
machine learning techniques (He et al., 2016; Silver et al., 2017).

It can be difficult to standardize the activations in a neural network exposed to heterogeneous or
multi-modal data. When training a deep neural network on images that come from a diverse set of
visual domains, each with significantly different statistics, BN is not effective at normalizing the
activations with a single mean and variance (Bilen & Vedaldi, 2017). In this paper we relax the
assumption that the entire mini-batch should be normalized with the same mean and variance.

Our new normalization method, mode normalization (MN), first assigns samples in a mini-batch
to different modes via a gating network, and then normalizes each sample with estimators for
its corresponding mode (Figure 1). We further show that MN can be incorporated into other
normalization techniques such as group normalization (GN, Wu & He, 2018) by learning which
filters should be grouped together. The proposed methods can easily be implemented as layers in
standard deep learning libraries, and their parameters are learned jointly with the other parameters
of the network in an end-to-end manner. We evaluate MN on multiple classification tasks where it
achieved a consistent improvement over currently available normalization approaches.

2 RELATED WORK

Normalization. Normalizing input data (LeCun et al., 1998) or initial weights of neural net-
works (Glorot & Bengio, 2010) are known techniques to support faster model convergence, and
have been studied extensively. More recently, normalization has become part of functional layers
that adjust the internal activations of neural networks. Local response normalization (LRN) (Lyu &
Simoncelli, 2008; Jarrett et al., 2009) is used in various models (Krizhevsky et al., 2012; Sermanet
et al., 2014) to perform normalization in a local neighborhood, and thereby enforce competition

1The underlying mechanisms are still being explored from a theoretical perspective (Bjorck et al., 2018;
Kohler et al., 2018; Santurkar et al., 2018).
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Figure 1: In mode normalization, incoming samples {xn}Nn=1 are weighted by a set of gating
functions {gk}Kk=1. Gated samples contribute to component-wise estimators µk and σk, under which
the data is normalized. After a weighted sum, the batch is passed on to the next layer. After training,
the shifts and scales {µk, σk}Kk=1 are taken from running averages rather than batch statistics.

between adjacent pixels in a feature map. BN (Ioffe & Szegedy, 2015) implements a more global nor-
malization along the batch dimension. Unlike LRN, BN requires two distinct training and inference
modes of operation. At training time, samples in each batch are normalized with the batch statistics,
while during inference samples are normalized using precomputed statistics from the training set.
Heterogeneity and small batch sizes can both lead to inconsistencies between training and test data.
Our proposed method alleviates the former issue by better dealing with different modes in the data,
simultaneously discovering these and normalizing the data accordingly.

Several recent normalization methods (Ba et al., 2016; Ulyanov et al., 2017; Ioffe, 2017) have
emerged that perform normalization along the channel dimension (Ba et al., 2016), or over a single
sample (Ulyanov et al., 2017) to overcome the limitations of BN. Ioffe (2017) proposes a batch
renormalization strategy that clips gradients for estimators by using a predefined range to prevent
degenerate cases. While these methods are effective for training sequential and generative models
respectively, they have not been able to reach the same level of performance as BN in supervised
classification. Alongside these developments, BN has started to attract attention from theoretical
viewpoints (Kohler et al., 2018; Santurkar et al., 2018).

More recently, Wu and He (Wu & He, 2018) have proposed a simple yet effective alternative to
BN by first dividing the channels into groups and then performing normalization within each group.
The authors show that group normalization (GN) can be coupled with small batch sizes without any
significant performance loss, and delivers comparable results to BN when the batch size is large. We
build on this method in Section 3.2, and show that it is possible to automatically infer filter groupings.

An alternative normalization strategy is to design a data-independent reparametrization of the weights
in a neural network by implicitly whitening the representation obtained at each layer (Desjardins
et al., 2015; Arpit et al., 2016). Lastly, Kalayeh & Shah (2019) propose fitting a Gaussian mixture
model to account for the modality in intermediate feature distributions of some layers. While these
methods show promising results, they do not generalize to arbitrary non-linearities and layers, or
suffer from runtime restrictions.

Mixtures of experts. Mixtures of experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs, 1994) are
a family of models that involve combining a collection of simple learners to split up the learning
problem. Samples are thereby allocated to differing subregions of the model that are best suited
to deal with a given example. There is a vast body of literature describing how to incorporate
MoE with different types of expert architectures such as SVMs (Collobert et al., 2002), Gaussian
processes (Tresp, 2001), or deep neural networks (Eigen et al., 2013; Shazeer et al., 2017). Most
similar to ours, Eigen et al. (2013) propose using a different gating network at each layer in a
multilayer network to enable an exponential number of combinations of expert opinions. While our
method also uses a gating function at every layer to assign the samples in a mini-batch to separate
modes, it differs from the above MoE approaches in two key aspects: i) we use the assignments from
the gating functions to normalize the data within a corresponding mode; ii) the normalized data is
forwarded to a common module (i.e. a convolutional layer) rather than to multiple separate experts.
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Our method is also loosely related to Squeeze-and-Excitation Networks (Hu et al., 2018), that
adaptively recalibrate channel-wise feature responses with a gating function. Unlike their approach,
we use the outputs of the gating function to normalize the responses within each mode.

Multi-domain learning. Our approach also relates to methods that parametrize neural networks
with domain-agnostic and specific layers, and transfer the agnostic parameters to the analysis of
very different types of images (Bilen & Vedaldi, 2017; Rebuffi et al., 2017; 2018). In contrast
to these methods, which require the supervision of domain knowledge to train domain-agnostic
parameters, our method can automatically learn to discover modes both in single and multi-domain
settings, without any supervision. Recent work studies the role of adaptive intermediate features
based on task-conditioned inputs (Perez et al., 2017). From this viewpoint MN can be understood
as a conditional layer, however it has the different focus of accounting for modality in intermediate
feature distributions.

3 METHOD

We first review the formulations of BN and GN in Section 3.1, and introduce our method in Section 3.2.

3.1 BATCH AND GROUP NORMALIZATION

Our goal is to learn a prediction rule f : X → Y that infers a class label y ∈ Y for a previously
unseen sample x ∈ X . For this purpose, we optimize the parameters of f on a training set {xi}Nd

i=1

for which the corresponding label information {yi}Nd
i=1 is available, where Nd denotes the number of

samples in the data.

Without loss of generality, in this paper we consider image data as the input, and deep convolutional
neural networks as our model. In a slight abuse of notation, we also use the symbol x to represent
the features computed by layers within the deep network, producing a three-dimensional tensor
X = C ×H ×W where the dimensions indicate the number of feature channels, height and width
respectively. Batch normalization (BN) computes estimators for the mini-batch {xn}Nn=1 (usually
N � Nd) by average pooling over all but the channel dimensions.2 Then BN normalizes the samples
in the batch as

BN(xn) = α
(xn − µ

σ

)
+ β, (1)

where µ and σ are the mean and standard deviation of the mini-batch, respectively. The parameters
α and β are |C|-dimensional vectors representing a learned affine transformation along the channel
dimensions, purposed to retain each layer’s representative capacity (Ioffe & Szegedy, 2015). This
normalizing transformation ensures that the mini-batch has zero mean and unit variance when viewed
along the channel dimensions.

Group normalization (GN) performs a similar transformation to that in (1), but normalizes along
different dimensions. GN first separates channels c = 1, . . . , |C| into fixed groups Gj , over which it
then jointly computes estimators, e.g. for the mean µj = |Gj |−1

∑
xc∈Gj

xc. Because GN does not
average the statistics along the mini-batch dimension, it is appealing when it is not practical to use
large batch sizes.

A potential problem when using GN is that channels that are being grouped together might get
prevented from developing distinct characteristics in feature space. In addition, computing estimators
from manually engineered rules as those found in BN and GN might be too restrictive under some
circumstances, for example when jointly learning on multiple domains.

3.2 MODE NORMALIZATION

The heterogeneous nature of complex datasets motivates us to propose a more flexible treatment of
normalization. Before the actual normalization is carried out, the data is first organized into modes
to which it likely belongs. To achieve this, we reformulate the normalization in the framework of

2How estimators are computed is what differentiates many of the normalization techniques currently available.
Wu & He (2018) provide a detailed introduction.
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Algorithm 1 Mode normalization, training phase.

Input: parameters λ,K, batch of samples {xn},
small ε, learnable α, β,Ψ: C → RK .

Compute expert assignments:

gnk ←
[
softmax ◦Ψ(xn)

]
k

for k = 1 to K do

Determine new component-wise statistics:

Nk ←
∑

n gnk
〈x〉k ← 1

Nk

∑
n gnkxn

〈x2〉k ← 1
Nk

∑
n gnkx

2
n

Update running means:

〈x〉k ← λ〈x〉k + (1− λ)〈x〉k
〈x2〉k ← λ〈x2〉k + (1− λ)〈x2〉k

end for
for n = 1 to N do

Normalize samples with component-wise esti-
mators:

µk ← 〈x〉k
σ2
k ← 〈x2〉k − 〈x〉2k

ynk ← gnk
xn−µk√
σ2
k+ε

end for
Return: {α

∑
k ynk + β}n=1,...,N

Algorithm 2 Mode normalization, test phase.

Input: refer to Alg. 1.

Compute expert assignments:

gnk ←
[
softmax ◦Ψ(xn)

]
k

for n = 1 to N do

Normalize samples with running average
of component-wise estimators:

µk ← 〈x〉k
σ2
k ← 〈x2〉k − 〈x〉

2

k

ynk ← gnk
xn−µk√
σ2
k+ε

end for
Return: {α

∑
k ynk + β}n=1,...,N

Algorithm 3 Mode group normalization.

Input: parameter K, sample x ∈ C, small
ε, learnable α, β,Ψ: R→ RK .

Compute channel-wise gates:

gck ←
[
softmax ◦Ψ(xc)

]
k

for k = 1 to K do

Update estimators and normalize:

µk ← 〈x〉k
σ2
k ← 〈x2〉k − 〈x〉2k

yk ← x−µk√
σ2
k+ε

end for
Return: α

K

∑
k yk + β

mixtures of experts (MoE). In particular, we introduce a set of simple gating functions {gk}Kk=1
where gk : X → [0, 1] and

∑
k gk(x) = 1. In mode normalization (MN, Alg. 1), each sample in the

mini-batch is then normalized under voting from its gate assignment:

MN(xn) , α
( K∑

k=1

gk(xn)
xn − µk

σk

)
+ β, (2)

where α and β are a learned affine transformation, just as in standard BN.3 The mean µk and variance
σk estimates are weighted averages under the gating network. For example, the k’th mean is estimated
from the batch as

µk = 〈x〉k =
1

Nk

∑
n

gk(xn) · xn, (3)

where Nk=
∑

n gk(xn). In our experiments, we average overW andH, and parametrize the gating
functions via an affine transformation Ψ: C → RK of the channels, which is jointly learned alongside
the other parameters of the network. This is followed by a softmax activation, reminiscent of attention
mechanisms (Denil et al., 2012; Vinyals et al., 2015).

Mode normalization generalizes BN, which can be recovered as a special case by setting K=1, or
if the gates collapse: gk(xn)=const. ∀ k, n. To demonstrate how the extra flexibility helps, Fig. 2

3Learning individual {(αk, βk)}Kk=1 for each mode did not improve performance in preliminary experiments.
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BN before after

MN before after

Figure 2: Channel-wise histograms for conv3-64-1 in VGG13. Top row shows BN before and
after the normalization is applied to samples from CIFAR10. The bottom row shows how the layer’s
distribution is transformed when MN is inserted into the network.

shows histograms over channels in layer conv3-64-1 of VGG13 (Simonyan & Zisserman, 2015)
for 1024 samples on CIFAR10, both before and after the normalization via BN and MN with K=2.
MN normalizes channels with multi-modal behavior, something that BN visibly struggles with.

As in BN, during training we normalize samples with estimators computed from the current batch.
To normalize the data during inference (Alg. 2), we keep track of component-wise running estimates,
borrowing from online EM approaches (Cappé & Moulines, 2009; Liang & Klein, 2009). Running
estimates are updated in each iteration with a memory parameter λ ∈ (0, 1], e.g. for the mean:

〈x〉k = λ〈x〉k + (1− λ)〈x〉k. (4)

Bengio et al. (2016) and Shazeer et al. (2017) propose the use of additional losses that either prevent
all samples to focus on a single gate, encourage sparsity in the gate activations, or enforce variance
over gate assignments. We did not find such penalties necessary for our MN experiments. Moreover,
we wanted MN to be able to reduce to traditional BN, if that is the optimal thing to do. In practice,
we seldom observed this behavior: gates tend to receive an even share of samples overall, and they
are usually assigned to individual modes.

3.3 MODE GROUP NORMALIZATION

As discussed in Section 2, GN is less sensitive to the batch size (Wu & He, 2018). Here, we show
that GN can also be adapted to normalize based on soft assignments into different modes. Unlike
BN, GN computes averages over individual samples instead of the entire mini-batch. This makes
slight modifications necessary, resulting in mode group normalization (MGN, Alg. 3). Instead of
learning mappings with their pre-image in X , in MGN we learn a gating network g : R→ RK that
assigns channels to modes. After average-pooling over width and height, estimators are computed by
averaging over channel values xc ∈ R, for example for the mean µk = 〈x〉k = C−1

k

∑
c gk(xc) · xc,

where Ck =
∑

c gk(xc). Each sample is subsequently transformed via

MGN(x) ,
α

K

∑
k

x− µk

σk
+ β, (5)

where α and β are learnable parameters for channel-wise affine transformations. One of the notable
advantages of MGN (that it shares with GN) is that inputs are transformed in the same way during
training and inference.

A potential risk for clustering approaches is that clusters or modes might collapse into one (e.g., Xu
et al., 2005). Although it is possible to address this with a regularizer, it has not been an issue in
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either MN or MGN experiments. This is likely a consequence of the large dimensionality of feature
spaces that we study in this paper, as well as sufficient levels of variation in the data.

4 EXPERIMENTS

We consider two experimental settings to evaluate our methods: multi-task (Section 4.1) and single
task (Section 4.2). All experiments use standard routines within PyTorch (Paszke et al., 2017).4

4.1 MULTI-TASK

Data. In the first experiment, we wish to enforce heterogeneity in the data distribution, i.e. explicitly
design a distribution of the form P =

∑
d πdPd. We generated a dataset whose images come from

diverse distributions by combining four image datasets: i) MNIST (LeCun, 1998) which contains
grayscale scans of handwritten digits. The dataset has a total of 60 000 training samples, as well
as 10 000 samples set aside for validation. ii) CIFAR-10 (Krizhevsky, 2009) is a dataset of colored
images that show real world objects of one of ten classes. It contains 50 000 training and 10 000 test
images. iii) SVHN (Netzer et al., 2011) is a real-world dataset consisting of 73 257 training samples,
and 26 032 samples for testing. Each image shows one of ten digits in natural scenes. iv) Fashion-
MNIST (Xiao et al., 2017) consists of the same number of single-channel images as are contained in
MNIST. The images contain fashion items such as sneakers, sandals, or dresses instead of digits as
object classes. We assume that labels are mutually exclusive, and train a single network — LeNet
(LeCun et al., 1989) with a 40-way classifier at the end — to jointly learn predictions on them.

Mode normalization. We trained for 3.5 million data touches (15 epochs), with learning rate
reductions by 1/10 after 2.5 and 3 million data touches. We found that training for additional epochs
did not notably improve performance. The batch size was N=128, and running estimates were kept
with λ=0.1. We varied the number of modes in MN over K={2, 4, 6}. Average performances over
five random initializations as well as standard deviations are shown in Table 1. MN outperformed
standard BN, as well as all other normalization methods.

The additional overhead of MN is small; even in our naive implementation, setting K=6 resulted in
roughly a 5% increase in runtime. However, increasing K did not always improve the performance.
Higher mode numbers are likely to suffer from estimating statistics from smaller and smaller partitions
of the batch, a known issue in traditional BN. Experiments with larger batch sizes support this
argument (Appendix A). In all remaining trials, which involve single datasets and deeper networks,
we therefore fixed K=2.

Table 1: Test set error rates (%) of batch norm (BN), instance norm (IN, Ulyanov et al., 2017),
layer norm (LN, Ba et al., 2016), and mode norm (MN) in the multi-task setting for a batch size of
N=128. Shown are average top performances over five initializations alongside standard deviations.
Additional results for N={256, 512} are shown in the Appendix.

BN IN LN MN K

26.91 ± 1.08 28.87 ± 2.28 27.31 ± 0.71 23.16 ± 1.23 2
24.25 ± 0.71 4
25.12 ± 1.48 6

Mode group normalization. Group normalization is designed specifically for applications in
which large batch sizes become prohibitive. We simulated this regime by reducing batch sizes to
N={4, 8, 16}, and trained each model for 50 000 gradient updates. We used the same configuration
as before, except for a smaller initial learning rate γ=0.02, which was reduced by 1/10 after 35 000
and 42 500 updates. In GN, we allocated two groups per layer, and accordingly set K=2 in MGN. As
a baseline, results for BN and MN were also included. Average performances over five initializations
and their standard deviations are shown in Table 2. As previously reported by Wu & He (2018),

4Accompanying code is available under github.com/ldeecke/mn-torch.
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BN failed to maintain its performance when the batch size is small during training. Though MN
performed slightly better than BN, its performance also degraded in this regime. GN is more robust
to small batch sizes, yet MGN further improved over GN, and — by combining the advantages of GN
and MN — achieved the best performance for different batch sizes among all four methods.

Table 2: Test set error rates (%) for BN, MN, mode group norm (MGN) and group norm (GN) on
small batch sizes. Shown are average top performances over five initializations alongside standard
deviations.

N BN MN GN MGN
4 33.40 ± 0.75 32.80 ± 1.59 32.15 ± 1.10 31.30 ± 1.65
8 31.98 ± 1.53 29.05 ± 1.51 28.60 ± 1.45 26.83 ± 1.34

16 30.38 ± 0.60 28.70 ± 0.68 27.63 ± 0.45 26.00 ± 1.68

4.2 SINGLE TASK

Data. Here mode normalization is evaluated in single-image classification tasks, showing that
it can be used to improve performance in several recently proposed convolutional networks. For
this, we incorporated MN into multiple modern architectures, and evaluated it on CIFAR10 and
CIFAR100 datasets and then on a large-scale dataset, ILSVRC12 (Deng et al., 2009). Unlike
CIFAR10, CIFAR100 has 100 classes, but contains the same number of training images (600 images
per class). ILSVRC12 contains around 1.2 million images from 1000 object categories.

Network In Network. Since the original Network In Network (NIN, Lin et al., 2014) does not
contain any normalization layers, we modified the network architecture to add them, coupling each
convolutional layer with a normalization layer (either BN or MN). We trained the resulting models on
CIFAR10 and CIFAR100 for 100 epochs with SGD and momentum, using a batch size of N=128.
Initial learning rates were set to γ = 10−1, which we reduced by 1/10 at epochs 65 and 80 for
all methods. Running averages were stored with λ = 0.1. During training we randomly flipped
images horizontally, and cropped each image after padding it with four pixels on each side. Dropout
(Srivastava et al., 2014) is known to occasionally cause issues in combination with BN (Li et al.,
2018), and reducing it to 0.25 (as opposed to 0.5 in the original publication) improved performance.
For this large model, incorporating MN with K=2 into NIN adds less than 1% to the number of
trainable parameters.

We report the test error rates with NIN on CIFAR10 and CIFAR100 in Table 3 (left). NIN with
BN obtains an error rate similar to that reported for the original network in Lin et al. (2014), while
MN (K=2) achieves an additional boost of 0.4% and 0.6% over BN on CIFAR10 and CIFAR100,
respectively.

Table 3: Test set error rates (%) with BN and MN for NIN and VGG13.

Network In Network
Lin et al. BN MN

CIFAR10 8.81 8.82 8.42
CIFAR100 – 32.30 31.66

VGG13
BN MN
8.28 7.79

31.15 30.06

VGG Networks. Another popular class of deep convolutional neural networks are VGG net-
works (Simonyan & Zisserman, 2015). In particular we trained a VGG13 with BN and MN on
CIFAR10 and CIFAR100. For both datasets we optimized using SGD with momentum for 100
epochs, setting the initial learning rate to γ=0.1, and reducing it at epochs 65, 80, and 90 by a factor
of 1/10. The batch size was N=128. As before, we set the number of modes in MN to K=2, and
keep estimators with λ=0.1. When incorporated into the network, MN improves the performance of
VGG13 by 0.4% on CIFAR10, and over 1% on CIFAR100, see Table 3 (right).
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Residual Networks. Unlike NIN and VGG, Residual Networks (He et al., 2016) originally included
layer-wise batch normalizations. We trained a ResNet20 on CIFAR10 and CIFAR100 in its original
architecture (i.e. with BN), as well as with MN (K = 2), see Table 4 (left). On both datasets we
followed the standard training procedure and trained both models for 160 epochs of SGD with
momentum parameter of 0.9, and weight decay of 10−4. Running estimates were kept with λ=0.1,
the batch size set to N=128. Our implementation of ResNet20 (BN in Table 4) performs slightly
better than that reported in the original publication (8.42% versus 8.82%). Replacing BN with
MN achieves a notable 0.45% and 0.7% performance gain over BN in CIFAR10 and CIFAR100,
respectively.

Using the same setup as for ResNet20, we ran additional trials using a deeper ResNet56. As shown
in Table 4 (right), replacing all normalization layers with MN resulted in an improvement over BN of
roughly 0.5% on CIFAR10, and 1% on CIFAR100.

Table 4: Test error (%) for ResNet20, ResNet56 normalized with BN and MN.

ResNet20
He et al. BN MN

CIFAR10 8.75 8.44 7.99
CIFAR100 – 32.24 31.52

ResNet56
He et al. BN MN

6.97 6.87 6.47
– 29.70 28.69

We also tested our method in the large-scale image recognition task of ILSVRC12. Concretely, we
replaced BN in a ResNet18 with MN (K=2), and trained both resulting models on ILSVRC12 for
90 epochs. We set the initial learning rate to γ=0.1, reducing it at epochs 30 and 60 by a factor of
1/10. SGD was used as optimizer (with momentum parameter set to 0.9, weight decay of 10−4). To
accelerate training we distributed the model over four GPUs, with an overall batch size of N=256.
As can be seen from Table 5, MN results in a small but consistent improvement over BN in terms of
top-1 and top-5 errors.

Table 5: Top-1 and top-5 error rates (%) of ResNet18 on ImageNet ILSVRC12, with BN and MN.

Top-k Error BN MN
1 30.25 30.07
5 10.90 10.65

Qualitative analysis. In Fig. 3 we evaluated the experts gk({xn}) for samples from the CIFAR10
test set in layers conv3-64-1 and conv-3-256-1 of VGG13, and show the samples that have
been assigned the highest probability to belong to either of the K=2 modes. In the normalization
belonging to conv3-64-1, MN is sensitive to a red-blue color mode, and separates images accord-
ingly. In deeper layers, separations seem to occur on the semantic level. In conv-3-256-1 for
instance, MN separates smaller objects from those that occupy a large portion of the image.

5 CONCLUSION

Stabilizing the training process of deep neural networks is a challenging problem. Several normaliza-
tion approaches that aim to tackle this issue have recently emerged, enabling training with higher
learning rates, faster model convergence, and allowing for more complex network architectures.

Here, we showed that normalization approaches can be extended to allow the network to jointly
normalize its features within multiple modes. We further demonstrated that accounting for modality
in intermediate feature distributions results in a consistent improvement in classification performance
for various deep learning architectures. As part of future work, we plan to explore customized,
layer-wise mode numbers in MN, and automatically determining them, e.g. by using concepts from
sparse regularization.
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conv3-64-1

conv3-256-1

Figure 3: Test samples from CIFAR10 that were clustered together by two experts in an early layer
(top) and a deeper layer (bottom) of VGG13.
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A ADDITIONAL MULTI-TASK RESULTS

Shown in Table 6 are additional results for jointly training on MNIST, CIFAR10, SVHN, and Fashion-
MNIST. The same network is used as in previous multi-task experiments, for hyperparameters see
Section 4. In these additional experiments, we varied the batch size to N={256, 512}. For larger
batch sizes, increasing K to values larger than two increases performance, while for a smaller batch
size of N=128 (c.f. Table 1), errors incurred by finite estimation prevent this benefit from appearing.

Table 6: Test set error rates (%) of multiple normalization methods in the multi-task setting for large
batch sizes. The table contains average performances over five initializations, alongside their standard
deviation.

N BN IN LN MN K

256 26.34 ± 1.82 31.15 ± 3.46 26.95 ± 2.51 25.29 ± 1.31 2
25.04 ± 1.88 4
24.88 ± 1.24 6

512 26.51 ± 1.15 29.00 ± 1.85 28.98 ± 1.32 26.18 ± 1.86 2
24.29 ± 1.82 4
25.33 ± 1.33 6
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