

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GOOD: GEOMETRY-GUIDED OUT-OF-DISTRIBUTION MODELING FOR OPEN-SET TEST-TIME ADAPTATION IN POINT CLOUD SEMANTIC SEGMENTATION

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Open-set Test-time Adaptation (OSTTA) has been introduced to address the challenges of both online model optimization and open-set recognition. Despite
014 the demonstrated success of OSTTA methodologies in 2D image recognition,
015 their application to 3D point cloud semantic segmentation is still hindered by
016 the complexities of point cloud data, particularly the imbalance between known
017 (in-distribution, ID) and unknown (out-of-distribution, OOD) data, where known
018 samples dominate and unknown instances are often sparse or even absent. In this
019 paper, we propose a simple yet effective strategy, termed Geometry-guided Out-
020 of-Distribution Modeling (GOOD), specifically designed to address OSTTA for
021 3D point cloud semantic segmentation. Technically, we first leverage geometric
022 priors to cluster the point cloud into superpoints, thereby mitigating the numerical
023 disparity between individual points and providing a more structured data repre-
024 sentation. Then, we introduce a novel confidence metric to effectively distinguish
025 between known and unknown superpoints. Additionally, prototype-based repre-
026 sentations are integrated to enhance the discrimination between ID and OOD re-
027 gions, facilitating robust segmentation. We validate the efficacy of GOOD across
028 four benchmark datasets. Remarkably, on the Synth4D to SemanticKITTI task,
029 GOOD outperforms HGL by 1.93%, 8.99%, and 7.91% in mIoU, AUROC, and
FPR95, respectively.

031 1 INTRODUCTION

033 3D point cloud semantic segmentation is crucial for scene understanding in many applications like
034 autonomous driving (Wu et al., 2018; Choy et al., 2019) and robotics (Balsiger et al., 2019; Liu et al.,
035 2023). However, deep neural network (DNN)-based models often experience performance degra-
036 dation when exposed to unseen or a different target distribution than the source training data (Li et al.,
037 2023a; Duan et al., 2024). Test-time Adaptation (TTA) has emerged as a promising technique to mit-
038 igate these challenges by leveraging unlabeled data to update models dynamically for deployment
039 scenarios. Yet, most TTA methods focus primarily on addressing covariate shifts (distributional
040 differences in known classes), often neglecting semantic shift scenarios in which the target data in-
041 cludes novel categories absent from the training data. This oversight may pose significant risks in
042 security-critical applications, as models may misinterpret or fail to recognize unknown objects, as
043 illustrated in Fig. 1 a) and b).

044 Recent efforts in 2D image recognition (Li et al., 2023b; Lee et al., 2023; Gao et al., 2024; 2023;
045 Yu et al., 2024; Schlachter & Yang, 2024) have introduced Open-set Test-time Adaptation (OSTTA)
046 methods for online model optimization and open-set detection in generalized cases involving out-of-
047 distribution (OOD) categories. However, directly adapting these OSTTA methods to 3D point cloud
048 semantic segmentation is suboptimal and challenging. As shown in Fig. 1 c) and g), combining TTA
049 methods designed for 3D point cloud segmentation (TTA-3DSeg), such as GIPSO (Saltori et al.,
050 2022) and HGL (Zou et al., 2024), with 2D OSTTA approaches even results in reduced OOD detec-
051 tion performance compared to using these TTA methods alone. We speculate that this performance
052 drop stems from the reliance of existing OSTTA methods on image instance-level processing; when
053 transferred to 3D point clouds, such methods often fail to capture the geometric priors and spatial
interdependencies essential for effective 3D discrimination, leading to limited OOD detection capa-
bilities. Furthermore, these methods typically assume the availability of abundant OOD samples to

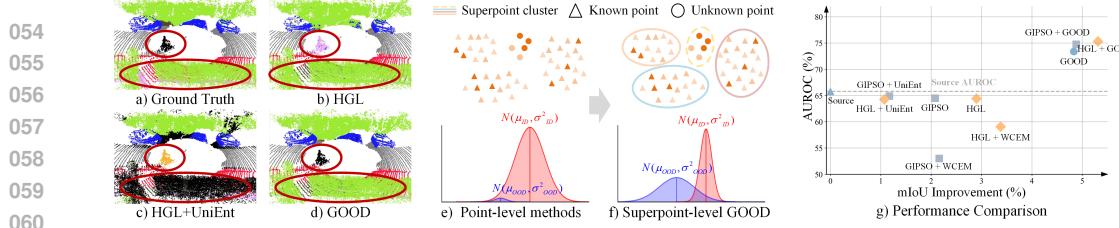


Figure 1: a) Black pixels indicate the OOD points in the target domain, such as the bicycle and bicyclist. b) The TTA-3DSeg model’s (HGL (Zou et al., 2024)) overconfidence leads to erroneous predictions of dynamic OOD points as stationary vegetation, which could lead to serious safety incidents. c) Directly adapting the existing OSTTA method (UniEnt (Gao et al., 2024)) to point cloud semantic segmentation would lead to the misclassification of dominant ID points as OOD. d) Our GOOD effectively mitigates the imbalance between ID and OOD points, achieving satisfactory performance in both open-set and closed-set. e) Due to the predominance of ID points, point-level OSTTA methods would misclassify a large number of ID points as OOD, undermining segmentation performance. f) GOOD addresses this by grouping individual points into geometrically connected superpoints. Darker colors indicate higher uncertainty. g) We compare GOOD with GIPSO (Saltori et al., 2022), HGL (Zou et al., 2024), +UniEnt (Gao et al., 2024), +WCEM (Lee et al., 2023).

assist in discerning discrepancies between in-distribution (ID) and OOD data. This assumption may not hold in 3D point cloud segmentation, where OOD samples could be very sparse.

In this paper, we delve into the open-set test-time adaptation for 3D point cloud semantic segmentation (OSTTA-3DSeg). As shown in Fig. 1 e) and f), rather than directly identifying imbalance individual points, we propose focusing on geometrically connected superpoints, which can better differentiate ID and OOD objects to relieve the imbalance in the quantity of ID and OOD points. To implement this approach, we develop a method termed Geometry-guided Out-of-Distribution (GOOD) modeling. Specifically, GOOD begins by clustering the point cloud into superpoints, effectively transforming the identification task from point-level to superpoint-level. Unlike existing OSTTA methods that purely rely on Gaussian Mixture Modeling (GMM) for pseudo-identification of ID and OOD data, we introduce a superpoint ID prototype strategy. This mechanism enhances the identification of ID superpoints, addressing false identifications by GMM, especially when OOD samples are sparse or absent. Furthermore, we incorporate temporal consistency to generate reliable pseudo-labels for stable and efficient online optimization. Similar to most existing TTA methods (Yuan et al., 2023; Wang et al., 2022), GOOD operates under an exponential moving average (EMA) framework. We validate GOOD across extensive experiments on four benchmarks with varying distribution-shift scenarios, showing that GOOD achieves new state-of-the-art performance.

Our contributions can be summarized as follows:

- To the best of our knowledge, we are the first to address open-set test-time adaptation for 3D point cloud semantic segmentation (OSTTA-3DSeg).
- We propose Geometry-guided Out-of-Distribution Modeling (GOOD), an effective method that shifts from point-level to superpoint-level identification, leading to more robust and coherent segmentation results.
- GOOD is designed to be flexibly integrated with existing TTA-3Dseg methods, substantially enhancing performance in open-set scenarios.

2 RELATED WORK

Test-time Adaptation: Test-time adaptation (TTA) has gained considerable attention due to its ability to adapt models to target data distributions without requiring access to source domain data during deployment. Extensive research has explored TTA in the image domain across tasks such as recognition (Wang et al., 2020; Niu et al., 2022; Chen et al., 2022), detection (Kim et al., 2022; VS et al., 2023; Veksler, 2023), and segmentation (Wang et al., 2023; Zhang et al., 2022). Recently, there have been some efforts (Saltori et al., 2022; Zou et al., 2024; Weijler et al., 2024; Wang et al., 2024) made to TTA-3DSeg. GIPSO (Saltori et al., 2022) is the first method tailored for TTA-3DSeg, generating pseudo-labels for each category based on confidence-ranked proportions and employing additional networks for pseudo-label propagation. HGL (Zou et al., 2024) introduces a local-global pseudo-label strategy to balance pseudo-label accuracy with computational efficiency. Despite their

108 effectiveness in handling covariate shifts, these methods largely overlook semantic shifts, where
 109 novel, unseen categories emerge in the target data. Addressing semantic shifts is critical, particularly
 110 in safety-critical applications such as autonomous driving, where robust recognition and response to
 111 novel objects are essential for reliable performance in the real-world.

112 **OOD Detection:** Traditional OOD detection usually enhances model reliability through advanced
 113 confidence metrics (Hendrycks & Gimpel, 2016; Hendrycks et al., 2019; Hsu et al., 2020; Liang
 114 et al., 2017; Liu et al., 2020) and strategically integrating auxiliary OOD data (Hendrycks et al.,
 115 2018; Katz-Samuels et al., 2022; Yang et al., 2021; Yu & Aizawa, 2019; Zhang et al., 2023). These
 116 approaches optimize the model’s discriminative capability, enabling more precise differentiation be-
 117 tween ID and OOD samples. More recently, several approaches (Li et al., 2023b; Lee et al., 2023;
 118 Gao et al., 2024; 2023; Yu et al., 2024; Schlachter & Yang, 2024) have emerged that optimize net-
 119 works using unlabeled target data to enhance OOD detection at test time. While promising, these
 120 methods are generally limited to 2D images, which loses effectiveness in 3D point cloud segmen-
 121 tation, where the predominance of ID samples and the scarcity of OOD samples lead to frequent
 122 misclassification of ID points as OOD, compromising model robustness in open-world applica-
 123 tions. Our work delves into this limitation and targets for proposing a dedicated framework for OSTTA-
 124 3DSeg, specifically designed to leverage geometric context for more robust segmentation in complex
 125 3D environments.

126

3 METHODOLOGY

127

3.1 PROBLEM SETUP AND OVERVIEW

128

129 In this paper, we focus on open-set test-time adaptation for 3D point cloud semantic segmen-
 130 tation (OSTTA-3DSeg), which aims to adapt the source model F_S online to the target model
 131 F_T without access to the source data during model optimization. In this setting, the target do-
 132 main T and source domain S exhibit both covariate shifts (distributional differences in shared
 133 classes) and semantic shifts (presence of new, unseen classes in the target domain). Formally, let
 134 $\mathcal{D}_S = \{(X_S^i, Y_S^i)\}_{i=1}^{N_S}$ represent the source domain dataset with label space $Y_S = \{1, \dots, C_S\}$,
 135 and let $\mathcal{D}_T = \{(X_T^j, Y_T^j)\}_{j=1}^{N_T}$ represent the target domain dataset with label space $Y_T =$
 136 $\{1, \dots, C_S, \dots, C_T\}$, where C_S and C_T denote the number of classes in the source and target do-
 137 mains, respectively. In traditional closed-set TTA, $C_S = C_T$, whereas in OSTTA, $C_S < C_T$. The
 138 objective is to accurately segment points from the known (ID) classes C_S while rejecting points
 139 from the unknown (OOD) classes in $C_T \setminus C_S$, even amidst substantial ID-OOD imbalance.

140

141 Traditional 2D OOD detection methods often treat individual instances in isolation, but for 3D data,
 142 spatial coherence and contextual relationships are crucial for accurate detection. To address this,
 143 we introduce the Geometry-guided Out-of-Distribution Modeling (GOOD) approach, as depicted in
 144 Fig. 2. GOOD utilizes a self-training strategy based on the mean-teacher EMA framework, where
 145 the teacher model $F_{T,tea}$ generates pseudo-labels that the student model $F_{T,stu}$ leverages for model
 146 optimization. To realize robust ID-OOD separation and accurate ID segmentation, GOOD incorpo-
 147 rates two key branches within the teacher model: the Superpoint Representation Branch for effec-
 148 tive detection of OOD points by grouping spatially coherent regions, and the Temporal Pseudo-label
 149 Branch to improve ID category identification by enforcing consistency across sequential frames.
 150 These components enable GOOD to capitalize on both temporal and geometric patterns involved in
 151 3D data, enhancing OOD detection and ID segmentation performance.

152

3.2 SUPERPOINT REPRESENTATION BRANCH

153

154 In applications like autonomous driving, point cloud segmentation models often encounter far fewer
 155 unknown (OOD) points compared to known (ID) points, leading to significant class imbalance. This
 156 imbalance can undermine instance-based methods (Li et al., 2023b; Gao et al., 2024; Schlachter
 157 & Yang, 2024), resulting in frequent misclassifications. To address this challenge, we propose the
 158 Superpoint Representation Branch (SRB), as illustrated in Fig. 2 b), c), and d). The SRB trans-
 159 forms discrete individual points into spatially correlated superpoints to mitigate extreme ID-OOD
 160 imbalance. Specifically, we first aggregate multiple frames of point clouds and apply a non-learning
 161 clustering method to generate superpoints, capturing spatial coherence across points. We then define
 162 superpoint purity and superpoint entropy to quantify confidence: purity measures the homogeneity
 163 of ID or OOD points within each superpoint, while entropy indicates confidence based on distri-

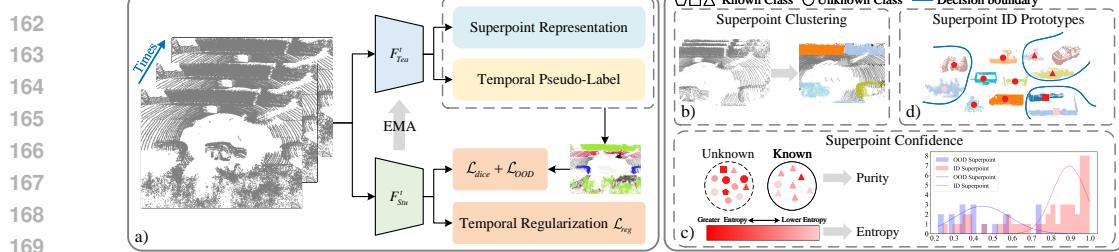


Figure 2: Method overview. a) GOOD consists of two branches: the Superpoint Representation Branch and the Temporal Pseudo-label Branch. The Superpoint Representation Branch further includes three key components—Superpoint Clustering, Superpoint Confidence, and Superpoint ID Prototypes. Specifically, b) Superpoint Clustering generates superpoints by aggregating multiple frames of point clouds and applying a clustering algorithm. Then, c) Superpoint Confidence introduces superpoint purity and superpoint entropy as metrics to distinguish between ID and OOD superpoint preliminarily. Finally, to address the noise and potential absence of OOD points, we additionally introduce d) Superpoint ID Prototypes to further refine the classification.

butional uncertainty. Based on these metrics, a Gaussian Mixture Model (GMM) is then employed to differentiate ID and OOD superpoints. Finally, we establish superpoint ID prototypes to further refine the identification of ID superpoints, addressing potential misclassifications by GMM, particularly in cases where OOD samples are sparse or absent.

Superpoint Clustering. We propose a heuristic pre-segmentation to divide the point cloud into a set of superpoints, with each superpoint demonstrating high purity and typically containing points from only one category. Outdoor LiDAR scans, unlike indoor scenes, often feature well-separated objects, especially after ground points are identified and removed. Inspired by this philosophy, we design an intuitive approach to pre-segment each LiDAR frame, including three steps: 1) Combine temporal frames. Using the ego poses, we align the current and previous frames to produce a denser point cloud, which facilitates clustering by improving the continuity of object structures. 2) Remove ground points. To isolate objects from the ground, we apply RANSAC (Fischler & Bolles, 1981) to estimate the ground surface. To account for variations in ground slope, we partition the point cloud into smaller sub-regions and apply RANSAC to each sub-region individually. 3) Cluster into superpoints. We apply DBSCAN (Ester et al., 1996) to the remaining point cloud to form superpoints. Its ability to identify clusters of arbitrary shapes without a preset cluster number makes it ideal for complex outdoor LiDAR data and improves noise robustness.

Superpoint Confidence. Calculating prediction confidence and using this information for reliable OOD detection is essential in OSTTA. With the intuition that points within known (ID) superpoints exhibit greater geometric and temporal consistency than those within unknown (OOD) superpoints (confirmed in Fig. 2 c) right and Appendix A.3.5), we first introduce the metric of superpoint purity \mathcal{C}_k^{pur} to evaluate the internal consistency of each superpoint. Formally, given a set of superpoints $S = \{s_k\}_{k=1}^K$ and the corresponding softmax predictions $P = \{\hat{p}_k\}_{k=1}^K$, we normalize the label $\hat{y}_{j,c}$ (the c -th element of the one-hot label for point j in superpoint s_k) within each superpoint to obtain the probability distribution $\mathcal{P}_{k,c}$, and then calculate the superpoint purity \mathcal{C}_k^{pur} as:

$$\begin{aligned} \{s_k, \hat{p}_k\}_{k=1}^K &\leftarrow \text{DBSCAN}(\{x_i\}_{i=1}^N), \hat{p}_k \in R^{N_k \times C}, \\ \hat{y}_{j,c} &= \mathbf{1}_c \left(\arg \max_c \{\hat{p}_{k,c}\}_{c \in C} \right), \mathcal{P}_{k,c} = \frac{1}{N_k} \sum_{j \in \mathcal{N}_k} \hat{y}_{j,c}, \\ \mathcal{C}_k^{pur} &= 1 - \frac{1}{\log C} \sum_{c=1}^C \mathcal{P}_{k,c} \log \mathcal{P}_{k,c}, \end{aligned} \quad (1)$$

where $\mathbf{1}_c(\cdot)$ denotes the one-hot transformation, \mathcal{N}_k is the point number in superpoint, C is the number of known classes, and $\hat{p}_{k,c}$ denotes the softmax probability of point in superpoint s_k belonging to the c -th class. However, superpoint purity alone may be insufficient in cases where the majority of points show only a slight preference for one class over others, making the metric less reliable. To address this, we further introduce the superpoint entropy \mathcal{C}_k^{ent} , a soft version of Eq. 1 that replaces the $\mathbf{1}_c(\arg \max(\cdot))$ term with softmax(.) to better capture distributional uncertainty.

Accordingly, we obtain the final function of superpoint confidence as $\mathcal{C}_k^{sup} = \mathcal{C}_k^{ent} \cdot \mathcal{C}_k^{pur}$, which is empirically validated in Appendix A.3.5 to achieve a good trade-off between closed-set and open-set

216 **performance.** As shown in Fig. 2 c), we empirically observe that the bimodal distribution of \mathcal{C}_k^{sup}
 217 effectively distinguishes ID and OOD superpoints, with two distinct peaks corresponding to each
 218 type. Consequently, we model the distribution of \mathcal{C}_k^{sup} using a two-component GMM, i.e. $\mathcal{G}(x)$.
 219 Here, the component with the larger mean represents the ID superpoints, while the component with
 220 the smaller mean corresponds to the OOD superpoints.

$$221 \quad \mathcal{G}(x) = \pi(x)\mathcal{N}(x | \mu_{ID}, \sigma_{ID}^2) + (1 - \pi(x))\mathcal{N}(x | \mu_{OOD}, \sigma_{OOD}^2), \quad (2)$$

222 where $\pi(x)$ denotes the probability that \mathcal{C}_k^{sup} belongs to the ID superpoint, μ_{ID}, σ_{ID}^2 and
 223 $\mu_{OOD}, \sigma_{OOD}^2$ denote the mean and variance of the ID and OOD superpoint, respectively. Although
 224 superpoints alleviate the extreme ID-OOD imbalance, ID superpoints may still be misclassified as
 225 OOD. To address this, we discard mixed data in the middle, classifying superpoints below threshold
 226 μ_{OOD} as OOD S_{OOD} and above threshold μ_{ID} as ID S_{ID} .

227 **Superpoint ID Prototypes.** While the GMM based on superpoint confidence enhances ID and
 228 OOD discrimination, some limitations remain. Specifically, superpoint confidence relies solely on
 229 the classifier’s logit output, overlooking embedding features of the superpoints. This omission can
 230 lead to mixed ID and OOD superpoints. Furthermore, in certain scenarios, OOD samples may be
 231 absent. Nevertheless, the GMM-based partitioning method forces each point cloud frame to contain
 232 both ID and OOD superpoints, potentially resulting in the over-segmentation of OOD regions and
 233 degrading model performance. Moreover, we observe that while OOD superpoints may be incon-
 234 sistently identified, ID superpoints tend to be more stable and reliable, as shown in Fig. 2 c) right.
 235 These observations motivate our development of a superpoint ID prototype strategy to achieve more
 236 accurate and robust identification.

237 Concretely, at each timestep t , we construct a set of prototypes for each ID class based on superpoints
 238 S_{ID} . For each class c , we calculate the prototype $\hat{\rho}_c^t$ as the centroid of all ID superpoint embeddings,
 239 defined as $\hat{\rho}_c^t = \frac{1}{N_c} \sum_k^{\mathcal{N}_c} z_k^t$, where \mathcal{N}_c is the number of superpoint of current class c and z_k^t is
 240 the mean embedding feature of each superpoint. To stabilize training, we update the prototypes
 241 incrementally using EMA: $\hat{\rho}_c^t = \alpha \hat{\rho}_c^{t-1} + (1 - \alpha) \rho_c^t$. Empirically, we set EMA coefficient $\alpha = 0.99$.
 242 Then we can evaluate the similarity between pseudo-labeled OOD superpoints and ID prototypes,
 243 identifying potential misclassifications among the OOD superpoints. This is formalized as:

$$244 \quad \hat{s}_k = \begin{cases} \text{OOD}, & \text{if } \text{sim}(\textcolor{brown}{z}_k^t, \hat{\rho}_c^t) < \tau \\ \text{ID}, & \text{if } \text{sim}(\textcolor{brown}{z}_k^t, \hat{\rho}_c^t) \geq \tau \end{cases}, \quad (3)$$

246 where $\text{sim}(a, b)$ measures the cosine similarity between a and b , τ is an empirical threshold. We
 247 define $\hat{Y}_{OOD} = \sum_{k \in OOD} \hat{s}_k$ as OOD pseudo-label.

248 In summary, the dedicated SRB reliably separates ID and OOD superpoints, effectively addressing
 249 extreme cases where OOD samples are minimal or absent.

251 3.3 TEMPORAL PSEUDO-LABEL BRANCH

253 Existing TTA-3DSeg methods (Saltori et al., 2022; Zou et al., 2024) typically assign pseudo-labels
 254 for ID classes based solely on single-frame information, overlooking valuable context provided by
 255 consecutive frames. To overcome this limitation, we propose an effective Temporal Pseudo-labels
 256 Branch (TPB) that fully leverages temporal information. Technically, we start by inputting the
 257 current point cloud X^t into the teacher model $F_{T,tea}^t$, generating the softmax prediction P^t and
 258 one-hot label \hat{Y}^t . Subsequently, we project both the current frame (X^t, P^t) and the previous frames
 259 (X^{t-1}, P^{t-1}), ..., (X^{t-w}, P^{t-w}) into the global coordinate system. Following prior work (Saltori
 260 et al., 2022; Zou et al., 2024), we assume access to reliable self-pose for temporal alignment; if
 261 this assumption is violated (i.e., the pose is noisy), performance may degrade without targeted ad-
 262 justments. Further analyses of noise effects, alternative solutions, limitations of this assumption,
 263 and verification details are provided in the Appendix A.3.6. For each point x_i^t in the X^t , we then
 264 leverage K-NN to identify temporal neighborhoods $Ne_i^{t-1}, \dots, Ne_i^{t-w}$ from each preceding frame.
 265 The neighborhood label $y_i^{t,Ne}$ for x_i^t is then calculated as the aggregated label from its neighboring
 266 points in previous frames:

$$267 \quad \hat{y}_i^{t,Ne} = \mathbf{1}_c(\arg \max_c \{ \sum_{i \in Ne_i^{t-1}, \dots, Ne_i^{t-w}} p_i \}_{c \in C}). \quad (4)$$

268 Next, we assign ID pseudo-labels \hat{Y}_{ID} only to points where the predictions are consistent between
 269 the current pseudo-label and its temporal neighborhood pseudo-label:

Table 1: Results of different methods on Synth4D to SemanticKITTI. \uparrow indicates that larger values are better, and vice versa.

Model	Vehicle	Pedestrian	Road	Sidewalk	Terrain	Manmade	Vegetation	mIoU(\uparrow)	AUROC(\uparrow)	FPR95(\downarrow)
Source	60.95	15.58	73.57	27.14	16.36	32.04	56.20	40.26	65.80	78.39
BN (Nado et al., 2020)	-1.47	-0.82	-4.35	-5.13	+6.55	+10.03	+2.15	+0.99	65.36	79.98
TENT (Wang et al., 2020)	-1.28	-0.68	-4.41	-5.19	+6.61	+10.11	+2.41	+1.08	65.26	83.89
ConjugatePL (Goyal et al., 2022)	-0.87	-0.23	-4.72	-5.40	+6.76	+10.36	+3.28	+1.30	65.96	79.91
GIPSO (Saltori et al., 2022)	+10.57	-6.12	+0.86	-5.26	+8.36	+3.31	+2.82	+2.08	64.47	80.40
+Seat	+9.39	-6.54	-0.54	-5.64	+8.84	+3.96	+3.21	+1.81	54.46	95.41
+UniEnt (Gao et al., 2024)	+7.53	-7.12	-1.37	-5.50	+8.94	+3.30	+2.46	+1.17	64.90	82.27
+WCEM (Li et al., 2023b)	+11.26	-6.35	-1.43	-7.31	+10.09	+4.58	+4.30	+2.16	53.01	100.0
+GOOD	+12.13	-2.15	+1.64	-1.29	+7.98	+10.96	+4.94	+4.88	74.76	73.30
HGL (Zou et al., 2024)	+10.13	-7.33	-0.10	+0.37	+8.60	+5.97	+2.67	+2.90	64.40	79.82
+Seat	+4.87	-7.93	-3.29	+0.30	+7.48	+6.36	+2.24	+1.43	66.43	75.99
+UniEnt (Gao et al., 2024)	+6.45	-6.57	-6.73	-1.08	+8.56	+5.75	+1.15	+1.07	64.28	83.34
+WCEM (Li et al., 2023b)	+12.24	-5.78	-0.19	-0.13	+8.26	+6.88	+2.43	+3.38	59.07	100.0
+GOOD	+13.65	-0.02	+1.92	-0.04	+6.23	+9.93	+5.56	+5.31	75.31	71.31
GOOD	+12.95	+0.01	+1.14	-0.66	+5.65	+9.90	+4.88	+4.83	73.39	71.91

$$\hat{y}_{i, ID}^t = y_i^{t, Ne}, \text{s.t. } \hat{y}_i^t = \hat{y}_i^{t, Ne}. \quad (5)$$

Finally, we remove overlapping regions of \hat{Y}_{OOD} from \hat{Y}_{ID} , resulting in a filtered ID pseudo-label.

Notably, the EMA-based teacher-student architecture in TPB not only explicitly enforces temporal consistency within the point cloud data but also implicitly promotes temporal stability within the model itself, thereby enhancing both accuracy and robustness. Additionally, it does not require extra threshold hyperparameters to balance precision and generalization.

3.4 TEMPORAL-BASED FEATURE REGULARIZATION

Following (Chen & He, 2021; Saltori et al., 2022; Zou et al., 2024), we also introduce temporal regularization to enforce consistency of projected features between corresponding points across consecutive frames:

$$\mathcal{D}_{t \rightarrow t-w}(q^t, z^{t-w}) = -\frac{q^t}{\|q^t\|_2} \cdot \frac{z^{t-w}}{\|z^{t-w}\|_2}, \mathcal{L}_{reg} = \frac{1}{2} \mathcal{D}_{t \rightarrow t-w}(q^t, z^{t-w}) + \frac{1}{2} \mathcal{D}_{t-w \rightarrow t}(q^{t-w}, z^t), \quad (6)$$

where q^t and z^{t-w} are the projected feature of corresponding points in frames t and $t-w$, generated by an additional encoder network $h(\cdot)$ and predictor head $f(\cdot)$, respectively. The temporal consistency loss \mathcal{L}_{reg} is defined as the average bidirectional feature distance between frames. Please refer to Appendix A.2.1 for more details.

3.5 TEST-TIME MODEL ADAPTATION

Given the class imbalance in point clouds and to prevent confusion between unknown and known points, we adopt the Dice loss \mathcal{L}_{dice} as the ID pseudo-label learning objective. Additionally, we introduce an entropy-based OOD loss, $\mathcal{L}_{ood} = -\frac{1}{\|S_{OOD}\|} \sum_{x \in S_{OOD}} H(F_{T,stu}(x))$ to supervise pseudo-labeled OOD superpoints, where $H(\cdot)$ denotes the entropy. The overall test-time optimization objective for the student model is defined as $\mathcal{L}_{final} = \mathcal{L}_{dice} + \mathcal{L}_{reg} + \lambda \mathcal{L}_{ood}$, where λ is a trade-off hyperparameter. During the iterative training process, the teacher model is updated indirectly by the student model using the EMA strategy.

4 EXPERIMENTS

4.1 SETUP

Source and Target Datasets: Following previous studies, we evaluate our method on the widely used Lidar benchmark datasets: **Synth4D** (Saltori et al., 2022), **SynLiDAR** (Xiao et al., 2021), **SemanticKITTI** (Behley et al., 2019) and **nuScenes** (Caesar et al., 2020). The source model is pre-trained on virtual datasets (Synth4D or SynLiDAR) and adapted to real-world datasets (SemanticKITTI or nuScenes). See Appendix A.3.1 for more details.

Label Mapping: Since no standard setup currently exists for OSTTA-3DSeg, we propose standardized training and evaluation settings to facilitate future research in this area. We design virtual-to-real experiments based on LiDAR beam configurations as: Synth4D-64 to SemanticKITTI, Synth4D-32 to nuScenes, and SynLiDAR to SemanticKITTI. For the first two experiments, following GIPSO (Saltori et al., 2022), we remap the SemanticKITTI and nuScenes datasets to match Synth4D by selecting seven common classes and treating all remaining categories as OOD classes.

Table 2: Results of different methods on Synth4D to nuScenes.

Model	Vehicle	Pedestrian	Road	Sidewalk	Terrain	Manmade	Vegetation	mIoU(↑)	AUROC(↑)	FPR95(↓)
Source	24.69	17.29	68.66	17.68	9.34	58.89	47.75	35.59	60.44	76.97
BN (Nado et al., 2020)	+0.45	-0.44	-0.17	+0.01	+0.71	-0.40	+1.27	+0.31	60.66	76.85
TENT (Wang et al., 2020)	+0.34	-0.37	+0.42	+0.17	+0.25	+0.38	+0.61	+0.25	60.57	76.88
ConjugatePL (Goyal et al., 2022)	+0.87	-0.41	+0.62	+0.69	+0.50	+0.56	+1.06	+0.64	61.11	76.71
GIPSO (Saltori et al., 2022)	+1.89	-1.63	-4.81	+1.12	+3.74	-0.35	+3.59	+0.48	58.66	78.75
+SeaT	+0.91	-1.82	-6.56	+0.83	+2.71	-1.76	+1.77	-0.60	55.97	81.40
+UniEnt (Gao et al., 2024)	+1.55	-1.86	-6.19	+0.62	+3.53	-1.00	+3.32	-0.04	58.77	77.65
+WCEM (Li et al., 2023b)	+2.48	-1.24	-0.92	+1.40	+4.12	-0.91	+2.25	+1.01	57.80	83.51
+GOOD	-0.15	-0.37	+0.94	+1.47	+3.69	+0.85	+5.23	+1.67	62.95	73.25
HGL (Zou et al., 2024)	+2.49	-4.21	-2.82	-0.18	+5.07	-0.13	+3.40	+0.51	57.67	82.01
+SeaT	+1.61	-4.03	-2.04	-0.45	+3.97	-1.17	+1.07	-0.15	57.75	79.15
+UniEnt (Gao et al., 2024)	+1.56	-4.63	-4.36	-0.74	+4.84	-1.09	+2.44	-0.30	57.42	81.02
+WCEM (Li et al., 2023b)	+2.63	-3.39	-1.69	-0.11	+5.30	-0.39	+2.43	+0.66	57.14	84.77
+GOOD	+1.04	+0.11	+3.67	+1.88	+3.53	+2.07	+5.75	+2.62	62.20	74.82
GOOD	+0.51	-0.21	+3.08	+1.79	+3.15	+1.53	+5.53	+2.23	64.60	72.60

Table 3: Results of different methods on SynLiDAR to SemanticKITTI.

Model	car	bike	mtcyc	truck	pers.	brk	mtch	road	park	sidew	oth-ve	build	force	vege	trunk	term.	pole	traff.	mIoU(↑)	AUROC(↑)	FPR95(↓)
Source	56.13	3.82	17.86	16.77	17.49	16.49	33.32	73.14	10.53	40.30	0.02	8.67	63.90	15.73	28.50	32.45	10.89	26.95	54.90	86.67	
BN (Nado et al., 2020)	+4.37	+1.04	+1.76	+7.04	+1.12	-0.07	+1.21	-1.89	-0.04	-0.01	+4.65	-0.46	-1.04	-0.53	+0.28	-0.70	+0.35	+1.10	55.60	85.29	
TENT (Wang et al., 2020)	+6.52	+1.32	+2.83	+9.50	+2.62	+1.33	+2.17	-1.39	-3.87	-3.23	-0.01	+11.78	-0.90	-2.59	+0.66	-3.81	-1.92	+1.39	+1.19	58.27	81.15
ConjugatePL (Goyal et al., 2022)	+6.15	+1.05	+2.66	+9.74	+2.68	+4.19	-1.20	-1.86	-3.17	-3.93	+0.00	+12.51	-0.32	-0.02	+3.62	-5.59	-3.03	+2.30	+1.38	60.11	80.09
GIPSO (Saltori et al., 2022)	+4.04	-0.23	+1.14	+2.56	-2.26	-5.26	-4.81	+0.58	+5.64	+3.24	+0.02	+3.08	+1.70	+1.46	+4.11	+4.90	+2.79	+3.66	+1.46	57.95	82.97
+SeaT	+6.54	-0.92	+0.54	+2.33	-6.73	-3.57	-2.50	+5.10	+1.98	+0.05	+3.05	+2.13	+1.21	+4.18	+4.32	+1.21	+3.69	+1.15	56.28	85.30	
+UniEnt (Gao et al., 2024)	+13.10	-0.92	+0.55	+8.77	-3.80	-7.80	-0.49	-0.95	+6.07	+2.47	+0.18	+6.00	+2.34	-10.29	+4.07	-0.63	+2.50	+3.01	+1.28	44.13	85.95
+WCEM (Li et al., 2023b)	+4.29	-0.25	+1.33	+2.18	-2.63	-4.62	-0.43	+1.07	+5.80	+3.75	+0.02	+3.81	+1.60	+1.54	+3.94	+5.37	+3.60	+4.27	+1.92	62.57	100.0
+GOOD	+17.16	+0.82	+4.39	+16.04	-0.13	-3.33	+6.00	+6.65	+4.19	+3.21	+0.02	+16.11	+1.13	+6.45	+5.48	-0.42	+5.92	+6.16	+5.27	71.02	71.66
HGL (Zou et al., 2024)	+10.99	-0.40	-4.74	+7.55	-2.99	-3.34	-18.80	+1.43	+5.13	+3.49	+0.01	+13.26	+2.90	+2.89	+6.04	+4.58	+3.75	+2.54	+1.90	62.91	79.13
+SeaT	+9.88	-1.14	-2.85	+7.63	-3.52	-5.81	-8.52	-2.31	+4.87	+3.72	+0.10	+10.46	+2.05	+4.48	+4.94	+4.46	+5.39	+3.14	+1.68	60.70	79.62
+UniEnt (Gao et al., 2024)	+11.26	-1.68	-0.91	+10.61	-0.50	-3.80	-5.08	-2.13	+4.50	+3.79	+0.07	+10.70	+1.32	-8.50	+4.19	+6.03	+5.76	+2.73	+1.31	56.08	100.0
+WCEM (Li et al., 2023b)	+13.47	-0.21	-5.48	+8.60	-2.54	-6.55	-6.51	+0.93	+4.87	+4.12	+0.03	+11.71	+2.90	-0.41	+6.16	+6.17	+5.17	+3.14	+2.28	71.05	100.0
+GOOD	+17.07	+0.70	+2.93	+13.14	-0.16	-2.58	+4.10	+6.49	+4.49	+3.81	+0.00	+15.33	+1.60	+6.50	+3.95	-0.32	+5.72	+3.88	+4.83	72.02	68.94
GOOD	+17.67	-0.80	+3.39	+14.85	+1.59	-2.61	+6.47	+5.99	+1.72	+3.18	-0.01	+17.00	+1.40	+6.58	+2.96	-1.31	+7.15	+6.04	+5.03	73.23	69.96

In the SynLiDAR to SemanticKITTI experiment, we follow (Cen et al., 2022), designating *other-vehicle* as the OOD class, while all other categories are treated as ID classes.

Evaluation Protocol: Following recent researches (Saltori et al., 2022; Zou et al., 2024), we evaluate the performance of TTA methods on a new incoming frame utilizing the model that has been adapted to the preceding frame. To evaluate the adapted model in an open-world setting, we consider both closed-set and open-set metrics. Specifically, the closed-set performance is measured by the improvement in mean intersection-over-union (mIoU) over the source model, while open-set performance is evaluated using the area under the receiver operating characteristic curve (AUROC) and the false positive rate of OOD samples at a 95% true positive rate for ID samples (FPR95).

Baseline Methods: We mainly compare our method with TTA-3DSeg baselines, such as **GIPSO** (Saltori et al., 2022) and **HGL** (Zou et al., 2024), and image-based OSTTA methods, including **UniEnt** (Gao et al., 2024) and **WCEM** (Lee et al., 2023). In addition, we introduce a straightforward baseline based on hyperparameter thresholds searching to distinguish ID and OOD points, termed Searching Thresholds (**SeaT**). This strategy identifies OOD points by selecting points with the lowest confidence.

Implementation Details: Following (Saltori et al., 2022; Zou et al., 2024), we use the MinkowskiUNet-18 (Choy et al., 2019) as our backbone and set the voxel size to 0.05. For online model adaptation, the batch size is set to 1 across all benchmark datasets. We configure hyperparameters as $w = 3$, $\tau = 0.85$, and $\lambda = 0.1$ for all datasets. For temporal K-NN, K is set to 10 for SemanticKITTI and 5 for nuScenes. Further details on DBSCAN configuration and additional implementation information can be found in the Appendix A.3.5.

4.2 EXPERIMENT RESULTS

Synth4D to SemanticKITTI and nuScenes: We first evaluate our method on the Synth4D to SemanticKITTI and Synth4D to nuScenes tasks. As shown in Tables 1 and 2, GOOD significantly enhances both closed-set ID segmentation and open-set OOD identification performance. Specifically, on Synth4D to SemanticKITTI, GOOD achieves improvements in mIoU, AUROC, and FPR95 of +4.83%, 73.39%, and 71.91%, respectively, marking gains of 1.93%, 8.99%, and 7.91% over HGL. Similarly, on Synth4D to nuScenes, GOOD yields mIoU, AUROC, and FPR95 values of +2.23%, 64.60%, and 72.60%, with respective improvements of 1.72%, 6.93%, and 9.41% over HGL. Furthermore, GOOD can complement existing methods effectively. For example, integrating GOOD with HGL on Synth4D to SemanticKITTI enhances mIoU from +2.90% to +5.31%, AUROC from 64.40% to 73.39%, and reduces FPR95 from 79.82% to 71.91%.

In comparison, the 2D image method +*UniEnt* (Gao et al., 2024) negatively impacts closed-set 3D segmentation mIoU and has limited effect on open-set AUROC and FPR95. This is primarily due

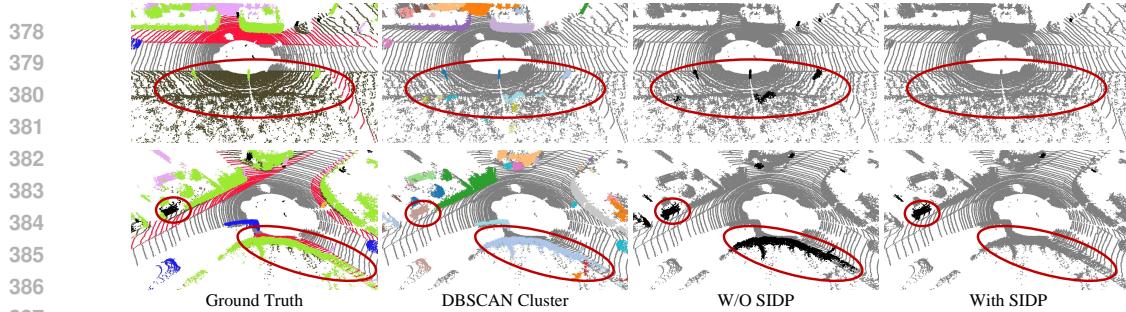


Figure 3: Qualitative results of Superpoint ID Prototypes (SIDP) on Synth4D to SemanticKITTI. Black pixels represent the open-set points in ground truth or unknown pseudo-label. The results indicate that SIDP effectively corrects ID misclassifications and handles absent OOD.

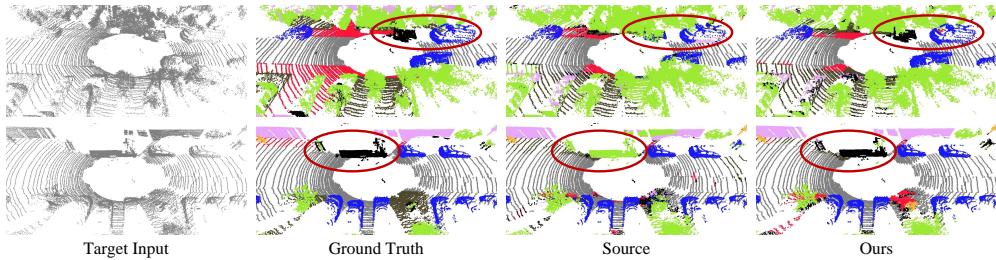


Figure 4: Qualitative results on Synth4D to SemanticKITTI. Black pixels denote open-set points in the ground truth and prediction OOD points with Maximum Softmax Probability (MSP) above 0.6. Our method significantly enhances both ID and OOD segmentation.

to its inability to effectively differentiate between imbalanced ID and OOD points, resulting in the erroneous application of entropy maximization to many ID points and leading to suboptimal results. The addition of *+WCEM* (Li et al., 2023b) yields a noticeable improvement in closed-set performance but performs poorly on open-set metrics. This is also due to its difficulty in distinguishing ID from OOD points, which causes the loss function to degenerate into entropy minimization.

SynLiDAR to SemanticKITTI: We then conduct experiments on SynLiDAR to SemanticKITTI. In this setup, the imbalance between known and unknown points is exacerbated, with many frames lacking any unknown points. As shown in Table 3, consistent with our previous findings, GOOD achieves superior performance. Specifically, GOOD yields mIoU improvement, AUROC, and FPR95 scores of +5.03%, 73.23%, and 69.96%, marking gains of 3.13%, 10.32%, and 9.17% over HGL, respectively. Additionally, the increased imbalance between ID and OOD points causes a notable decline in both closed-set and open-set performance for the *+SeaT* and *+UniEnt* methods.

Efficiency: The last column of Table 4 presents the adaptation times. Our method outperforms GIPSO in speed but is slightly less efficient than HGL, primarily due to the multi-frame superpoint clustering step, which takes about 0.7 seconds. Notably, under closed-set conditions without the Superpoint Representation Branch (SRB), our method achieves a speed comparable to HGL while outperforming it by 1.71% in mIoU, as shown in Experiment I. More experiments and discussions regarding clustering algorithms and runtime can be found in the Appendix A.3.4 and A.3.5.

Qualitative Results: Fig. 4 shows the comparison between GOOD and the source model on Synth4D to SemanticKITTI, demonstrating that GOOD consistently improves segmentation performance for both ID and OOD points.

4.3 ABLATION STUDY

We conduct an extensive ablation study to assess the contribution of each component. Unless otherwise specified, this study is conducted on Synth4D to SemanticKITTI.

Component Analysis: As shown in Tab. 4, we evaluate the effectiveness of the Temporal Pseudo-labels (TP), **Superpoint Confidence (SC)**, and Superpoint ID Prototypes (SIDP). To assess the effectiveness of the proposed TP, we conduct experiments using only TP, and the result from Experiment I indicates that the standalone TP model significantly outperforms the baseline methods. Experiments I and II demonstrate that introducing **SC** significantly enhances open-set performance, despite a mi-

Table 4: Ablation Study. TP, **SC**, and SIDP denote Temporal Pseudo-labels, Superpoint Confidence and Superpoint ID Prototypes, respectively.

ID	TP	SC	SIDP	mIoU(%)	AUROC(%)	FPR95(%)	Runtimes(s)
Source	-	-	-	40.26	65.80	78.39	-
GIPSO (Saitori et al., 2022)	-	-	-	+2.08	64.47	80.40	4.03
HGL (Zou et al., 2024)	-	-	-	+2.90	64.40	79.82	0.65
I	✓	-	-	+4.61	66.66	79.72	0.70
II	✓	✓	-	+4.54	71.47	76.82	1.42
III	✓	✓	✓	+4.83	73.39	71.91	1.45

Table 5: Results under different sparsity levels and OOD class counts. Values are presented as (mIoU(\uparrow), AUROC(\uparrow), FPR95(\downarrow)).

Unknown Setting	Source	Ours (w/o SRB)	Ours
w/o other-vehicle	(26.95, 54.90, 86.67)	(+4.77, 65.35, 77.86)	(+5.03, 73.23, 69.96)
w/o trunk	(26.31, 51.72, 91.56)	(+4.70, 54.42, 90.18)	(+4.68, 59.18, 87.51)
w/o building	(24.93, 66.23, 70.18)	(+3.33, 68.29, 74.88)	(+3.60, 71.90, 65.75)
\leq person	(30.87, 69.89, 75.41)	(+6.39, 71.50, 83.17)	(+6.27, 73.75, 75.26)
\leq other-vehicle	(38.12, 65.10, 83.79)	(+4.26, 71.52, 72.39)	(+4.11, 75.87, 70.13)
\leq fence	(50.46, 55.94, 92.41)	(+7.31, 64.30, 82.69)	(+7.44, 69.44, 82.56)
\leq car	(46.48, 64.02, 90.47)	(+2.59, 65.99, 82.08)	(+2.68, 74.65, 76.73)

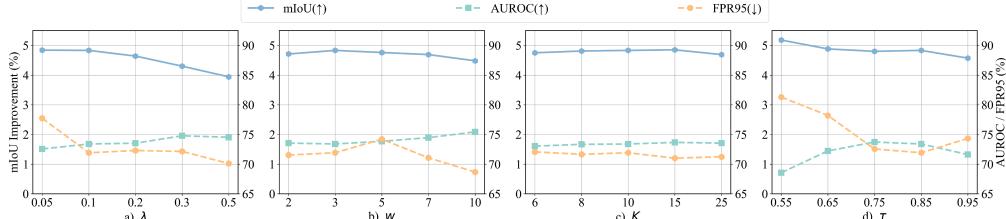


Figure 5: Hyper-parameter sensitivity analysis on Synth4D to SemanticKITTI.

nor decline in closed-set performance. The results of Experiments II and III demonstrate the critical role of the SIDP, as it effectively reduces the misclassification of known superpoints, while simultaneously enhancing both open-set and closed-set performance. The visualization results in Fig. 3 also qualitatively demonstrate the effectiveness of SIDP.

Hyper-parameter Sensitivity: We first examine the sensitivity of λ in Fig. 5 (a), where λ takes values from $\{0.05, 0.1, 0.2, 0.3, 0.5\}$. The results indicate that larger λ values improve open-set performance but may slightly reduce closed-set performance. For all benchmarks, we set $\lambda = 0.1$. We then explore the effect of w in Fig. 5 (b), with w ranging from $\{2, 3, 5, 7, 10\}$. The results show that our method is robust around the selected parameter $w = 3$. We then evaluate the hyperparameter K in K-NN, with values ranging from 0 to 25. As shown in Fig. 5 (c), K demonstrates stability around a value of 10. Finally, we assess τ in Fig. 5 (d). A smaller τ value sets a stricter criterion for identifying unknown superpoints, enhancing closed-set performance while reducing open-set performance, and vice versa. For all benchmarks, we predefine $\tau = 0.85$ to distinguish between ID and OOD superpoints.

Performance under Different Sparsity levels and OOD Class Counts: The sparsity level and OOD class counts represent the complexity of the open world. We examine the impact of different sparsity levels and unknown class counts in Tab. 5. For different sparsity levels, we perform experiments on the SynLiDAR to SemanticKITTI and control the data ratio at 0.46%, 1.15%, 6.47%, and 11.90%, designating *other-vehicle*, *trunk*, *car*, and *building* as an unknown class, respectively. For different class counts, we sort the class proportions from smallest to largest, discarding all classes with proportions less than or equal to *person*, *other-vehicle*, *fence*, and *car*. The proportions of unknown classes are 0.46%, 1.30%, 6.44%, and 12.92%, corresponding to unknown class counts of 7, 10, 13, and 14, respectively. As shown in Tab. 5, our GOOD and SRB can effectively address varying sparsity levels and OOD class counts.

Further ablation studies and additional experimental results are provided in the Appendix A.3.5.

5 CONCLUSION

In this paper, we introduce the *GOOD* framework, a *simple yet effective* approach for open-set test-time adaptation in point cloud semantic segmentation. Existing methods, primarily developed for 2D image recognition, face significant challenges when applied to point cloud segmentation due to the complexities of point cloud data, especially the imbalance between ID and OOD points. To address these issues, our framework leverages the unique characteristics of point clouds by using superpoints to mitigate data imbalance. Technically, we devise the Superpoint Clustering method to organize the disordered point cloud, then propose the Superpoint Confidence metric to preliminarily distinguish ID and OOD superpoints, and finally introduce the Superpoint ID Prototypes to further refine the identification of ambiguous OOD superpoints. Furthermore, we propose a temporal-based pseudo-label generation method that simultaneously leverages both data temporal information and model temporal consistency. Extensive experiments demonstrate that GOOD significantly outperforms existing TTA-3DSeg methods in open-set scenarios. Notably, on the Synth4D to SemanticKITTI task, GOOD surpasses HGL by 8.99% and 7.91% in AUROC and FPR95, respectively.

486 REFERENCES
487

488 Zhaochong An, Guolei Sun, Yun Liu, Runjia Li, Min Wu, Ming-Ming Cheng, Ender Konukoglu,
489 and Serge Belongie. Multimodality helps few-shot 3d point cloud semantic segmentation. *arXiv
490 preprint arXiv:2410.22489*, 2024a.

491 Zhaochong An, Guolei Sun, Yun Liu, Fayao Liu, Zongwei Wu, Dan Wang, Luc Van Gool, and
492 Serge Belongie. Rethinking few-shot 3d point cloud semantic segmentation. In *Proceedings of
493 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3996–4006, 2024b.

494

495 Zhaochong An, Guolei Sun, Yun Liu, Runjia Li, Junlin Han, Ender Konukoglu, and Serge Belongie.
496 Generalized few-shot 3d point cloud segmentation with vision-language model. In *Proceedings
497 of the Computer Vision and Pattern Recognition Conference*, pp. 16997–17007, 2025.

498 Fabian Balsiger, Yannick Soom, Olivier Scheidegger, and Mauricio Reyes. Learning shape represen-
499 tation on sparse point clouds for volumetric image segmentation. In *Medical Image Computing
500 and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen,
501 China, October 13–17, 2019, Proceedings, Part II 22*, pp. 273–281. Springer, 2019.

502

503 Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and
504 Jürgen Gall. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In
505 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 9297–9307, 2019.

506

507 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
508 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
509 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition*, pp. 11621–11631, 2020.

510

511 Jun Cen, Peng Yun, Shiwei Zhang, Junhao Cai, Di Luan, Mingqian Tang, Ming Liu, and Michael
512 Yu Wang. Open-world semantic segmentation for lidar point clouds. In *European Conference on
513 Computer Vision*, pp. 318–334. Springer, 2022.

514

515 Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
516 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
517 295–305, 2022.

518

519 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of
520 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15750–15758, 2021.

521

522 Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
523 convolutional neural networks. In *Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition*, pp. 3075–3084, 2019.

524

525 Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy. Salsanext: Fast, uncertainty-aware se-
526 mantic segmentation of lidar point clouds. In *Advances in Visual Computing: 15th International
527 Symposium, ISVC 2020, San Diego, CA, USA, October 5–7, 2020, Proceedings, Part II 15*, pp.
528 207–222. Springer, 2020.

529

530 Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
531 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proceedings of the
532 IEEE conference on computer vision and pattern recognition*, pp. 5828–5839, 2017.

533

534 Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
535 open urban driving simulator. In *Conference on robot learning*, pp. 1–16. PMLR, 2017.

536

537 Jianshe Duan, Yachao Zhang, and Yanyun Qu. Source-free domain adaptation for point cloud se-
538 mantic segmentation. In *2024 IEEE International Conference on Multimedia and Expo (ICME)*,
539 pp. 1–6. IEEE, 2024.

540

541 Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for dis-
542 covering clusters in large spatial databases with noise. In *Proceedings of the Second International
543 Conference on Knowledge Discovery and Data Mining*, volume 96, pp. 226–231, 1996.

540 Tuo Feng, Wenguan Wang, Xiaohan Wang, Yi Yang, and Qinghua Zheng. Clustering based point
 541 cloud representation learning for 3d analysis. In *Proceedings of the IEEE/CVF International*
 542 *Conference on Computer Vision*, pp. 8283–8294, 2023.

543 Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting
 544 with applications to image analysis and automated cartography. *Communications of the ACM*, 24
 545 (6):381–395, 1981.

546 Zhengqing Gao, Xu-Yao Zhang, and Cheng-Lin Liu. Unified entropy optimization for open-set test-
 547 time adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 548 *Recognition*, pp. 23975–23984, 2024.

549 Zhitong Gao, Shipeng Yan, and Xuming He. Atta: anomaly-aware test-time adaptation for out-of-
 550 distribution detection in segmentation. *Advances in Neural Information Processing Systems*, 36:
 551 45150–45171, 2023.

552 Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
 553 vision benchmark suite. In *2012 IEEE conference on computer vision and pattern recognition*,
 554 pp. 3354–3361. IEEE, 2012.

555 Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and J Zico Kolter. Test time adaptation via conju-
 556 gate pseudo-labels. *Advances in Neural Information Processing Systems*, 35:6204–6218, 2022.

557 Benjamin Graham and Laurens Van der Maaten. Submanifold sparse convolutional networks. *arXiv*
 558 *preprint arXiv:1706.01307*, 2017.

559 Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. 3d semantic segmentation with
 560 submanifold sparse convolutional networks. In *Proceedings of the IEEE conference on computer*
 561 *vision and pattern recognition*, pp. 9224–9232, 2018.

562 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 563 examples in neural networks. *arXiv preprint arXiv:1610.02136*, 2016.

564 Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
 565 exposure. *arXiv preprint arXiv:1812.04606*, 2018.

566 Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joe Kwon, Mohammadreza Mostajabi,
 567 Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings.
 568 *arXiv preprint arXiv:1911.11132*, 2019.

569 Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-
 570 of-distribution image without learning from out-of-distribution data. In *Proceedings of the*
 571 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 10951–10960, 2020.

572 Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and
 573 Andrew Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. In
 574 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11108–
 575 11117, 2020.

576 Julian Katz-Samuels, Julia B Nakhleh, Robert Nowak, and Yixuan Li. Training ood detectors in their
 577 natural habitats. In *International Conference on Machine Learning*, pp. 10848–10865. PMLR,
 578 2022.

579 Junho Kim, Inwoo Hwang, and Young Min Kim. Ev-tta: Test-time adaptation for event-based
 580 object recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 581 *Recognition*, pp. 17745–17754, 2022.

582 Jungsoo Lee, Debasmit Das, Jaegul Choo, and Sungha Choi. Towards open-set test-time adapta-
 583 tion utilizing the wisdom of crowds in entropy minimization. In *Proceedings of the IEEE/CVF*
 584 *International Conference on Computer Vision*, pp. 16380–16389, 2023.

585 Guangrui Li, Guoliang Kang, Xiaohan Wang, Yunchao Wei, and Yi Yang. Adversarially mask-
 586 ing synthetic to mimic real: Adaptive noise injection for point cloud segmentation adaptation.
 587 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 588 20464–20474, 2023a.

594 Jianan Li and Qiulei Dong. Open-set semantic segmentation for point clouds via adversarial proto-
 595 type framework. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 596 *Recognition*, pp. 9425–9434, 2023.

597 Yushu Li, Xun Xu, Yongyi Su, and Kui Jia. On the robustness of open-world test-time training:
 598 Self-training with dynamic prototype expansion. In *Proceedings of the IEEE/CVF International*
 599 *Conference on Computer Vision*, pp. 11836–11846, 2023b.

600 Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
 601 image detection in neural networks. *arXiv preprint arXiv:1706.02690*, 2017.

602 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
 603 tion. *Advances in neural information processing systems*, 33:21464–21475, 2020.

604 Yifan Liu, Wuyang Li, Jie Liu, Hui Chen, and Yixuan Yuan. Grab-net: Graph-based boundary-
 605 aware network for medical point cloud segmentation. *IEEE Transactions on Medical Imaging*,
 606 2023.

607 Siladitya Manna, Saumik Bhattacharya, and Umapada Pal. Correlation weighted prototype-based
 608 self-supervised one-shot segmentation of medical images. In *International Conference on Pattern*
 609 *Recognition*, pp. 16–33. Springer, 2024.

610 Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss. Rangenet++: Fast and accurate
 611 lidar semantic segmentation. In *2019 IEEE/RSJ international conference on intelligent robots*
 612 *and systems (IROS)*, pp. 4213–4220. IEEE, 2019.

613 Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and
 614 Jasper Snoek. Evaluating prediction-time batch normalization for robustness under covariate
 615 shift. *arXiv preprint arXiv:2006.10963*, 2020.

616 Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yafo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
 617 Tan. Efficient test-time model adaptation without forgetting. In *International conference on*
 618 *machine learning*, pp. 16888–16905. PMLR, 2022.

619 Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas
 620 Funkhouser, et al. Openscene: 3d scene understanding with open vocabularies. In *Proceedings of*
 621 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 815–824, 2023.

622 Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
 623 for 3d classification and segmentation. In *Proceedings of the IEEE conference on computer vision*
 624 *and pattern recognition*, pp. 652–660, 2017a.

625 Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
 626 ture learning on point sets in a metric space. *Advances in neural information processing systems*,
 627 30, 2017b.

628 Sanqing Qu, Guang Chen, Jing Zhang, Zhijun Li, Wei He, and Dacheng Tao. Bmd: A general class-
 629 balanced multicentric dynamic prototype strategy for source-free domain adaptation. In *European*
 630 *conference on computer vision*, pp. 165–182. Springer, 2022.

631 Dan Roth and Kevin Small. Margin-based active learning for structured output spaces. In *Ma-
 632 chine Learning: ECML 2006: 17th European Conference on Machine Learning Berlin, Germany,
 633 September 18-22, 2006 Proceedings 17*, pp. 413–424. Springer, 2006.

634 David Rozenberszki, Or Litany, and Angela Dai. Language-grounded indoor 3d semantic segmen-
 635 tation in the wild. In *European Conference on Computer Vision*, pp. 125–141. Springer, 2022.

636 Cristiano Saltori, Evgeny Krivosheev, Stéphane Lathuilière, Nicu Sebe, Fabio Galasso, Giuseppe
 637 Fiameni, Elisa Ricci, and Fabio Poiesi. Gipso: Geometrically informed propagation for online
 638 adaptation in 3d lidar segmentation. In *European Conference on Computer Vision*, pp. 567–585.
 639 Springer, 2022.

640 Pascal Schlachter and Bin Yang. Comet: Contrastive mean teacher for online source-free universal
 641 domain adaptation. *arXiv preprint arXiv:2401.17728*, 2024.

648 Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-icp. In *Robotics: science and*
 649 *systems*, volume 2, pp. 435. Seattle, WA, 2009.

650

651 Claude Elwood Shannon. A mathematical theory of communication. *The Bell system technical*
 652 *journal*, 27(3):379–423, 1948.

653

654 Binyi Su, Hua Zhang, Jingzhi Li, and Zhong Zhou. Toward generalized few-shot open-set object
 655 detection. *IEEE Transactions on Image Processing*, 33:1389–1402, 2024.

656

657 Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin, Hanrui Wang, and Song Han. Search-
 658 ing efficient 3d architectures with sparse point-voxel convolution. In *European conference on*
 659 *computer vision*, pp. 685–702. Springer, 2020.

660

661 Olga Veksler. Test time adaptation with regularized loss for weakly supervised salient object detec-
 662 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 663 pp. 7360–7369, 2023.

664

665 Vibashan VS, Poojan Oza, and Vishal M Patel. Towards online domain adaptive object detection.
 666 In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp.
 667 478–488, 2023.

668

669 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
 670 test-time adaptation by entropy minimization. *arXiv preprint arXiv:2006.10726*, 2020.

671

672 Puzuo Wang, Wei Yao, Jie Shao, and Zhiyi He. Test-time adaptation for geospatial point cloud
 673 semantic segmentation with distinct domain shifts. *arXiv preprint arXiv:2407.06043*, 2024.

674

675 Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
 676 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 677 7201–7211, 2022.

678

679 Wei Wang, Zhun Zhong, Weijie Wang, Xi Chen, Charles Ling, Boyu Wang, and Nicu Sebe. Dy-
 680 namically instance-guided adaptation: A backward-free approach for test-time domain adaptive
 681 semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 682 *Pattern Recognition*, pp. 24090–24099, 2023.

683

684 Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, and Pedro Hermosilla. Ttt-kd:
 685 Test-time training for 3d semantic segmentation through knowledge distillation from foundation
 686 models. *arXiv preprint arXiv:2403.11691*, 2024.

687

688 Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Convolutional neural nets
 689 with recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In *2018 IEEE*
 690 *international conference on robotics and automation (ICRA)*, pp. 1887–1893. IEEE, 2018.

691

692 Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Hengshuang Zhao. Point transformer v2:
 693 Grouped vector attention and partition-based pooling. *Advances in Neural Information Processing*
 694 *Systems*, 35:33330–33342, 2022.

695

696 Aoran Xiao, Jiaxing Huang, Dayan Guan, Fangneng Zhan, and Shijian Lu. Synlidar: Learn-
 697 ing from synthetic lidar sequential point cloud for semantic segmentation. *arXiv preprint*
 698 *arXiv:2107.05399*, 1, 2021.

699

700 Shaocong Xu, Pengfei Li, Qianpu Sun, Xinyu Liu, Yang Li, Shihui Guo, Zhen Wang, Bo Jiang,
 701 Rui Wang, Kehua Sheng, et al. Lion: Learning point-wise abstaining penalty for lidar outlier
 702 detection using diverse synthetic data. *arXiv e-prints*, pp. arXiv–2309, 2023.

703

704 Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng, Wayne Zhang, and Zi-
 705 wei Liu. Semantically coherent out-of-distribution detection. In *Proceedings of the IEEE/CVF*
 706 *International Conference on Computer Vision*, pp. 8301–8309, 2021.

707

708 Qing Yu and Kiyoharu Aizawa. Unsupervised out-of-distribution detection by maximum classifier
 709 discrepancy. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 710 9518–9526, 2019.

702 Yongcan Yu, Lijun Sheng, Ran He, and Jian Liang. Stamp: Outlier-aware test-time adaptation with
 703 stable memory replay. *arXiv preprint arXiv:2407.15773*, 2024.

704 Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios.
 705 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 706 15922–15932, 2023.

708 Jingyang Zhang, Nathan Inkawich, Randolph Linderman, Yiran Chen, and Hai Li. Mixture outlier
 709 exposure: Towards out-of-distribution detection in fine-grained environments. In *Proceedings of
 710 the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 5531–5540, 2023.

711 Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue, Zerong Xi, Boqing Gong, and Hassan
 712 Foroosh. Polarnet: An improved grid representation for online lidar point clouds semantic
 713 segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 714 nition*, pp. 9601–9610, 2020.

715 Yizhe Zhang, Shubhankar Borse, Hong Cai, and Fatih Porikli. Auxadapt: Stable and efficient test-
 716 time adaptation for temporally consistent video semantic segmentation. In *Proceedings of the
 717 IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 2339–2348, 2022.

718 Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
 719 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4490–
 720 4499, 2018.

722 Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin Ma, Wei Li, Hongsheng Li, and Dahua
 723 Lin. Cylindrical and asymmetrical 3d convolution networks for lidar segmentation. In *Proceed-
 724 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9939–9948,
 725 2021.

726 Tianpei Zou, Sanqing Qu, Zhijun Li, Alois Knoll, Lianghua He, Guang Chen, and Changjun Jiang.
 727 Hgl: Hierarchical geometry learning for test-time adaptation in 3d point cloud segmentation.
 728 *arXiv preprint arXiv:2407.12387*, 2024.

730 A APPENDIX

732 A.1 MORE RELATED WORK

734 **Point Cloud Semantic Segmentation:** Point cloud semantic segmentation is a fundamental com-
 735 puter vision task that assigns semantic categories to each point within a point cloud. Depending on
 736 the specific methodology used, approaches to point cloud segmentation can be broadly categorized
 737 into point-based methods (Qi et al., 2017a;b; Hu et al., 2020), range-map-based methods (Wu et al.,
 738 2018; Cortinhal et al., 2020; Milioto et al., 2019), sparse voxel-based methods (Choy et al., 2019;
 739 Graham et al., 2018; Graham & Van der Maaten, 2017; Zhou & Tuzel, 2018), and other specialized
 740 approaches such as hybrid point-voxel (Tang et al., 2020), polar coordinate (Zhang et al., 2020),
 741 and cylindrical coordinate systems (Zhu et al., 2021). Although these methods achieve strong per-
 742 formance under closed-set conditions, they remain sensitive to distribution shifts and struggle to
 743 handle OOD objects absent from training data. Beyond traditional closed-set segmentation, recent
 744 advances in open-vocabulary 3D scene understanding (Peng et al., 2023), few-shot 3D segmenta-
 745 tion (An et al., 2024b;a), and generalized segmentation with vision–language models (An et al.,
 746 2025) aim to improve flexibility and reduce reliance on large labeled datasets. However, these ap-
 747 proaches are typically developed and evaluated on single datasets, and their generalization across di-
 748 verse domains or unseen categories remains limited. This further motivates the need for a framework
 749 specifically designed to enhance both robustness and generalization in open-world 3D environments.

750 A.2 MORE DETAILS ABOUT METHODOLOGY

752 A.2.1 TEMPORAL-BASED FEATURE REGULARIZATION

754 We employ the widely used Temporal-based Feature Regularization module (Saltori et al., 2022;
 755 Chen & He, 2021) to mitigate negative transfer within the model. This process begins with calculat-
 756 ing the temporal correspondences between feature points in the frames X_T^{t-w} and X_T^t by applying

756 a rigid transformation $T^{t-w \rightarrow t}$ derived from the odometry data. Specifically, the temporal corre-
 757 sponding points $\Theta^{t-w \rightarrow t}$ are defined as:

$$759 \Theta^{t-w} = \{ \{x^t \in X_{\mathcal{T}}^t, x^{t-w} \in X_{\mathcal{T}}^{t-w}\} : x^t = \text{NN}(T^{t-w \rightarrow t} x^{t-w}, X_{\mathcal{T}}^t), \|x^t - x^{t-w}\|_2 < \tau'\} \quad (7)$$

760 Here, x^t represents the nearest neighbor (NN(,)) point of $X_{\mathcal{T}}^t$ to the $T^{t-w \rightarrow t} x^{t-w}$, and τ' is a
 761 distance threshold that filters out pairs with distances above this value. Following SimSiam (Chen
 762 & He, 2021), we introduce an encoder network $h(\cdot)$ and a predictor head $f(\cdot)$ to the target model F_T .
 763 These components minimize the negative cosine similarity between the semantic representations of
 764 temporally corresponding points. The negative cosine similarity can be formulated as:

$$766 \mathcal{D}_{t \rightarrow t-w}(q^t, z^{t-w}) = -\frac{q^t}{\|q^t\|_2} \cdot \frac{z^{t-w}}{\|z^{t-w}\|_2} \quad (8)$$

768 where $z^t = h(x^t)$ is the encoder features, and $q^t = f(h(x^t))$ represents the predictor features. To
 769 enforce temporal consistency, we define the final temporal consistency loss as:

$$771 \mathcal{L}_{reg} = \frac{1}{2} \mathcal{D}_{t \rightarrow t-w}(q^t, z^{t-w}) + \frac{1}{2} \mathcal{D}_{t-w \rightarrow t}(q^{t-w}, z^t) \quad (9)$$

773 where `stop-grad` operator is applied to z^t and z^{t-w} .

775 A.2.2 FINAL ID PSEUDO-LABEL GENERATION

777 Given the ID pseudo-label \hat{Y}_{ID} generated from the Temporal Pseudo-label Branch with the OOD
 778 pseudo-label \hat{Y}_{OOD} derived from the Superpoint Representation Branch, we can refine \hat{Y}_{ID} using in-
 779 formation from \hat{Y}_{OOD} and superpoints. We explore two optimization strategies: 1) **Direct Filtering**:
 780 We remove overlapping regions of \hat{Y}_{OOD} from \hat{Y}_{ID} , resulting in a filtered ID pseudo-label, denoted
 781 as $\hat{Y}_{ID}/\hat{Y}_{OOD}$. 2) **Superpoint-Based Refinement**: Based on the filtered pseudo-label $\hat{Y}_{ID}/\hat{Y}_{OOD}$,
 782 we incorporate superpoints to further refine the pseudo-labels (+*Super*). Specifically, we assess
 783 each superpoint's ID pseudo-label composition. If a superpoint exclusively contains a single class
 784 of ID pseudo-labels, we assign all points within that superpoint to this class. If a superpoint contains
 785 multiple classes, it is excluded from further consideration.

786 As shown in Tab. 6, both strategies enhance open-set performance relative to the initial ID pseudo-
 787 label. Although Strategy Two yields a slight performance improvement over Strategy One, it risks
 788 introducing a substantial number of incorrect pseudo-labels, compromising its stability. Therefore,
 789 we select the simpler and more stable Strategy One.

790 A.3 MORE EXPERIMENT DETAILS

792 A.3.1 SET UP

794 **Source and Target Datasets:** Following previous studies, we evaluate our method on the
 795 widely used Lidar datasets: **Synth4D** (Saltori et al., 2022), **SynLiDAR** (Xiao et al., 2021), **Se-
 796 manticKITTI** (Behley et al., 2019) and **nuScenes** (Caesar et al., 2020). **Synth4D** (Saltori et al.,
 797 2022) is synthesized by the CARLA simulator (Dosovitskiy et al., 2017) and consists of 7 semantic
 798 classes, available in two configurations: 64-beams and 32-beams to simulate either SemanticKITTI
 799 or nuScenes. **SynLiDAR** (Xiao et al., 2021) is synthesized by the Unreal Engine 4 platform and
 800 contains 19 semantic classes to simulate SemanticKITTI. **SemanticKITTI** (Behley et al., 2019) is
 801 a large-scale real-world dataset for LiDAR point-cloud semantic segmentation, which contains 19
 802 semantic classes. **nuScenes** (Caesar et al., 2020) has 32 class labels and 40K LiDAR frames anno-
 803 tated with per-point semantic labels from 1K sequences. Following the official sequence split, we
 804 use scene 08 in SemanticKITTI and 150 sequences in nuScenes for validation.

805 **Baseline Methods:** Due to the limitations of image-based TTA methods when applied to point
 806 clouds (Zou et al., 2024), we mainly compare our method with specific TTA-3DSeg baselines,
 807 such as **GIPSO** (Saltori et al., 2022) and **HGL** (Zou et al., 2024). Considering that the original
 808 TTA-3DSeg baselines are inadequate for addressing open-world scenarios, we incorporate several
 809 representative image-based OSTTA methods as an additional complement. **UniEnt** (Gao et al.,
 810 2024) adopts sample-based GMM to distinguish ID and OOD samples, followed by entropy mini-
 811 mization on the pseudo-ID data and entropy maximization on the pseudo-OOD data. **OSTTA** (Lee

et al., 2023) uses the wisdom of crowds to filter out the samples with lower confidence values in the adapted model compared to the original model. In addition, we develop a straightforward method based on hyperparameter thresholds searching to distinguish between ID and OOD, termed Searching Thresholds (**SeaT**). This method targets high-uncertainty points in the pseudo-label generation process and classifies them as OOD samples.

Implementation Details: For the source model training, we use the Adam optimizer with an initial learning rate of 0.01, applying exponential decay, a batch size of 24, and a weight decay of 10^{-5} . Training is conducted uniformly over 100 epochs across all source domain data, with the final model weights from the last epoch used as the definitive model. To avoid confusion between ID and OOD points, we employed the Dice loss instead of the soft Dice loss in GIPSO (Saltori et al., 2022). For online adaptation, we also apply the Adam optimizer with weight decay 10^{-5} and set the learning rate to 10^{-3} for all datasets. We avoid using learning rate schedulers to eliminate the need for prior knowledge about the length of the data stream. All experiments are conducted on L40 GPU with PyTorch-1.9.

More Detail About RANSAC: To ensure full reproducibility of preprocessing, each LiDAR scan is divided into 10×10 sub-regions to reduce the effect of uneven ground surfaces and allow RANSAC to operate on locally consistent regions, improving plane estimation accuracy. Candidate ground points are defined as those with height below -1 m relative to the ego-vehicle coordinate system, which works effectively across datasets due to the similar mounting height of vehicle LiDAR sensors. For RANSAC, the distance threshold is set to 0.1, the minimum number of points for model fitting is 3, and the number of iterations is 1000.

A.3.2 INTEGRATION INTO EXISTING METHODS

As elaborated in the main text of our study, the GOOD framework introduces an innovative approach to OSTTA-3DSeg through superpoint representation and temporal pseudo-label. Our approach can serve as a valuable complement to existing methods. To validate this merit, we have integrated GOOD with representative methods, specifically GIPSO (Saltori et al., 2022) and HGL (Zou et al., 2024). In light of the unsupervised nature of the OSTTA-3DSeg task, this integration is realized by aligning the optimization objectives of GOOD with those of the baseline methods. Specially, the integrated optimization objective is presented as follows:

$$\mathcal{L}_{overall} = \gamma \mathcal{L}_{GOOD} + (1 - \gamma) \mathcal{L}_{baseline} \quad (10)$$

where γ is a trade-off hyper-parameter, generally set to 0.5. We can also combine the ID pseudo-labels from GOOD and baselines to obtain final pseudo-labels, which could yield similar results.

A.3.3 EXPERIMENTS ON INDOOR DATASETS

Our method is also applicable to indoor datasets. We conducted additional experiments on ScanNet (Dai et al., 2017) using MinkUNet34C as the backbone. We use the standard ScanNet20 (Dai et al., 2017) classes as ID categories and treat all other classes in ScanNet200 (Rozenberszki et al., 2022) as OOD. The source model achieve mIoU 65.01%, AUROC 66.37%, and FPR95 88.93%. After introducing GOOD, the performance is mIoU 61.58%, AUROC 70.23%, and FPR95 85.93%. It can be observed that while the ID performance decreased, the OOD performance improved. The decline in ID performance is primarily due to the additional OOD loss, a phenomenon similarly reported in other 3D OS semantic segmentation studies (Cen et al., 2022; Li & Dong, 2023; Xu et al., 2023).

A.3.4 RUNTIME ANALYSIS

We provide a detailed analysis of the runtime for Superpoint Clustering. In Superpoint Clustering, RANSAC takes approximately 0.55s on the CPU, while DBSACN clustering takes around 0.15s on the GPU and 0.25s on the CPU. Our method is slightly less efficient than HGL (0.65s) in speed but outperforms GIPSO (4.03s). For practical deployment, we offer two solutions to reduce runtime:

- Deploy Superpoint Clustering only on the CPU. CPU-based clustering takes about 0.8s, while TTA takes about 0.7s. In practice, clustering for the next frame can run concurrently with TTA.

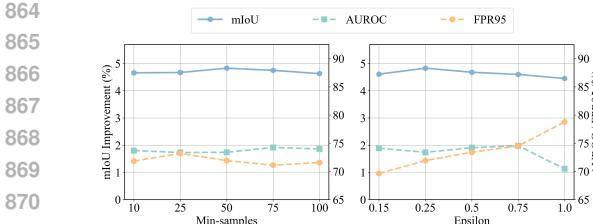


Figure 6: Hyper-parameter sensitivity analysis of DBSCAN on Synth4D to SemanticKITTI.

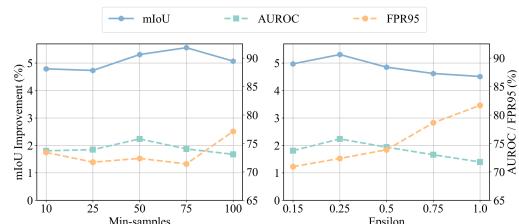


Figure 7: Hyper-parameter sensitivity analysis of DBSCAN on nuScenes to SemanticKITTI.

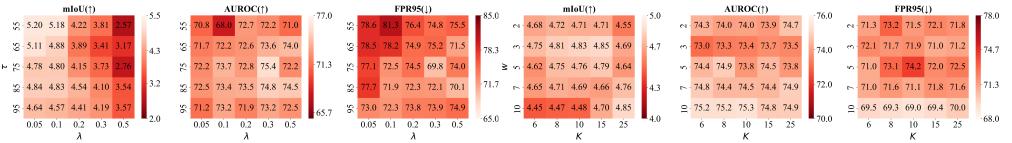


Figure 8: Highly coupled hyperparameters sensitivity analysis on Synth4D to SemanticKITTI.

- Replace RANSAC with a height threshold (e.g., -1.4m (Geiger et al., 2012)), sacrificing a small amount of perception accuracy (mIoU(\uparrow) from +4.83% to +4.65%, AUROC(\uparrow) from 73.39% to 71.50%, FPR95(\downarrow) from 71.91% to 77.39%) but achieving a runtime comparable to HGL(0.86s vs 0.65s).

A.3.5 MORE ABLATION ANALYSIS

We conduct a more comprehensive analysis in GOOD. Unless otherwise specified, the ablation analysis is based on Synth4D to SemanticKITTI.

Different Superpoint Clustering: We also experimented with clustering algorithms other than DBSCAN, including K-Means and the Sinkhorn-Knopp-based optimal transport algorithm, as shown in Tab. 7. Compared to DBSCAN, K-Means and Sinkhorn-Knopp require manual setting of the number of clusters, which limits their adaptability. Moreover, they cluster all points without filtering, resulting in the inclusion of a large number of outliers. Due to these two factors, their performance is inferior. It is also worth noting that unlike CPCR’s online feature clustering (Feng et al., 2023), the OT offline coordinate clustering is significantly slower than the DBSCAN algorithm (50.30s vs 0.25s). While DBSCAN has a time complexity of $O(N^2)$, OT’s worst-case complexity is approximately $O(TNMt)$, where T, N, M, and t denote the number of center iterations, points, clusters, and Sinkhorn iterations, respectively. Given $T = 100$, $N = 100000$, $M = 100$ and $t = 1000$, OT is up to 100 times slower than DBSCAN.

More Detail About DBSCAN: DBSCAN is a popular density-based clustering algorithm that identifies clusters by grouping points within proximity and designating points in low-density areas as outliers. The algorithm relies on two key parameters: epsilon and min-samples. Epsilon defines the maximum distance between two points for them to be considered part of the same neighborhood, while min-samples is the minimum number of points required to form a cluster. In our experiments, we set epsilon as 0.25 and set min-samples as 50 for SemanticKITTI and 25 for nuScenes.

We first examine the effect of min-sample, with epsilon taking values from {10, 25, 50, 75, 100} and epsilon holds constant. The experimental results in the left side of Fig. 6 show that performance remains stable around the chosen parameter value of min-samples = 50. Next, we investigate the impact of varying epsilon on OOD superpoint detection, holding min-samples constant. We test epsilon values from {0.15, 0.25, 0.50, 0.75, 1.00}, as illustrated on the right side of Fig. 6. The results reveal that epsilon is more sensitive than min-samples. Notably, open-set performance decreases as epsilon increases, while closed-set performance initially improves and subsequently declines. This behavior occurs because a low epsilon value leads to more discrete and smaller superpoints, enhancing the distinction between ID and OOD superpoints. However, this also makes it more challenging for ID pseudo-labels to benefit from the OOD pseudo-labels. In contrast, when epsilon is higher, the superpoints expand and may encompass multiple classes, which can increase misclassification rates. Therefore, a moderate epsilon value, such as 0.25, balances the trade-off between superpoint granularity and classification accuracy, yielding satisfactory performance in both open-set and closed-set scenarios. In addition to the sim-to-real experiments presented in Fig. 6, we further conduct real-

Table 6: Results on different ID pseudo-label strategy.

Model	\hat{Y}_{ID}	$\hat{Y}_{ID} \hat{Y}_{OOD}$	$\hat{Y}_{ID} \hat{Y}_{OOD}) + Super$
mIoU(%)	$+4.95 \pm 0.07$	$+4.83 \pm 0.06$	$+4.87 \pm 0.19$
AUROC(%)	72.49 ± 0.36	73.39 ± 0.37	73.40 ± 0.43
FPR95(%)	76.29 ± 2.25	71.91 ± 1.09	72.50 ± 1.57

Table 8: Ablation Study. **TP**: Temporal Pseudo-label. **TR**: Temporal Regularization. **SC**: Superpoint Confidence. **SIDP**: Superpoint ID Prototypes. **EMA**: Exponential Moving Average. *: without Temporal Regularization.

ID	TP	TR	SC	SIDP	EMA	mIoU(%)	AUROC(%)	FPR95(%)	Rumtime(s)
Source	-	-	-	-	-	40.26	65.80	78.39	-
GIPSO (Saltoni et al., 2022)	-	-	✓	-	-	+2.08	64.47	80.40	4.03
GIPSO* (Saltoni et al., 2022)	-	-	-	-	-	-0.26	63.30	90.73	3.85
HGL (Zou et al., 2024)	-	-	✓	-	-	+2.90	64.40	79.82	0.65
HGL* (Zou et al., 2024)	-	-	-	-	-	+0.51	63.01	88.28	0.46
I	✓	-	-	-	-	+2.64	65.36	87.02	0.52
II	✓	✓	-	-	-	+3.36	67.09	80.47	0.70
III	✓	✓	✓	-	-	+3.56	73.05	73.96	1.38
IV	✓	✓	✓	✓	-	+3.69	75.72	71.54	1.42
V	✓	-	✓	✓	✓	+3.07	74.28	72.91	1.30
VI	✓	✓	-	-	✓	+4.61	66.66	79.72	0.70
VII	✓	✓	✓	-	✓	+4.54	71.47	76.82	1.42
VIII	✓	✓	✓	✓	✓	+4.83	73.39	71.91	1.45

to-real experiments as shown in Fig. 7. The results consistently demonstrate the effectiveness and stability of the proposed hyperparameters.

More Hyper-parameter Sensitivity Analysis: We perform detailed sensitivity analyses on two strongly coupled hyperparameter groups: (1) K in K-NN and the w in temporal aggregation for temporal information, and (2) confidence threshold τ and the loss weight λ for OOD separation. Fig. 8 shows stable performance within selected ranges. We further conduct a sensitivity analysis on the EMA hyperparameter α , as shown in Tab. 9. In experiments on the Synth4D-to-SemanticKITTI setting, GOOD shows low sensitivity to this hyperparameter. In highly dynamic scenarios with large domain shifts, a smaller α can help maintain stability.

More Component Analysis: As shown in Tab. 8, we conduct a more comprehensive analysis of the components in GOOD, where components Temporal Pseudo-label (TP), **Superpoint Confidence (SC)**, and Superpoint ID Prototypes (SIDP) have been previously discussed in the main text. Based on the results of experiments IV and VIII, we observe that incorporating Exponential Moving Average (EMA) significantly enhances closed-set performance, but slightly reduces open-set performance. We hypothesize that this trade-off arises because EMA improves ID pseudo-label accuracy through consistency, which may inadvertently propagate the prior overconfidence of the source model regarding OOD points, thereby negatively impacting the OOD pseudo-label. Experiments I, II, V, and VIII demonstrate that Temporal Regularization (TR) effectively improves both the efficiency and stability of the model’s closed-set performance, also reported in (Saltori et al., 2022; Zou et al., 2024). Additionally, compared to previous pseudo-label generation methods (Saltori et al., 2022; Zou et al., 2024), our temporal pseudo-label approach proves to be more robust to regularization due to its incorporation of temporal consistency, which effectively mitigates negative transfer during optimization.

Prototype Stability and Safeguards: In our framework, prototypes are updated via EMA using pseudo-labeled superpoints, which raises the question of whether early-stage noise may cause accumulated drift. To investigate this, we compared several safeguard mechanisms, including weighted prototypes (WP) Manna et al. (2024), threshold-based prototypes (TP) Su et al. (2024), and multi-center prototypes (MP) Qu et al. (2022). The results in Tab. 13 show that WP achieves performance comparable to the original approach, TP performs slightly worse, likely due to strict filtering of valuable samples, and MP shows mixed effects, improving some metrics while hurting others. The limited benefit of TP and MP can be attributed to the prototype construction process: superpoints are aggregated, and a GMM selects only high-confidence samples, mitigating the influence of noisy inputs at an early stage. Additional safeguards introduce extra hyperparameters without clear gains, so the original prototype formulation is retained for both simplicity and effectiveness. To further assess temporal stability, classification accuracy for known and unknown categories was monitored before and after prototype updates, aggregated every 500 training steps, yielding values [1.61%, 1.85%, 2.57%, 2.37%, 3.83%, 1.41%, 2.52%, 4.86%]. These results show an overall upward trend, indicating that prototype updates stabilize over time and reduce category assignment errors rather

Table 7: Results on different superpoint clustering.

	mIoU(%)	AUROC(%)	FPR95(%)	Runtime(s)
Kmeans	+4.30	70.75	74.42	0.18
Sinkhorn-Knopp	+4.26	69.25	74.60	50.30
DBSCAN	+4.83	73.39	71.91	0.25

972
973
Table 9: Hyper-parameter sensitivity analysis
of the EMA coefficient α .

α	0.9999	0.999	0.99	0.9	0.7
mIoU(\uparrow)	+4.70	+4.78	+4.83	+4.67	+4.66
AUROC(\uparrow)	72.42	73.26	73.39	73.97	74.49
FPR95(\downarrow)	74.62	72.40	71.91	71.16	70.50

977
978
Table 11: Results on different superpoint con-
fidence.

Confidence	MSP	Margin	Purity	Entropy	Purity+Entropy
mIoU(%)	+4.89	+5.05	+5.21	+4.00	+4.83
AUROC(%)	69.79	69.72	70.19	74.86	73.39
FPR95(%)	77.22	73.13	75.43	69.74	71.91

983
984
than amplifying early-stage noise. Together, these analyses confirm that the baseline prototype
985
mechanism is robust and temporally stable.986
987
988
989
990
991
992
993
994
Loss Function Analysis: We compared multiple loss functions for ID pseudo-label learning, in-
cluding Dice loss, Soft Dice loss, SCE loss, and CE loss. The results are summarized in Tab. 14.
Soft Dice loss leads to severe degradation in open-set detection capability, reflected in lower AU-
ROC and higher FPR95, while SCE and CE losses achieve strong open-set results but insufficient
closed-set segmentation performance, indicating that these losses overemphasize separability at the
cost of reconstruction quality. Dice loss provides the best balance across both closed-set and open-
set tasks. Its effectiveness for small objects and boundary regions, along with inherent normalization
that mitigates class imbalance, makes it particularly suitable for superpoint aggregation and proto-
type construction, supporting both stable pseudo-label refinement and consistent adaptation across
domains.995
996
997
998
999
1000
1001
1002
1003
1004
Alternative Strategies to GMM: We also investigated threshold-based strategies that separate
known and unknown categories using manually selected thresholds on purity and entropy. Two
variants were evaluated: threshold-open, which favors open-set performance, and threshold-closed,
which favors closed-set performance. Although these approaches achieve reasonable results, they
require additional hyperparameter tuning, and optimal thresholds vary across datasets, making sta-
ble performance difficult without dataset-specific adjustment. In contrast, the GMM-based method
adapts automatically to the score distribution of each domain and does not require manual thresholds.
Empirical results, summarized in Tab. 15, show that while threshold-based strategies can achieve
competitive metrics, the GMM-based method provides a more robust and dataset-independent solu-
tion, motivating its use as the default.1005
1006
1007
1008
1009
1010
1011
Different Backbone Architectures: To assess the architectural generality of our framework, we
evaluate its performance on a diverse set of backbone models, including MinkowskiUNet-14 Choy
et al. (2019), MinkowskiUNet-18 Choy et al. (2019), MinkowskiUNet-34 Choy et al. (2019), Point-
Net++ Qi et al. (2017b), and PTv2 Wu et al. (2022), covering voxel-based, point-based, and hybrid
designs. As shown in Tab. 16, the method consistently improves both closed-set mIoU and open-
set AUROC/FPR95 for all backbones, demonstrating that the proposed approach is architecture-
agnostic and broadly compatible with different 3D semantic segmentation models.1012
1013
1014
1015
1016
1017
1018
1019
Different Superpoint Confidence: We experiment with different confidence metrics in the super-
point representation, including Maximum Softmax Probability (MSP) (Hendrycks & Gimpel, 2016),
Margin (Roth & Small, 2006), Purity (Zou et al., 2024), and Entropy (Shannon, 1948). As shown
in Tab. 11, Purity outperforms MSP and Margin, though all three demonstrate suboptimal open-set
performance. While Entropy shows limited efficacy in the closed-set setting, it achieves outstanding
results in open-set scenarios. Based on these observations, we select Entropy to complement Purity,
yielding robust performance in both open and closed sets. With GT labels, we also quantitatively
report the average confidence scores of Purity+Entropy for ID and OOD superpoints as 0.57 and
0.81, respectively, validating the effectiveness of our intuition in Sec. 3.2.1020
1021
1022
1023
1024
1025
Performance under Close-set: Although our method is designed for open-world scenarios, previ-
ous experiments have indicated that the ID pseudo-labels generated by the Temporal Pseudo-labels
Branch exhibit high quality, while the OOD pseudo-labels produced by the Superpoint Representa-
tion Branch can be regarded as an additional filter for the pseudo-labels. Consequently, we attempt
to evaluate our method in a purely close-set. To accommodate the closed-set configuration, we re-
moved L_{OOD} and substituted L_{dice} with L_{soft_dice} to ensure a fair comparison. As shown in Tab. 12,
our method achieves performance comparable to the state-of-the-art approach in Synth4D2KITTI972
973
Table 10: Results w/ and w/o SIDP under vary-
ing OOD ratios.

OOD ratios	mIoU(\uparrow), AUROC(\uparrow), FPR95(\downarrow)		
	Source	GOOD w/o SIDP	GOOD
~ 0.1%	(26.21, 60.42, 94.74)	(+3.87, 56.26, 95.77)	(+4.93, 62.65, 91.39)
~ 6.4%	(24.93, 66.23, 70.18)	(+3.44, 70.44, 69.25)	(+3.60, 71.90, 65.75)
~ 12.9%	(46.48, 64.02, 90.47)	(+2.03, 74.40, 76.67)	(+2.68, 74.64, 76.33)

977
978
Table 12: mIoU (%) results on close-set.

Model	Synth4D2KITTI	Synth4D2nuSc	Synlidar2KITTI
Source	35.93	30.75	40.19
HGL	+6.40	+1.87	+6.72
Ours	+7.05	+2.22	+6.54

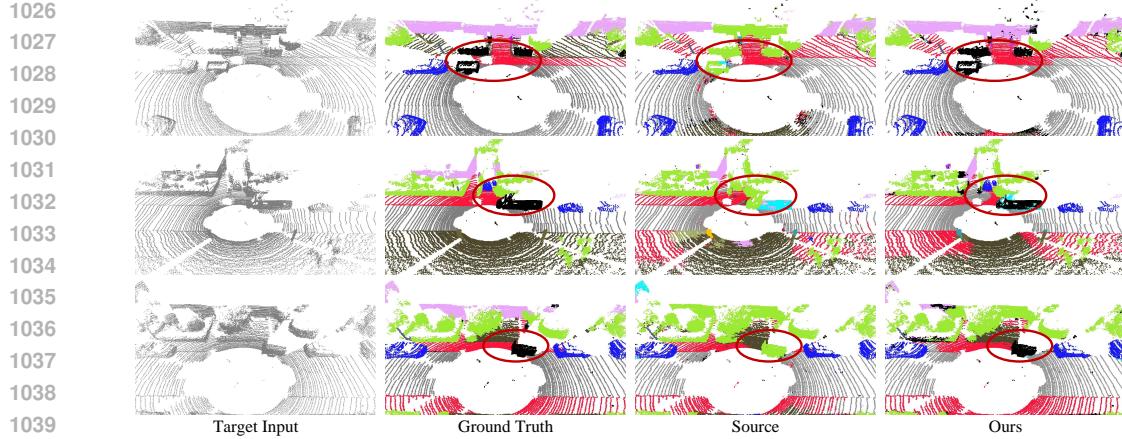


Figure 9: Qualitative results in SynLiDAR to SemanticKITTI. Black pixels indicate the open-set points, and we consistently select points with Maximum Softmax Probability (MSP) greater than 0.6 as OOD points.

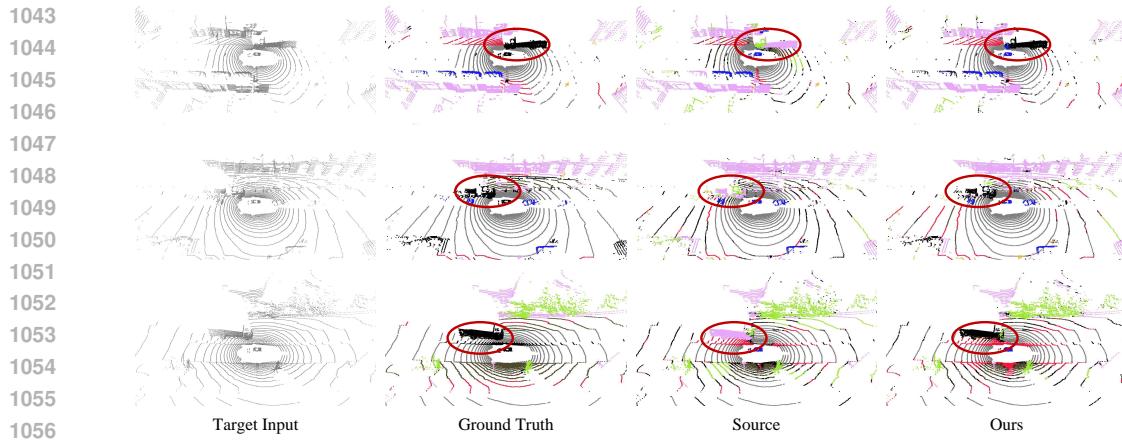


Figure 10: Qualitative results in Synth4D to nuScenes.

and attains state-of-the-art results in Synth4D2nuSc and Synlidar2KITTI. These results demonstrate that GOOD exhibits strong generalizability and is effective in closed sets.

More Sparse OOD Scenario: We also conducted experiments on the SynLiDAR to SemanticKITTI dataset, controlling the data ratio at 0.1%, with *person* designated as an unknown class, representing a more sparse OOD scenario. We observe AUROC improvement from 60.42% to 62.65% and FPR95 improvement from 94.74% to 91.39%, where SIDP plays a pivotal role. Without SIDP, both the AUROC and FPR95 exhibit a decline in performance (from 60.42% to 60.26% and 94.74% to 95.77%). Furthermore, we show that SC may fail under extreme imbalance where OOD points are extremely sparse or entirely absent, whereas our SIDP strategy effectively alleviates this issue. The Tab. 10 presents the results with and without the SIDP strategy across a range of OOD ratios in the SynLiDAR-to-SemanticKITTI setting, demonstrating the effectiveness of SIDP in mitigating GMM’s over-partitioning behavior.

A.3.6 DISCUSSION

Combine with Open-set Segmentation: In addition to combining the existing TTA-3DSeg and OSTTA-2D, we can also directly use 3D OS semantic segmentation (3D-OSSS) as a baseline. Considering code reproduction and feasibility, we use LiON (Xu et al., 2023) as the baseline. Compared to the normal source model, which yields an mIoU of 26.95%, AUROC of 54.90%, and FPR95 of 86.67% on SynLiDAR to SemanticKITTI, LiON produces an mIoU of 25.44%, AUROC of 65.47%, and FPR95 of 75.19%. Although 3D-OSSS performs better, it is important to note that 3D-OSSS (Cen et al., 2022; Li & Dong, 2023; Xu et al., 2023) alters the source model’s network structure, training strategy, and even introduces additional OOD datasets, which contradicts the goal of TTA methods to avoid retraining the original model. Therefore, we still choose the combination

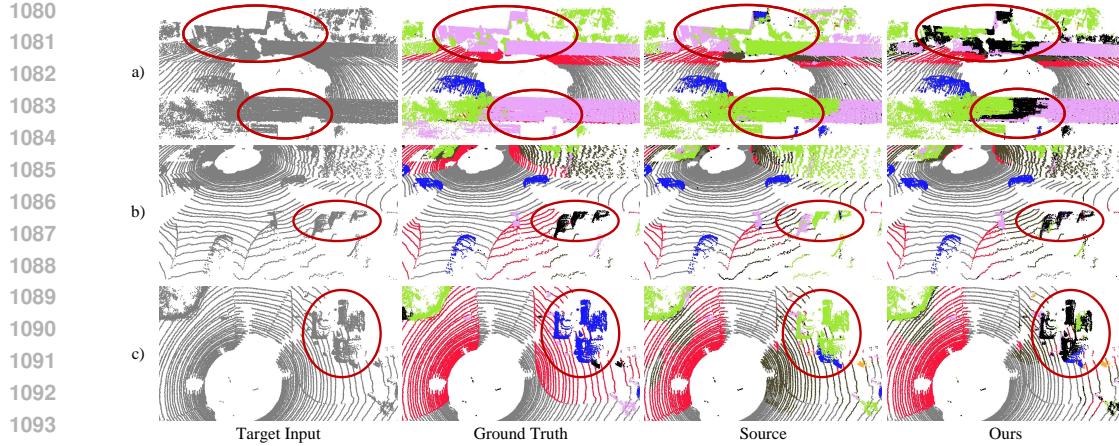


Figure 11: Failure cases in Synth4D to SemanticKITTI. Black pixels indicate the open-set points, and we consistently select points with Maximum Softmax Probability (MSP) greater than 0.6 as OOD points.

Table 13: Results on different prototype safeguard mechanisms

	Original	WP	TP	MP
mIoU (%)	+4.83	+4.81	+4.57	+4.94
AUROC (%)	73.39	74.01	72.87	72.72
FPR95 (%)	71.91	71.38	75.76	76.40

Table 14: Results on different ID pseudo-label learning losses.

	Source	Dice(GOOD)	SoftDice	SCE	CE
mIoU (%)	40.26	+4.83	+4.81	+3.33	+3.53
AUROC (%)	65.80	73.39	68.62	76.70	75.70
FPR95 (%)	78.39	71.91	84.87	63.26	64.07

of TTA-3DSeg and OSTTA-2D as the baseline model to enhance generalizability. Additionally, 3D-OSSS and our method are not in competition but are complementary. The GOOD approach can also be applied to the source model obtained through 3D-OSSS. After applying GOOD, the LiON results improved to an mIoU of 30.53%, AUROC of 77.66%, and FPR95 of 66.85%.

Ego-Pose Assumption and Robustness Analysis: Following standard practice in prior works (Saltori et al., 2022; Zou et al., 2024), our framework assumes access to reliable ego poses for temporal alignment; however, we acknowledge that pose quality may vary in real-world applications, and therefore we provide extensive analyses to evaluate robustness under imperfect conditions. To verify whether GOOD critically relies on perfect poses, we replace the provided ego poses with estimates obtained through GICP Segal et al. (2009), a fast and accurate registration-based method for dense geometric alignment. The results in Tab. 17 show minimal performance differences compared with using perfect poses, demonstrating that temporal aggregation remains effective with registration-derived alignment. To further quantify sensitivity, we inject controlled translation and rotation perturbations into the poses. As shown in Tab. 19, we find that while translation noise has limited influence, rotation noise leads to more noticeable degradation, and very large combined perturbations (e.g., 2 m and 20°) cause temporal correspondences to collapse, eliminating the gains from temporal consistency, which is expected given the correspondence-driven nature of TPB. To address scenarios where pose estimates are unreliable or entirely unavailable, we additionally evaluate a single-frame variant of GOOD that removes temporal consistency and relies solely on intra-frame superpoint aggregation and pseudo-labeling. As shown in Tab. 18, although its performance is lower than the full GOOD pipeline, it still surpasses GIPSO in closed-set accuracy and remains competitive or superior in open-set metrics, indicating that meaningful adaptation is achievable even without temporal alignment. Collectively, these results confirm that GOOD is not strongly dependent on perfect ego poses: temporal cues improve performance when available, registration-based alignment provides a practical fallback, and the single-frame variant remains a robust solution in the absence of reliable pose information.

Removal of Ground: The reason for removing ground points is that, generally, flat surfaces like roads or sidewalks are not considered OOD, as nearly all virtual source data contains these categories. Our primary focus is on rare OOD objects above the ground, which could pose significant safety risks (e.g., skateboards, wheelchairs).

Failure Cases: We present typical failure cases in Fig. 11. (1) Due to errors in the source model’s predictions, our model’s correction attempts result in lower confidence scores. Additionally, some

1134
1135 **Table 15: Comparison of GMM and threshold-
1136 based strategies**

	Source	GMM	Threshold-open	Threshold-closed
mIoU (%)	40.26	+4.83	+4.43	+4.90
AUROC (%)	65.80	73.39	74.46	73.77
FPR95 (%)	78.39	71.91	70.55	73.01

1139

1140
1141 **Table 17: Performance comparison under dif-
1142 ferent pose settings.**

	Source	Perfect Pose	GICP Pose
mIoU (%)	40.26	+4.83	+4.80
AUROC (%)	65.80	73.39	74.29
FPR95 (%)	78.39	71.91	71.23

1143

1144
1145 **Table 19: Results under different transformations and rotations perturbations. Translation noise is
1146 denoted as T_{err} , where the noise is uniformly sampled within $[-X, X]$ meters, and rotation noise is
1147 denoted as R_{err} , sampled within $[-Y, Y]$ degrees.**

	Source	Perfect Pose	$T_{0.5\text{-}R_0}$	$T_{1.0\text{-}R_0}$	$T_{2.0\text{-}R_0}$	$T_{0.0\text{-}R_5}$	$T_{0.0\text{-}R_{10}}$	$T_{0.0\text{-}R_{20}}$	$T_{0.5\text{-}R_5}$	$T_{1.0\text{-}R_{10}}$	$T_{2.0\text{-}R_{20}}$
mIoU (%)	40.26	+4.83	+4.54	+4.29	+2.86	+1.75	+0.91	+0.51	+0.98	+0.55	-0.08
AUROC (%)	65.80	73.39	73.28	73.94	74.53	74.43	72.27	72.76	73.31	72.41	70.35
FPR95 (%)	78.39	71.91	73.55	74.92	72.39	68.95	77.52	74.21	75.11	78.05	77.84

1146

1147
1148 **Table 20: Class mapping from SemanticKITTI
1149 to Synth4D.**

SemanticKITTI-ID	SemanticKITTI-Name	Synth4D-Name	Synth4D-ID
0	unlabelled	unlabelled	0
1	car	vehicle	1
2	bicycle	unlabelled	0
3	motorcycle	unlabelled	0
4	truck	unlabelled	0
5	other-vehicle	unlabelled	0
6	person	pedestrian	2
7	bicyclist	unlabelled	0
8	motorcyclist	unlabelled	0
9	road	road	3
10	parking	road	3
11	sidewalk	sidewalk	4
12	other-ground	unlabelled	0
13	building	manmade	6
14	fence	manmade	6
15	vegetation	vegetation	7
16	trunk	vegetation	7
17	terrain	terrain	5
18	pole	manmade	6
19	traffic-sign	manmade	6

1149

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
150100
150101
150102
150103
150104
150105
150106
150107
150108
150109
150110
150111
150112
150113
150114
150115
150116
150117
150118
150119
150120
150121
150122
150123
150124
150125
150126
150127
150128
150129
150130
150131
150132
150133
150134
150135
150136
150137
150138
150139
150140
150141
150142
150143
150144
150145
150146
150147
150148
150149
150150
150151
150152
150153
150154
150155
150156
150157
150158
150159
150160
150161
150162
150163
150164
150165
150166
150167
150168
150169
150170
150171
150172
150173
150174
150175
150176
150177
150178
150179
150180
150181
150182
150183
150184
150185
150186
150187
150188
150189
150190
150191
150192
150193
150194
150195
150196
150197
150198
150199
150200
150201
150202
150203
150204
150205
150206
150207
150208
150209
150210
150211
150212
150213
150214
150215
150216
150217
150218
150219
150220
150221
150222
150223
150224
150225
150226
150227
150228
150229
150230
150231
150232
150233
150234
150235
150236
150237
150238
150239
150240
150241
150242
150243
150244
150245
150246
150247
150248
150249
150250
150251
150252
150253
150254
150255
150256
150257
150258
150259
150260
150261
150262
150263
150264
150265
150266
150267
150268
150269
150270
150271
150272
150273
150274
150275
150276
150277
150278
150279
150280
150281
150282
150283
150284
150285
150286
150287
150288
150289
150290
150291
150292
150293
150294
150295
150296
150297
150298
150299
150300
150301
150302
150303
150304
150305
150306
150307
150308
150309
150310
150311
150312
150313
150314
150315
150316
150317
150318
150319
150320
150321
150322
150323
150324
150325
150326
150327
150328
150329
150330
150331
150332
150333
150334
150335
150336
150337
150338
150339
150340
150341
150342
150343
150344
150345
150346
150347
150348
150349
150350
150351
150352
150353
150354
150355
150356
150357
150358
150359
150360
150361
150362
150363
150364
150365
150366
150367
150368
150369
150370
150371
150372
150373
150374
150375
150376
150377
150378
150379
150380
150381
150382
150383
150384
150385
150386
150387
150388
150389
150390
150391
150392
150393
150394
150395
150396
150397
150398
150399
150400
150401
150402
150403
150404
150405
150406
150407
150408
150409
150410
150411
150412
150413
150414
150415
150416
150417
150418
150419
150420
150421
150422
150423
150424
150425
150426
150427
150428
150429
150430
150431
150432
150433
150434
150435
150436
150437
150438
150439
150440
150441
150442
150443
150444
150445
150446
150447
150448
150449
150450
150451
150452
150453
150454
150455
150456
150457
150458
150459
150460
150461
150462
150463
150464
150465
150466
150467
150468
150469
150470
150471
150472
150473
150474
150475
150476
150477
150478
150479
150480
150481
150482
150483
150484
150485
150486
150487
150488
150489
150490
150491
150492
150493
150494
150495
150496
150497
150498
150499
150500
150501
150502
150503
150504
150505
150506
150507
150508
150509
150510
150511
150512
150513
150514
150515
150516
150517
150518
150519
150520
150521
150522
150523
150524
150525
150526
150527
150528
150529
150530
150531
150532
150533
150534
150535
150536
150537
150538
150539
150540
150541
150542
150543
150544
150545
150546
150547
150548
150549
150550
150551
150552
150553
150554
150555
150556
150557
150558
150559
150560
150561
150562
150563
150564
150565
150566
150567
150568
150569
150570
150571
150572
150573
150574
150575
150576
150577
150578
150579
150580
150581
150582
150583
150584
150585
150586
150587
150588
150589
150590
150591
150592
150593
150594
150595
150596
150597
150598
150599
150600
150601
150602
150603
150604
150605
150606
150607
150608
150609
150610
150611
150612
150613
150614
150615
150616
150617
150618
150619
150620
150621
150622
150623
150624
150625
150626
150627
150628
150629
150630
150631
150632
150633
150634
150635
150636
150637
150638
150639
150640
150641
150642
150643
150644
150645
150646
150647
150648
150649
150650
150651
150652
150653
150654
150655
150656
150657
150658
150659
150660
150661
150662
150663
150664
150665
150666
150667
150668
150669
150670
150671
150672
150673
150674
150675
150676
150677
150678
150679
150680
150681
150682
150683
150684
150685
150686
150687
150688
150689
150690
150691
150692
150693
150694
150695
150696
150697
150698
150699
150700
150701
150702
150703
150704
150705
150706
150707
150708
150709
150710
150711
150712
150713
150714
150715
150716
150717
150718
150719
150720
150721
150722
150723
150724
150725
150726
150727
150728
150729
150730
150731
150732
150733
150734
150735
150736
150737
150738
150739
150740
150741
150742
150743
150744
150745
150746
150747
150748
150749
150750
150751
150752
150753
150754
150755
150756
150757
150758
150759
150760
150761
150762
150763
150764
150765
150766
150767
150768
1507

1188
1189

A.6 LARGE LANGUAGE MODELS ACKNOWLEDGMENT

1190
1191
1192
1193

We employed Large Language Models (LLMs) during the manuscript writing process to assist with and refine the writing. Specifically, LLMs were used to optimize the fluency and phrasing of the text, enhancing both linguistic accuracy and readability. Additionally, the models were leveraged to improve the structure of certain sections, contributing to a clearer overall logical flow of the paper.

1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241