
Under review as a conference paper at ICLR 2019

UNSUPERVISED DOCUMENT REPRESENTATION USING
PARTITION WORD-VECTORS AVERAGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning effective document-level representation is essential in many important
NLP tasks such as document classification, summarization, etc. Recent research
has shown that simple weighted averaging of word vectors is an effective way to
represent sentences, often outperforming complicated seq2seq neural models in
many tasks. While it is desirable to use the same method to represent documents
as well, unfortunately, the effectiveness is lost when representing long documents
involving multiple sentences. One reason for this degradation is due to the fact
that a longer document is likely to contain words from many different themes (or
topics), and hence creating a single vector while ignoring all the thematic structure
is unlikely to yield an effective representation of the document. This problem is
less acute in single sentences and other short text fragments where presence of
a single theme/topic is most likely. To overcome this problem, in this paper we
present P-SIF, a partitioned word averaging model to represent long documents.
P-SIF retains the simplicity of simple weighted word averaging, while taking
a document’s thematic structure into account. In particular, P-SIF learns topic-
specific vectors from a document and finally concatenates them all to represent
the overall document. Through our experiments over multiple real-world datasets
and tasks, we demonstrate P-SIF’s effectiveness compared to simple weighted
averaging and many other state-of-the-art baselines. We also show that P-SIF
is particularly effective in representing long multi-sentence documents. We will
release P-SIF’s embedding source code and data-sets for reproducing results.

1 INTRODUCTION

Distributed word embeddings such as word2vec (Mikolov et al., 2013b) have shown their success in
representing words as latent continuous features in low-dimensional fixed spaces, which can capture
their semantic meaning. These embeddings have shown impressive success for improving the per-
formance of machine learning algorithms such as text classification tasks. The success of these word
representations is recently formally explained using the random walk-based latent variable model
by (Arora et al., 2016a).

Many approaches such as (Socher et al., 2013; Le & Mikolov, 2014; Ling et al., 2015; Liu et al.,
2015a) are proposed which go beyond words to capture the semantic meaning of sentences. These
techniques either used simple composition of the word-vectors or sophisticated neural network ar-
chitectures for sentence representation. Recently, (Arora et al., 2017) proposed smooth inverse fre-
quency of word vector averaging model to embed a sentence. They further improved their embedding
by removing the first principal component of the weighted average vectors. However, all these ap-
proaches are limited to capturing the meaning of a single sentence and represent the sentence in the
same space as words, thus reducing their expressive power. Generally, a longer text contain words
from multiple different themes (or topics), and creating a single vector from simple averaging of
word-vectors will disregard all the thematic structure. Hence, these techniques are largely unable to
capture the semantic meaning of larger pieces of text (phrases, sentences and paragraphs).

To address this problem, in this paper we present a novel document embedding method called par-
tition SIF weighted averaging (P-SIF), which can efficiently embed documents with multiple sen-
tences. P-SIF learns topic-specific vectors from a document and finally concatenates them all to rep-
resent the overall document. Thus, P-SIF retains the simplicity of simple weighted word averaging,

1



Under review as a conference paper at ICLR 2019

while taking a document’s thematic structure into account. (Mekala et al., 2017) recently proposed
a clustering based word-vector averaging approach for embedding larger text documents. However,
they did not provide any justification or experiments to explain the functionality of their embed-
ding approach. This paper provides an analytical explanation about the success of the mentioned
representations and also achieves significant improvements over previous embedding techniques on
several natural language tasks. Following are the characteristics of P-SIF.

• P-SIF is capable of embedding larger documents with multiple sentences, as it pays atten-
tion to the topic/thematic structure of the document.

• P-SIF is simple because it is based on weighted word vectors averaging rather than com-
plicated tensor factorization or neural networks methods.

• P-SIF is an unsupervised method since it is obtained using pre-trained unsupervised word
embeddings without using any label information.

• P-SIF outperforms many existing approaches on textual similarity, textual classification
and other supervised tasks.

The remaining part of the paper is organized as follows. Section 2 discusses related work in docu-
ment representations. Section 3 provides motivation for the partition averaging through a qualitative
example. Section 4 describes our embedding algorithm. Section 5 introduces and explains the back-
ground needed. These sections are followed by experiments in Section 6 and the analysis with the
discussion in Section 7.

2 RELATED WORK

Word embeddings. There are mainly two methodologies proposed for unsupervised word-
embedding representations, either by internal representations learned through neural network
models of text (Bengio et al., 2003; Collobert & Weston, 2008), and Mikolov et al. (2013b) or by
low-rank approximation of co-occurrence statistics by (Levy & Goldberg, 2014; Hashimoto et al.,
2016), and Arora et al. (2016a). (Levy & Goldberg, 2014) show that both techniques are equivalent.

Sentence embeddings. Earlier work has computed sentence embedding by coordinate wise
vector and matrix based compositional operation over word vectors, e.g., (Levy & Goldberg, 2014)
use unweighted averaging of word vectors for representing short phrases, (Singh & Mukerjee, 2015)
proposed tfidf-weighted averaging of word vectors to form document vectors, (Socher et al., 2013)
proposed a recursive neural network (RNN) defined over a parse tree and trained with supervision.
Next, (Le & Mikolov, 2014) proposed PV-DM and PV-DBOW model which treats each sentence
as a shared global latent vector (or pseudo word). Other approaches use seq2seq models such as
Recurrent Neural Networks (Mikolov et al., 2010) and Long Short Term Memory (Gers et al.,
2002) which can handle long term dependency, hence, capturing the syntax structure. Other neural
network models include use of hierarchy and convolution neural networks, such as (Kim, 2014)
and (Kalchbrenner et al., 2014). (Wieting et al., 2015) learned paraphrastic sentence embedding by
modifying word embeddings based on the supervision from the Paraphrase pairs dataset (PPDB).
Recently, a lot of work is harnessing topic modeling (Blei et al., 2003) along with word vectors to
learn better word and sentence representations, e.g., TWE (Liu et al., 2015a), NTSG (Liu et al.,
2015a), WTM (Fu et al., 2016), w2v-LDA (Nguyen et al., 2015), TV+MeanWV (Li et al., 2016a),
LTSG (Law et al., 2017), Gaussian-LDA (Das et al., 2015), Topic2Vec (Niu et al., 2015), Lda2vec
(Moody, 2016), and MvTM (Li et al., 2016b).

Document embeddings. (Kiros et al., 2015) proposed skip-thought document embedding
vectors which transformed the idea of abstracting the distributional hypothesis from word level
to sentence level. (Wieting et al., 2016a) proposed a neural network model which optimizes the
word embeddings based on the cosine similarity of the sentence embeddings. (Gupta et al., 2016)
proposed a method called Bag of Words Vector (BoWV), which employs a clustering based
technique and tf-idf values to form a composite document vector. They represented documents
in higher dimensions by using hard clustering over word embeddings. (Mekala et al., 2017) later
extended the model to SCDV by using a fuzzy clustering technique and direct idf weighting of
word vectors. The learned representations tried to capture a global context of sentence, similar to an
n-gram model. Their method outperformed previous state of art on a variety of NLP tasks.
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Table 1: Words with their Topic Proportions
word 1 2 3 4 5
data 0.3 0.7 0.0 0.0 0.0

interviewing 0.0 0.0 0.8 0.0 0.2
management 0.0 0.0 0.8 0.0 0.2

public 0.0 0.0 0.0 0.7 0.3

Figure 1: Word vector space for corpus C. Words in different partitions are represented by different
subscripts and separated by hyperplanes. Bold fonts represent words’ presence in the document

3 MOTIVATION: AVERAGING VS PARTITION AVERAGING

Let’s consider a corpus (C) with N documents with the corresponding most frequent words vocab-
ulary (V ). Figure 1, represents the word-vectors space of V , where similar meaning words occur
closer to each other. We can apply sparse coding to partition the word vectors space to a five (total
topics K = 5) topic vector space, as shown in figure 1. These five topic vector spaces represent the
five topics present in corpus (C). Few words are polysemic and belong to multiple topics with some
proportion (see Table 1). In figure 1 we represent the topic number of the word in subscript. Let’s
consider a document dn: ‘Data journalists deliver data science news to general public. They often
take part in interpreting the data models. In addition, they create graphical designs and interview
the directors and CEO’s.‘

One can directly average the word vectors to represent the document (~vdn ), as in (SIF), shown in
equation equation 1. Here, + represents element-wise vector addition.

~vdn = ~vdata2 + ~vjournalist4 + ~vnews4 + ~vdatascience1 + ~vpublic4 + ~vinterpreting1
+ ~vmodels2+

~vgraphical1 + ~vdesign1
+ ~vdirector5 + ~vCEO5

+ ~vinterviewing2

(1)

In representation equation 1 it can be seen that we are averaging word vectors which have a very dif-
ferent semantic meaning, e.g., words belonging to partition 1 such as graphical, design, and data are
averaged with different semantic meaning words of partition 2 such as datascience, model, and data.
In addition, the document is represented in the same d dimensional space as word vectors. Overall,
averaging represents the documents as a single point in the vector space and does not consider the 5
different semantic topics or themes.

However, we do a weighted (topic proportion) average of words within a partition and concatenate
the average word vectors across partitions to represent the document (~vdn ), as in (P-SIF), shown in
equation equation 2. Here, + represents a element-wise vector addition, × represents scalar-vector
multiplication, and ⊕ represents concatenation.
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~vdn = (~vinterpreting1
+ ~vgraphical1 + ~vdesign1

+ 0.3× ~vdata1)⊕ (0.7× ~vdata2 + ~vdatascience2

+~vmodels2)⊕ (~vjournalist4 + ~vnews4 + 0.7× ~vpublic4)⊕ (~vdirector5 + 0.3× ~vpublic5 + ~vCEO5

+0.2× ~vinterviewing5
)⊕ (0.8× ~vinterviewing3

)

(2)

In representation equation 2, the final representation takes 5 different semantic topics into account.
Words belonging to different semantic topics are separated by concatenation (⊕) as they represent
separate meanings, whereas words coming from same topics are simple averages since they repre-
sent the same meaning. E.g., average of words belonging to partition 1 such as graphical, design,
and data are concatenated to average of words of partition 2 such as data − science, model, and
data. The final document vector ~vdn is represented in a higher 5 × d dimension vector space, thus
having more representational power, where d is the dimension of word vectors. From equation 2,
it is clear that the final representation takes the weight to which each word belongs to various top-
ics into account as well, thus handling the multi-sense nature of words, e.g., words such as data
belong to partition 1 with probability 0.3 and partition 2 with probability 0.7. Hence, partitioned av-
eraging with topic weighting is essential for representing longer text documents. Thus, P-SIF takes
documents’ thematic structure into account while doing simple weighted word vectors averaging.

4 THE PROPOSED ALGORITHM: P-SIF

In this section, we present the proposed document embedding learning algorithm. We introduce the
formal notation needed for the discussion.

• C represents text corpus and V represents vocabulary of words in corpus.
• ~vw ∈ Rd represents the word vector of word w, where d is dimension of word vector.
• p(w) represents the unigram probability of word w in the corpus.
• c0 and ~vc0 ∈ Rd represent common context and it’s corresponding context vector.

The details to construct document embeddings are given in algorithm 1. The feature formation algo-
rithm can be divided into three major steps :

Dictionary Learning for Word Vectors: Given word vectors vw ∈ Rd, a sparsity parame-
ter k, and an upper bound m , we find a set of unit norm vectors ~A1, ~A2, . . . , ~Am, such that
~vw =

∑m
j=1 α(w,j)

~Aj + ~ηw , where at most k of the coefficients α(w,1), . . . , α(w,m) are nonzero
(so-called sparsity constraint), and ~ηw is a noise vector.

Sparse coding is usually solved for given m, k by using alternating minimization (Arora et al.,
2016b) and (Aharon et al., 2006) to find the ~A′is that minimizes the following L2-reconstruction
error : ‖~vw −

∑m
j=1 α(w,j)

~Aj‖. Here, ~A1, . . . , ~Am will represents important topic basis in the corpus,
which we refer to as the atoms of the topic. Furthermore, restricting m to be much smaller than
the number of the words ensures that the same topic needs to be used for multiple words. ~Aj is an
interesting or significant topic because the sparse coding ensures that each basis element is softly
chosen by many words.

Word Topics Vector Formation: For each word ~w, we created K different word-cluster vectors of
d dimensions ~cvwk by weighting the word embedding with its learned dictionary coefficient αw,k of
the kth context.1. We then concatenated all theK word-cluster vectors ~cvwk into aK×d dimensional
embedding to form a word-topics vector ~tvw ∈ RK×d.

~cvw,k ← ~vw × αw,k ; ~tvw ←
K⊕
k=1

~cvwk

Here,
⊕

represents concatenation operation, and × represents vector-scalar multiplication.

Smooth Inverse Frequency (SIF) re-weighted: Finally, for all words appearing in document Dn,
we weighted the word-topics vectors ~tvi by smooth inverse frequency

(
a

a+p(w)

)
. Next, we removed

the common context from the weighted average document vectors by removing the first principal
1 Empirically, we observed that this weighting generally improves the performance
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component from the weighted average vectors. 2. (Arora et al., 2017) empirically shows that SIF
weighting outperforms the tf-idf weighting. They provide a theoretical explanation for their superior
performance.

~vdn ← ~vdn − ~u.~uT~vdn

Algorithm 1: P-SIF Embedding
Data: Word embeddings {~vw : w ∈ V }, Documents {dn : dn ∈ D}, a set of sentences D, parameter a and

estimated probabilities {p(w) : w ∈ V } of the words, a sparsity parameter k, and an upper bound m.
Result: Document vectors {~vdn : dn ∈ D}
/* Dictionary learning for word-vectors */

1 for each word w in V do
2 ~vw =

∑m
j=1 αw,j

~Aj + ~ηw;
3 end
/* Word topic-vector formation */

4 for each word w in V do
5 for each coefficient, αw,k of word w do
6 ~cvw,k ← ~vw × αw,k;
7 end
8 ~tvw ←

⊕K
k=1 ~cvwk ;

/*
⊕

is concatenation, × is scalar vector multiplication */
9 end
/* SIF reweighed document vector embedding */

10 for each document dn in D do
11 ~vdn ← 1

|dn|
∑

w∈dn
a

a+p(w)
~tvw;

12 end
13 Form a matrix X whose columns are {~vdn : dn ∈ D}, and let ~u be the first singular vector;
14 for each document dn ∈D do
15 ~vdn ← ~vdn - ~u~uT~vdn ;
16 end

5 P-SIF DISCUSSIONS

For single sentence documents all words of a document belong to a single topic. However, for mul-
tiple sentence-documents, words of a document generally originate from multiple topics. To capture
this phenomenon, topic modeling algorithms such as LDA (Blei et al., 2003) are used to represent
the documents. These representations essentially represent the global contexts of the documents as a
distribution over topics. However, these representations do not take the local context initiating from
the distributional semantics into account such as word vectors. To consider both local and global
contexts, we represented each word as a word-topic-vector ~tvw. In this section, we describe our
simple and efficient unsupervised method for document representation in details.

Sparse Dictionary Learning (Algorithm 1: Lines 1 - 3): (Arora et al., 2016b) shows that atoms
of sparse coding over word-vectors represent all prominent topics in the corpus. Furthermore, they
showed that multiple word senses of a word reside as a linear superposition within the word em-
bedding and can be recovered by simple sparse coding. Therefore, one can use the sparse coding of
word vectors to detect multiple senses of words and total senses of all the words (number of basis).
To find these topics, we used sparse coding algorithms such as k-svd (Aharon et al., 2006) over word
vectors ~vw. For a given word (w), the k non-zero coefficient essentially represents the distribution
of words over topics. The k non-zero αw for a given word w, basically represents the multi-sense
nature of the words.

Word Topics Vector (Algorithm 1: Lines 3 - 9): Since our multi-sentence documents have words
coming from multiple topics, we did not directly average word-vectors with a simple averaging
technique. We concatenated the word embeddings over the topic distribution of the words. This
helps to represent semantically similar words in the same topic, while words which are semantically
2 We did not remove the common component from final vectors, when we used Doc2VecC (Chen, 2017)
initialized word vectors with P-SIF, because frequent words’ word-vectors become close to ~0
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different are represented in different topics. Concatenation of word embeddings over topics also
helps in the expression of the multi sense nature of the words. We weigh word-vectors by coefficients
of the learned dictionary to capture the cross correlation (αiαj) between contexts.

SIF Weight Averaging and Common Component Removal (Algorithm 1: Lines 9 - 16): Instead
of assuming a single topic for the whole document, we showed that the total number of topics over
a given corpus is K (as shown by (Arora et al., 2016b)) and for a given word, k out of K of them
would be active. Compared to SIF which directly averages SIF weighted words-vectors, we first
partitioned according to the topics through dictionary learning over word-topics vectors. We finally
averaged SIF weighted word-topics vectors. Lastly, we removed the first principal components from
the document vectors to remove the common component.

Sparse Dictionary Learning vs. Fuzzy Clustering. Sparse coding can also be treated as a linear
algebraic analogue of overlapping clustering, where the ~Ai’s act as cluster centers and each ~vw is
assigned to each cluster in a soft way (using the coefficients α(w,j), of which only k are nonzero) to
a linear combination of at most k clusters. In practice, sparse coding optimization produces coeffi-
cients α(w,j) which are almost all positive, even though unconstrained. One can use fuzzy clustering
where each word belongs to every cluster with some probability P (ck|wi), which can be thought
as a substitute for α(w,k), similar to the approach in SCDV (Mekala et al., 2017). Practically, when
the number of contexts is large, dictionary learning performs better than fuzzy clustering due to 1)
better optimization and non-redundant clusters and 2) automatic handling of the tail of P (ck|wi)
distribution through sparsity constraints (Olshausen & Field, 1997; Gao et al., 2010; Yang et al.,
2009). We observed that for a single sentence document with a small number of topics it is better to
use fuzzy clustering because it has a better optimization and learns efficient clusters. Additionally,
in fuzzy clustering, the P (ck|wi) is a probability between 0 and 1, which sums to 1 over all contexts.
However, to overcome the noise from the non-zero tail probability one can apply hard thresholding
on the final vectors, which are directly learned by few non-zero coefficients (αw,j) of the dictionary.

Our approach is averaging the words which belong to similar topics and concatenating these averages
across different topics. Therefore, our approach is a strict generalization of the sentence embedding
approach by (Arora et al., 2017) which is a special case where total topics or themes is K = 1.

6 EXPERIMENTAL RESULTS

We performed several experiments on several text similarity and classification tasks. We will address
the following research questions through our experiments

Q1. Why partition and sparsity is required during word vectors averaging for representing doc-
uments?

Q2. Does P-SIF represent large text documents better compared to other techniques used for
representing a single sentence?

Q3. What is the effect of SIF weighting and common component removal on document repre-
sentation?

6.1 TEXTUAL SIMILARITY TASK

Datasets. We performed our experiments on the SemEval dataset (2012-2017). These experiments
involved 27 semantic textual similarity (STS) tasks (2012 - 2016) (Agirre et al., 2012; 2013; 2014;
2015; 2016), the SemEval 2015 Twitter task (Xu et al., 2015), and the SemEval 2014 Semantic
relatedness task (Marelli et al., 2014). The objectives of these tasks are to predict the similarity be-
tween two sentences. We used the Pearsons coefficient (Fleiss & Cohen, 1973) between the predicted
scores and the ground-truth scores for the evaluation. Please refer to the supplementary section F.1
for the experimental setting details.

1. Unsupervised: We used ST, avg-Glove, tfidf-Glove and Glove + WR as a baseline. ST de-
notes the skip-thought vectors by (Kiros et al., 2015), avg-Glove denotes the unweighted
average of the Glove Vectors by (Pennington et al., 2014b) 3, and tfidf-Glove denotes the tf-

3 We used the 300-dimensional word vectors that are publicly available at
http://nlp.stanford.edu/projects/glove/
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Table 2: Experimental results (Pearsons r × 100) on textual similarity tasks. The highest score in
each row is in bold. See the experiment settings section 6 under the textual similarity task for the
description of the methods. Many results are collected from (Wieting et al., 2016a) and (Wieting &
Gimpel, 2017) (GRAN) except tfidf-GloVe and our new representation

Supervised
or not

Supervised UnSupervised Semi Supervised P-SIF

Tasks PP PP
-

proj

DAN RNN iRNN LSTM
(no)

LSTM
(o.g.)

GRAN ST avg
Glove

tfidf
Glove

avg
PSL

Glove
+WR

PSL
+WR

P-SIF
+PSL

STS12 58.7 60.0 56.0 48.1 58.4 51.0 46.4 62.5 30.8 52.5 58.7 52.8 56.2 59.5 65.70
STS13 55.8 56.8 54.2 44.7 56.7 45.2 41.5 63.4 24.8 42.3 52.1 46.4 56.6 61.8 63.98
STS14 70.9 71.3 69.5 57.7 70.9 59.8 51.5 75.9 31.4 54.2 63.8 59.5 68.5 73.5 74.80
STS15 75.8 74.8 72.7 57.2 75.6 63.9 56.0 77.7 31.0 52.7 60.6 60.0 71.7 76.3 77.29

SICK14 71.6 71.6 70.7 61.2 71.2 63.9 59.0 72.9 49.8 65.9 69.4 66.4 72.2 72.9 73.41
Twitter15 52.9 52.8 53.7 45.1 52.9 47.6 36.1 50.2 24.7 30.3 33.8 36.3 48.0 49.0 54.86

Table 3: Experimental results (Pearsons r × 100) on textual similarity tasks on STS 16. The highest
score is in bold.

Tasks Skip
thoughts

LSTM Tree
LSTM

Sent2Vec Doc2Vec Glove
Avg

Glove
tf-idf

PSL
Avg

PSL
tf-idf

Glove
+WR

PSL
+WR

P-SIF
+PSL

STS16 51.4 64.9 64.0 73.7 69.4 47.2 51.1 63.3 66.9 72.4 72.5 73.7

idf weighted average of Glove vectors. We also compared our method with the SIF weight-
ing (W ) common component removal (R) Glove vectors (Glove + WR) by (Arora et al.,
2017). For STS 16 we also compared our embedding with Skip-Thoughts (Kiros et al.,
2015) and Sent2Vec (Pagliardini et al., 2018) embeddings.

2. Semi-Supervised: We used avg-PSL, PSL + WR, and the avg-PSL used the unweighted
average of the PARAGRAM-SL999 (PSL) word vectors by (Wieting et al., 2015) as a
baseline, obtained by training on PPDB dataset(Ganitkevitch et al., 2013). The word vectors
are trained using unlabeled data. Furthermore, Sentence embeddings are obtained from
unweighted word vectors averaging. We also compared our method with the SIF weighting
(W) common component removal (R) PSL word vectors (PSL + WR) by (Arora et al.,
2017).

3. Supervised: We compared our method with PP, PP-proj., DAN, RNN, iRNN, LSTM (o.g),
LSTM(no) and GRAN. All these methods are initialized with PSL word vectors and then
trained on PPDB dataset (Ganitkevitch et al., 2013). PP(Wieting et al., 2016a) is the average
of word vectors while PP-proj is the average of word vectors followed by a linear projec-
tion. The word vectors are updated during the training. DAN denotes the deep averaging
network of (Iyyer et al., 2015). RNN is a Recurrent neural network, iRNN is identity ac-
tivated Recurrent Neural Network based on identity initialize weight matrices. The LSTM
is the version from (Gers et al., 2002), either with output gates (denoted as LSTM (o.g.))
or without (denoted as LSTM (no)). GRAN denotes the state of art supervised averaging
based Gated Recurrent Averaging Network from (Wieting & Gimpel, 2017). For STS 16
we also compared our embedding with Tree-LSTM (Tai et al., 2015) embedding.

More details on the values of the hyper-parameters used for the experiments are described in details
in the supplementary section F.1.

Results and Analysis The average results for each year are reported in Table 2. We denoted our
embeddings by P-SIF + PSL (+ PSL denotes using the PSL word vectors). We reported the av-
erage results for the STS tasks. The detailed results on each sub-dataset are in the supplementary
section A. We observed that P-SIF + PSL outperforms PSL + WR on all datasets, thus supporting
the usefulness of our partitioned averaging. Our method also outperformed Neural Network models
such as LSTM and RNN. Our proposed techniques performed the best over 16 datasets out of 22
compared to methods from (Wieting et al., 2016a) and (Arora et al., 2017) (refer to supplemen-
tary section A for details). Our method outperformed supervised averaging based Gated Recurrent
Averaging Network (GRAN) on 11 datasets. Furthermore, our results outperformed recently pro-
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posed unsupervised methods such as Skip-Thoughts(Kiros et al., 2015), Sent2Vec(Pagliardini et al.,
2018), and supervised method such as Tree-LSTM(Tai et al., 2015). We observed that partitioning
through fuzzy cluster algorithm such as GMM generates a better performance compared to partition-
ing through sparse dictionary algorithms such as k-svd for most Semantic Textual Similarity (STS)
tasks. The main reason for this peculiar observation was related to the fact that the STS datasets
contains documents which are single sentences of a maximum length of 40 words. As discussed
in section 5 (sparse dictionary learning vs. fuzzy clustering), for single sentence documents with a
small number of topics, fuzzy clustering optimizes better than sparse dictionary learning. Therefore,
we used GMM for the STS task which results in partitioning words into suitable clusters. Both ksvd
and GMM outperform SIF, however, the improvement was more observable with the GMM-based
partitioning. It should be noted that this observation does not hold for 20NewsGroup and Reuters
datasets since the documents in these datasets have multiple sentences with a total number of words
>> 40. We also report some qualitative results in the supplementary section D with a supporting
example in section E. In addition, we report our results on the SICK supervised classification task
in supplementary section B.

6.2 TEXTUAL CLASSIFICATION TASK

The document embeddings obtained by our method can be used as direct features for downstream
many supervised tasks.

Datasets We ran multi-class experiments on 20NewsGroup dataset 4 and multi-label classification
experiments on Reuters-21578 dataset 5. We used script 6 for preprocessing the dataset. Please refer
to supplementary section F.1 for the hyperparameter’s details.

Baselines We considered the following baselines: The Bag-of-Words (BoW) model ((Harris, 1954)),
the Bag of Word Vector (BoWV) (Gupta et al., 2016) model, Sparse Composite Document Vector
(SCDV) (Mekala et al., 2017) 7 paragraph vector models (Le & Mikolov, 2014), Topical word em-
beddings (TWE-1) (Liu et al., 2015b), Neural Tensor Skip-Gram Model (NTSG-1 to NTSG-3) (Liu
et al., 2015a), tf-idf weighted average word-vector model(Singh & Mukerjee, 2015) and weighted
Bag of Concepts (weight-BoC) (Kim et al., 2017) where we built document-topic vectors by count-
ing the member words in each topic, and Doc2VecC (Chen, 2017) where averaging and training of
word vectors are done jointly. Moreover, we used SIF (Arora et al., 2017) smooth inverse frequency
weight with common component removal from weighted average vectors as a baseline. We also
compared our results with other topic modeling based document embedding methods such as WTM
(Fu et al., 2016), w2v-LDA (Nguyen et al., 2015), LDA (Chen & Liu, 2014), TV+MeanWV (Li
et al., 2016a)), LTSG (Law et al., 2017), Gaussian-LDA (Das et al., 2015), Topic2Vec (Niu et al.,
2015), Lda2Vec (Moody, 2016) and MvTM (Li et al., 2016b). Please refer to supplementary section
F.2 for the hyperparameter’s details.

Table 4: Performance on multi-label classification on Reuters. P-SIF represents our new em-
beddings. P-SIF(Doc2VecC) represents embeddings obtained using Doc2VecC-initialized word-
vectors. Values in bold show the best performance.

Model Prec@1
nDCG@1

Prec
@5

nDCG
@5

Coverage
Error

LRAPS F1-Score

P-SIF (Doc2VecC) 94.92 37.98 50.40 6.03 93.95 82.87
P-SIF 94.77 37.33 49.97 6.24 93.72 82.41

SCDV(Mekala et al., 2017) 94.20 36.98 49.55 6.48 93.30 81.75
Doc2VecC(Chen, 2017) 93.45 36.86 49.28 6.83 92.66 81.29

BoWV(Gupta et al., 2016) 92.90 36.14 48.55 8.16 91.46 79.16
TWE-1(Liu et al., 2015b) 90.91 35.49 47.54 8.16 91.46 79.16

SIF(Arora et al., 2017) 90.40 35.09 47.32 8.98 88.10 76.78
PV-DM(Le & Mikolov, 2014) 87.54 33.24 44.21 13.15 86.21 70.24

PV-DBoW(Le & Mikolov, 2014) 88.78 34.51 46.42 11.28 87.43 73.68
AvgVec(Singh & Mukerjee, 2015) 89.09 34.73 46.48 9.67 87.28 71.91

tfidf AvgVec(Singh & Mukerjee, 2015) 89.33 35.04 46.83 9.42 87.90 71.97

4 http://qwone.com/$\sim$jason/20Newsgroups/ 5 https://goo.gl/NrOfu
6 https://gist.github.com/herrfz/7967781 7 https://github.com/dheeraj7596/SCDV

8

http://qwone.com/$\sim $jason/20Newsgroups/
https://goo.gl/NrOfu
https://gist.github.com/herrfz/7967781
https://github.com/dheeraj7596/SCDV


Under review as a conference paper at ICLR 2019

Multi-class classification We evaluated the classifier’s performance using standard metrics such as
accuracy, macro-averaging precision, recall and F-measure. Table 5 shows a comparison on multiple
state-of-art document representations on the 20NewsGroup dataset.

Table 5: Performance on multi-class classification on 20NewsGroups. P-SIF represents our new
embeddings. P-SIF (Doc2VecC) represents embeddings obtained from Doc2VecC-initialized word-
vectors. Values in bold show the best performance.

Model Acc Prec Rec F-mes
P-SIF (Doc2VecC) 86.0 86.1 86.1 86.0

P-SIF 85.4 85.5 85.4 85.2
SCDV(Mekala et al., 2017) 84.6 84.6 84.5 84.6

Doc2VecC(Chen, 2017) 84.0 84.1 84.1 84.0
BoE(Jin et al., 2016) 83.1 83.1 83.1 83.1

NTSG-1(Liu et al., 2015a) 82.6 82.5 81.9 81.2
NTSG-2(Liu et al., 2015a) 82.5 83.7 82.8 82.4

SIF(Arora et al., 2017) 82.3 82.6 82.9 82.2
BoWV(Gupta et al., 2016) 81.6 81.1 81.1 80.9
NTSG-3(Liu et al., 2015a) 81.9 83.0 81.7 81.1

LTSG(Law et al., 2017) 82.8 82.4 81.8 81.8
WTM(Fu et al., 2016) 80.9 80.3 80.3 80.0

w2v-LDA(Nguyen et al., 2015) 77.7 77.4 77.2 76.9
TV+MeanWV(Li et al., 2016a) 72.2 71.8 71.5 71.6

MvTM(Li et al., 2016b) 72.2 71.8 71.5 71.6
TWE-1(Liu et al., 2015b) 81.5 81.2 80.6 80.6
Lda2Vec(Moody, 2016) 81.3 81.4 80.4 80.5
LDA (Das et al., 2015) 72.2 70.8 70.7 70.0

weight-AvgVec(Singh & Mukerjee, 2015) 81.9 81.7 81.9 81.7
BoW(Harris, 1954) 79.7 79.5 79.0 79.0

weight-BOC(Kim et al., 2017) 71.8 71.3 71.8 71.4
PV-DBoW(Le & Mikolov, 2014) 75.4 74.9 74.3 74.3

PV-DM(Le & Mikolov, 2014) 72.4 72.1 71.5 71.5

Multi-label classification: We evaluated multi-label classification performance using Preci-
sion@K, nDCG@k(Bhatia et al., 2015), Coverage error, Label ranking average precision score
(LRAPS) 8 and F1-score. Table 4 shows the evaluation results for multi-label text classification
on the Reuters-21578 dataset.

Results and Analysis We observed that P-SIF outperforms all other methods by a significant
margin on both 20NewsGroup and Reuters datasets. We observed that the dictionary learns more
diverse and non-redundant topics compared to fuzzy clustering (SCDV) since we only require 40
partitions rather than 60 partitions in SCDV to obtain the best performance. Simple tf-idf weighted
averaging based document representation does not show significant improvement in performance
by increasing word vector dimensions. We achieved a < 0.4 % improvement in accuracy when the
word vectors dimensions increase from 200 to 500 on 20NewsGroup. We observed that increasing
word vectors dimensions beyond 500 does not improve the performance of SIF and P-SIF. We
further improved the performance on both datasets using Doc2vecC initialized word-vectors with
the help of the P-SIF algorithm. We represented this approach by P-SIF (Doc2VecC) in Table 5 and
Table 4. On 20NewsGroup we required only 20 partitioned instead of 40 with Doc2VecC initialized
word vectors. This shows that better word vector representations help in learning more diverse and
non-redundant partitions. We also reported our results on each of the 20 classes of 20NewsGroup
separately in the supplementary section C.

7 ANALYSIS AND DISCUSSION

Effect of Document-Length: We conducted a small experiment to show that our model performs
better compared to SIF when we have large size documents. We have divided 26 STS (sentence
textual similarity) datasets by average document length, i.e., number of words in documents in bins
of (10-20, 20-30, 30-40, 40-50) words. Next, we averaged the relative performance improvement
in accuracy with respect to SIF

( P-SIF−SIF
SIF %

)
and over all datasets in each bin. In Figure 2, we

observe that for complex multi-sentence documents with more words P-SIF relatively performs
better. We have also observed that short texts require fewer number of partitions to achieve their best
performance which was quite intuitive since short text documents will map into fewer topics.
8 https://goo.gl/4GrR3M

9

https://goo.gl/4GrR3M


Under review as a conference paper at ICLR 2019

Figure 2: Relative performance improvement pf P-SIF over SIF in accuracy
( P-SIF−SIF

SIF %
)

w.r.t
average numbers of words in documents for 27 sts (sentence textual similarity) datasets.

Effect of Partition: We have concatenated the word embeddings over topic distribution of words
which assigned semantically similar words to identical partitions and semantically different words
to different partitions. Partitioning and concatenation of word embeddings over topics also helps in
the representation of multi-sense words, which would have been left-out by simple averaging of the
word embeddings in document representation otherwise. We represented our words by partitioned
average of word-vector embeddings distributed over partitions, which grew the representation by
the multiplication of the number of partitions, compared to word vector embeddings. Such high
dimensional data structure regularizers, e.g., sparse encodings, help in overcoming the curse of
dimensionality. We used k-svd (Aharon et al., 2006) a generalized k-means iterative method that
alternates between the sparse coding of the examples based on the current dictionary and updating
the dictionary atoms to fit the data. SCDV (Mekala et al., 2017) does manual sparse-encoding to
ensure sparsity. (Mekala et al., 2017) clustering methodology uses GMM for partitioning the vocab-
ulary space and capturing the topics. Instead of GMM, we used a dictionary learning based approach
which imposes a sparsity constraint implicitly during optimization. Since, k-svd is internally and al-
ternatively optimized between sparse encodings and topic representations, we are able to solve the
curse of higher dimensionality by automatic sparse representations of the partitions. Emperically, on
both datasets, we observed that the dictionary learns more diverse and non-redundant topics com-
pared to fuzzy clustering. We required only 40 partitions rather than 60 in SCDV to obtain the best
performance. Additionally, we achieved the best performance with (P-SIF(Doc2VecC)) with just
(20 ∗ 300) dimensions of word embeddings (mostly sparse) as compared to (60 ∗ 300) dimensions
of word-embeddings (mostly non-sparse) in SCDV. Thus, we obtained a performance gain of 1.5%
with 0.33 of the size of the SCDV embeddings.

Effect of SIF and Common Component Removal: We have also shown improvement in shorter
text tasks via sentence textual similarity task. We have used SIF based weighted word averaging
methods instead of tf-idf averaging (Mekala et al., 2017) or simple averaging of word-embeddings.
SIF takes advantage of the generative process of document-formation and represents documents as
simple smooth inverse frequency averaging of word embeddings. We also observe that removing
the first principal component helps in removing the common component occurring due to frequent
common words from document vectors. This observation reduces noise and redundancy from the
composed document vectors which make vectors more discriminating.

8 CONCLUSIONS AND FUTURE WORK

We proposed an unsupervised document feature formation technique based on a partitioned word
vector averaging method. Our embedding retains the simplicity of simple weighted word averaging,
while taking documents’ thematic structure into account. Our simple and efficient approach achieved
significantly better performance on several textual similarity tasks, textual classification tasks and
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out of domain tasks. In the future, three extensions of our work would be 1. Learning a supervised
weighting scheme of words according to the task to improve words weighting, 2. Learning and
using context sensitive word embeddings instead of normal skip-gram embeddings to resolve cluster
disambuity, and 3. Learning a lower dimensional space manifold to represent word-topic vectors for
continuous representations useful in deep leaning applications.
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Supplementary: Unsupervised Document Representation using
Partition Word-Vectors Averaging

A UNSUPERVISED TASK: TEXTUAL SIMILARITY

In this supplementary section, we present the details results for STS tasks for each year. Each year,
there are 4 to 6 STS tasks, as shown in Table 6. Note that tasks with the same name in different years
are different tasks in reality. We provide detailed results for each tasks in STS 12 - 15 in Table 7.
Our method outperforms all other methods from (Arora et al., 2017) and (Wieting et al., 2016a) on
all 16 out of 22 tasks. Our method performs significantly better in comparison to all unsupervised
embedding methods. In addition, P-SIF is very close to the best performance by supervised meth-
ods on the rest of the datasets. The performance difference between best method and our method
compared with best method is much small. Our method was also able to outperform state of art su-
pervised averaging based Gated Recurrent Averaging Network (GRAN) (Wieting & Gimpel, 2017)
on 11 datasets shown in Table 7. Our results also outperform state of art methods on many recent
supervised embedding methods on STS 16 task, as shown in Table 8.

Table 6: The STS tasks by year. Tasks with the same name in different years are different tasks

STS12 STS13 STS14 STS15 STS16
MSRpar headline deft forum anwsers-forums headlines
MSRvid OnWN deft news answers-students plagiarism
SMT-eur FNWN headline belief posteditng
OnWN SMT images headline answer-answer

SMT-news OnWN images question-question
tweet news

B OTHER SUPERVISED TASKS

We also consider three out of domain supervised tasks: the SICK similarity task, the SICK
entailment task, and the Stanford Sentiment Treebank (SST) binary classification task by (Socher
et al., 2013). We use the setup similar to (Wieting et al., 2016a) and (Arora et al., 2017) for a fair
comparison, including the linear projection maps which take the embedding into 2400 dimension
(same as skip-thought vectors), and is learned during the training. We compare our method to PP,
DAN, RNN, LSTM, and skip-thoughts and other baselines, details results in Table 9.

Results and Analysis. Our method (P-SIF) gets better performance compared to PSL + WR on
all the three tasks similarity, entailment and sentiment. We obtained best results for two of the su-
pervised tasks, despite many of these methods (DAN, RNN, LSTM) are trained with supervision.
Furthermore, the skip thought vectors use has a higher dimension of 2400 dimension instead of 300
dimensions (which we projected to 2400 for a fair comparison). Our method wasn’t able to outper-
form sentiment task compared to supervised tasks because a) due to antonym problem word vectors
capture sentimental meaning of words and b) also in our weighted average scheme, we didn’t give
more weights to sentiment words such as not,good, bad, there may be some important sentiment
words which are down-weighted by SIF weighting scheme. However, we outperform PSL + WR by
a significant margin and have lesser performance gap with the best supervised approach.
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Table 7: Experimental results (Pearsons r × 100) on textual similarity tasks. The highest score in
each row is in boldface. The methods can be supervised (denoted as Su.), semi-supervised (Se.),
or unsupervised (Un.). See main text for description of the methods. Many results are collected
from (Wieting et al., 2016a) and (Wieting & Gimpel, 2017) (GRAN) except tfidf-GloVe and our
representation.

Supervised
or not

Supervised UnSupervised Semi Supervised P-SIF

Tasks PP PP
-

proj

DAN RNN iRNN LSTM
(no)

LSTM
(o.g.)

GRAN ST avg
Glove

tfidf
Glove

avg
PSL

Glove
+WR

PSL
+WR

P-SIF
+PSL

MSRpar 42.6 43.7 40.3 18.6 43.4 16.1 9.3 47.7 16.8 47.7 50.3 41.6 35.6 43.3 52.4
MSRvid 74.5 74.0 70.0 66.5 73.4 71.3 71.3 85.2 41.7 63.9 77.9 60.0 83.8 84.1 85.6
SMT-eur 47.3 49.4 43.8 40.9 47.1 41.8 44.3 49.3 35.2 46.0 54.7 42.4 49.9 44.8 58.7
OnWN 70.6 70.1 65.9 63.1 70.1 65.2 56.4 71.5 29.7 55.1 64.7 63.0 66.2 71.8 72.2

SMT-news 58.4 62.8 60.0 51.3 58.1 60.8 51.0 58.7 30.8 49.6 45.7 57.0 45.6 53.6 59.5
STS12 58.7 60.0 56.0 48.1 58.4 51.0 46.4 62.5 30.8 52.5 58.7 52.8 56.2 59.5 65.7

headline 72.4 72.6 71.2 59.5 72.8 57.4 48.5 76.1 34.6 63.8 69.2 68.8 69.2 74.1 75.7
OnWN 67.7 68.0 64.1 54.6 69.4 68.5 50.4 81.4 10.0 49.0 72.9 48.0 82.8 82.0 84.4
FNWN 43.9 46.8 43.1 30.9 45.3 24.7 38.4 55.6 30.4 34.2 36.6 37.9 39.4 52.4 54.8
SMT 39.2 39.8 38.3 33.8 39.4 30.1 28.8 40.3 24.3 22.3 29.6 31.0 37.9 38.5 41.0

STS13 55.8 56.8 54.2 44.7 56.7 45.2 41.5 63.4 24.8 42.3 52.1 46.4 56.6 61.8 64.0
deft forum 48.7 51.1 49.0 41.5 49.0 44.2 46.1 55.7 12.9 27.1 37.5 37.2 41.2 51.4 53.2
deft news 73.1 72.2 71.7 53.7 72.4 52.8 39.1 77.1 23.5 68.0 68.7 67.0 69.4 72.6 75.2
headline 69.7 70.8 69.2 57.5 70.2 57.5 50.9 72.8 37.8 59.5 63.7 65.3 64.7 70.1 70.2
images 78.5 78.1 76.9 67.6 78.2 68.5 62.9 85.8 51.2 61.0 72.5 62.0 82.6 84.8 84.8
OnWN 78.8 79.5 75.7 67.7 78.8 76.9 61.7 85.1 23.3 58.4 75.2 61.1 82.8 84.5 88.1

tweet news 76.4 75.8 74.2 58.0 76.9 58.7 48.2 78.7 39.9 51.2 65.1 64.7 70.1 77.5 77.5
STS14 70.9 71.3 69.5 57.7 70.9 59.8 51.5 75.8 31.4 54.2 63.8 59.5 68.5 73.5 74.8

answers-forum 68.3 65.1 62.6 32.8 67.4 51.9 50.7 73.1 36.1 30.5 45.6 38.8 63.9 70.1 70.7
answers-student 78.2 77.8 78.1 64.7 78.2 71.5 55.7 72.9 33.0 63.0 63.9 69.2 70.4 75.9 79.6

belief 76.2 75.4 72.0 51.9 75.9 61.7 52.6 78 24.6 40.5 49.5 53.2 71.8 75.3 75.3
headline 74.8 75.2 73.5 65.3 75.1 64.0 56.6 78.6 43.6 61.8 70.9 69.0 70.7 75.9 76.8
images 81.4 80.3 77.5 71.4 81.1 70.4 64.2 85.8 17.7 67.5 72.9 69.9 81.5 84.1 84.1
STS15 75.8 74.8 72.7 57.2 75.6 63.9 56.0 77.7 31.0 52.7 60.6 60.0 71.7 76.3 77.3

SICK14 71.6 71.6 70.7 61.2 71.2 63.9 59.0 72.9 49.8 65.9 69.4 66.4 72.2 72.9 73.4
Twitter15 52.9 52.8 53.7 45.1 52.9 47.6 36.1 50.2 24.7 30.3 33.8 36.3 48.0 49.0 54.9

Table 8: Experimental results (Pearsons r × 100) on textual similarity tasks on STS 16. The highest
score in each row is in boldface.

Tasks Skip
thoughts

LSTM Tree
LSTM

Sent2Vec Doc2Vec Glove
Avg

Glove
tf-idf

PSL
Avg

PSL
tf-idf

Glove
+WR

PSL
+WR

P-SIF
+PSL

headlines 51.019 75.7 74.08 75.06 69.16 49.66 52.76 70.86 72.24 72.86 74.48 75.6
plagiarism 66.708 71.73 67.62 80.06 80.6 59.84 61.48 77.96 80.06 79.46 79.74 81.6
post editing 69.947 72.31 70.65 82.85 82.85 59.89 62.34 80.41 81.45 82.03 82.05 83.7

answer answer 28.626 44.17 52.27 57.73 41.12 19.8 22.47 38.5 41.56 58.15 59.98 60.2
question question 40.459 60.69 55.26 73.03 73.03 46.84 56.58 48.69 59.1 69.36 66.41 67.2

STS16 51.4 64.9 64.0 73.7 69.4 47.2 51.1 63.3 66.9 72.4 72.5 73.7

Table 9: Results on similarity, entailment, and sentiment tasks. The row for similarity (SICK) shows
Pearsons r × 100 and the last two rows show accuracy. The highest score in each row is in boldface.
Results in Column 2 to 6 are collected from (Wieting et al., 2016a), and those in Column 7 for
skip-thought are from (Kiros et al., 2015), Column 8 for PSL + WR are from (Arora et al., 2017).

Tasks PP DAN RNN LSTM
(no)

LSTM
(o.g.)

skip
thought

PSL
+WR

P-SIF
+PSL

similarity(SICK) 84.9 85.96 73.13 85.45 83.41 85.8 86.3 87.6
entailment(SICK) 83.1 84.5 76.4 83.2 82.0 - 84.6 85.5
sentiment(SST) 79.4 83.4 86.5 86.6 89.2 - 82.2 86.4
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C CLASS PERFORMANCE: 20NEWSGROUP

We also report the precision and recall results of separate 20 classes of the 20 NewsGroup dataset.
We compared our embedding (P-SIF) with Bag of Words, SCDV embeddings and our embeddings.
Table 10, P-SIF embedding outperform all other embeddings on multiple classes.

Table 10: Class performance on the 20newsgroup dataset. P-SIF represent our embedding. P-SIF
(Doc2VecC) represent embedding obtained using Doc2VecC trained word-vectors with 20 clusters.

BoW SCDV P-SIF P-SIF (Doc2VecC)
Class Name Pre. Rec. F-mes Pre. Rec. F-mes Pre. Rec. F-mes Pre. Rec. F-mes
alt.atheism 67.8 72.1 69.88 80.2 79.5 79.85 83.3 80.2 81.72 83 79.9 81.42

comp.graphics 67.1 73.5 70.15 75.3 77.4 76.34 76.6 78.1 77.34 76.8 79.2 77.98
comp.os.ms-windows.misc 77.1 66.5 71.41 78.6 77.2 77.89 76.3 77.7 76.99 77.2 78.2 77.7
comp.sys.ibm.pc.hardware 62.8 72.4 67.26 75.6 73.5 74.54 73.4 74.5 73.95 71.1 74.2 72.62

comp.sys.mac.hardware 77.4 78.2 77.8 83.4 85.5 84.44 87.1 84.4 85.73 87.5 87.5 87.5
comp.windows.x 83.2 73.2 77.88 87.6 78.6 82.86 89.3 78 83.27 88.8 78.5 83.33

misc.forsale 81.3 88.2 84.61 81.4 85.9 83.59 82.7 88 85.27 82.4 86.4 84.35
rec.autos 80.7 82.8 81.74 91.2 90.6 90.9 93 90.1 91.53 92.8 90.7 91.74

rec.motorcycles 92.3 87.9 90.05 95.4 95.7 95.55 93.6 95.5 94.54 97 96.5 96.75
rec.sport.baseball 89.8 89.2 89.5 93.2 94.7 93.94 93.3 95.2 94.24 95.2 95.7 95.45
rec.sport.hockey 93.3 93.7 93.5 96.3 99.2 97.73 95.6 98.5 97.03 96.8 98.8 97.79

sci.crypt 92.2 86.1 89.05 92.5 94.7 93.59 89.8 93.2 91.47 93.4 96.7 95.02
sci.electronics 70.9 73.3 72.08 74.6 74.9 74.75 79.6 78.6 79.1 78 79.3 78.64

sci.med 79.3 81.3 80.29 91.3 88.4 89.83 91.9 88.6 90.22 92.7 89.9 91.28
sci.space 90.2 88.3 89.24 88.5 93.8 91.07 89.4 94 91.64 90.7 94.4 92.51

soc.religion.christian 77.3 87.9 82.26 83.3 92.3 87.57 84 94.3 88.85 86 92.5 89.13
talk.politics.guns 71.7 85.7 78.08 72.7 90.6 80.67 73.1 91.2 81.15 77.3 89.8 83.08

talk.politics.mideast 91.7 76.9 83.65 96.2 95.4 95.8 97 94.5 95.73 97.5 94.2 95.82
talk.politics.misc 71.7 56.5 63.2 80.9 59.7 68.7 81 59 68.27 82 62 70.61
talk.religion.misc 63.2 55.4 59.04 73.5 57.2 64.33 72.2 59 64.94 67.4 62.4 64.8

D QUALITATIVE RESULTS

Table 11 represent successful example pair from STS 2012 MSRvid dataset where P-SIF give sim-
ilarity score closer to ground truth than SIF. Table 12 represent failed example pair from STS 2012
MSRvid dataset where SIF give similarity score closer to ground truth than P-SIF. We now intro-
duce the headline notation use in the Table 11 and 12.

• GT : represent the given ground truth similarity score in range of 0-5.
• NGT : represent normalized ground truth similarity score. NGT is obtain by dividing GT

score by 5 so that it’s in range of 0-1.
• SIFsc : represent the SIF embedding similarity score in range of 0-1.
• P-SIFsc : represent the P-SIF embedding similarity score in range of 0-5.
• SIFerr : represent absolute error ‖SIFsc −NGT‖ between normalized ground truth simi-

larity score and SIF embedding similarity score.
• P-SIFerr : represent absolute error ‖P-SIFsc − NGT‖ between ground truth similarity

score and P-SIF embedding similarity score.
• Differr : represent absolute difference between SIFerr and P-SIFerr. Examples where P-

SIF perform better Differr = P-SIFerr - SIFerr (used in Table 11). Examples where SIF
perform better Differr = SIFerr - P-SIFerr (used in Table 12)

• Relerr : represent relative difference between SIFerr and P-SIFerr. Example where P-SIF
perform better Relerr = Differr

SIFerr
(used in Table 11). Examples where SIF perform better

Relerr = Differr
P-SIFerr

(used in Table 12)

E QUALITATIVE EXAMPLE

Let’s consider a corpus (C) with N documents with corresponding most frequent words vocabulary
(V ). Figure 3 represents the word-vectors space of V , where similar meaning words are closer. We
can apply sparse coding and partition the words-vector space in five (total topicsK = 5) topic vector
spaces. Some words are polysemic and belong to multiple topics with some proportion, as shown in
Figure 3. For example, words such as baby, person, dog and kangaroo, belong to multiple topics with
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Table 11: STS 2012 MSRVid example where P-SIF score were closer to the ground truth, whereas
SIF score were more further from the ground truth

sentence1 sentence2 GT NGT SIFsc P-SIFsc SIFerr P-SIFerr Differr Relerr
People are playing baseball . The cricket player hit the ball . 0.5 0.1 0.2928 0.0973 0.1928 0.0027 0.1901 0.986
A woman is carrying a boy . A woman is carrying her baby . 2.333 0.4666 0.5743 0.4683 0.1077 0.0017 0.106 0.9843

A man is riding a motorcycle . A woman is riding a horse . 0.75 0.15 0.5655 0.157 0.4155 0.007 0.4085 0.9833
A woman slices a lemon . A man is talking into a microphone . 0 0 -0.1101 -0.0027 0.1101 0.0027 0.1074 0.9754

A man is hugging someone . A man is taking a picture . 0.4 0.08 0.2021 0.0767 0.1221 0.0033 0.1188 0.9731
A woman is dancing . A woman plays the clarinet . 0.8 0.16 0.3539 0.1653 0.1939 0.0053 0.1886 0.9727

A train is moving . A man is doing yoga . 0 0 0.1674 -0.0051 0.1674 0.0051 0.1623 0.9695
Runners race around a track . Runners compete in a race . 3.2 0.64 0.7653 0.6438 0.1253 0.0038 0.1214 0.9694

A man is driving a car . A man is riding a horse . 1.2 0.24 0.3584 0.2443 0.1184 0.0043 0.114 0.9636
A man is playing a guitar . A woman is riding a horse . 0.5 0.1 -0.0208 0.0955 0.1208 0.0045 0.1163 0.9629
A man is riding on a horse . A girl is riding a horse . 2.6 0.52 0.6933 0.5082 0.1733 0.0118 0.1615 0.9319

A woman is deboning a fish . A man catches a fish . 1.25 0.25 0.4538 0.2336 0.2038 0.0164 0.1875 0.9196
A man is playing a guitar . A man is eating pasta . 0.533 0.1066 -0.0158 0.0962 0.1224 0.0104 0.112 0.915

A woman is dancing . A man is eating . 0.143 0.0286 -0.1001 0.0412 0.1287 0.0126 0.1161 0.9023
The ballerina is dancing . A man is dancing . 1.75 0.35 0.512 0.3317 0.162 0.0183 0.1437 0.8871

A woman plays the guitar . A man sings and plays the guitar . 1.75 0.35 0.5036 0.3683 0.1536 0.0183 0.1353 0.8807
A girl is styling her hair . A girl is brushing her hair . 2.5 0.5 0.7192 0.5303 0.2192 0.0303 0.1889 0.8618

A guy is playing hackysack A man is playing a key-board . 1 0.2 0.3718 0.2268 0.1718 0.0268 0.145 0.8441
A man is riding a bicycle . A monkey is riding a bike . 2 0.4 0.6891 0.4614 0.2891 0.0614 0.2277 0.7876

A woman is swimming underwater . A man is slicing some carrots . 0 0 -0.2158 -0.0562 0.2158 0.0562 0.1596 0.7397
A plane is landing . A animated airplane is landing . 2.8 0.56 0.801 0.6338 0.241 0.0738 0.1672 0.6937

The missile exploded . A rocket exploded . 3.2 0.64 0.8157 0.6961 0.1757 0.0561 0.1196 0.6806
A woman is peeling a potato . A woman is peeling an apple . 2 0.4 0.6938 0.5482 0.2938 0.1482 0.1456 0.4956

A woman is writing . A woman is swimming . 0.5 0.1 0.3595 0.2334 0.2595 0.1334 0.1261 0.4859
A man is riding a bike . A man is riding on a horse . 2 0.4 0.6781 0.564 0.2781 0.164 0.1142 0.4105
A panda is climbing . A man is climbing a rope . 1.6 0.32 0.4274 0.3131 0.1074 0.0069 0.1005 0.9361

A man is shooting a gun . A man is spitting . 0 0 0.2348 0.1305 0.2348 0.1305 0.1043 0.444

Table 12: STS 2012 MSRVid example where P-SIF score were far away from ground truth, whereas
SIF score were closer to actual ground truth

sentence1 sentence2 GT NGT SIFsc P-SIFsc SIFerr P-SIFerr Differr Relerr
takes off his sunglasses . A boy is screaming . 0.5 0.1 0.1971 0.3944 0.0971 0.2944 0.1973 0.6703

The rhino grazed on the grass . A rhino is grazing in a field . 4 0.8 0.7275 0.538 0.0725 0.262 0.1895 0.7234
An animal is biting a persons finger . A slow loris is biting a persons finger . 3 0.6 0.6018 0.7702 0.0018 0.1702 0.1684 0.9892

Animals are playing in water . Two men are playing ping pong . 0 0 0.0706 0.2238 0.0706 0.2238 0.1532 0.6846
Someone is feeding a animal . Someone is playing a piano . 0 0 -0.0037 0.1546 0.0037 0.1546 0.1509 0.976

The lady sliced a tomatoe . Someone is cutting a tomato . 4 0.8 0.693 0.5591 0.107 0.2409 0.1339 0.5559
The lady peeled the potatoe . A woman is peeling a potato . 4.75 0.95 0.7167 0.5925 0.2333 0.3575 0.1242 0.3474
A man is slicing something . A man is slicing a bun . 3 0.6 0.5976 0.4814 0.0024 0.1186 0.1162 0.9802

A boy is crawling into a dog house . A boy is playing a wooden flute . 0.75 0.15 0.1481 0.2674 0.0019 0.1174 0.1155 0.9839
A man and woman are talking . A man and woman is eating . 1.6 0.32 0.3574 0.4711 0.0374 0.1511 0.1137 0.7527

A man is cutting a potato . A woman plays an electric guitar . 0.083 0.0166 -0.1007 -0.2128 0.1173 0.2294 0.112 0.4884
A person is cutting a meat . A person riding a mechanical bull 0 0 0.0152 0.1242 0.0152 0.1242 0.1091 0.8778

A woman is playing the flute . A man is playing the guitar . 1 0.2 0.1942 0.0876 0.0058 0.1124 0.1065 0.948

significant proportion. Words and corresponding vectors in these topic vector spaces are represented
by topic numbers in subscript. Table 13 shows an example pair from the STS Task 2012 MSRVid
dataset, and the corresponding SIF (averaging) and P-SIF (partition averaging) representation vec-
tors. We can see that in SIF representation we are averaging words vectors which semantically have
different meanings. The document is represented in the same d dimensional word-vectors space.
Overall, the SIF represent the document as a single point in the vector space and doesn’t take ac-
count of different semantic meanings of the topics. Whereas, in P-SIF representation we treat the
5 different semantic topics distinctly. Words belonging to different semantic topics are separated by
concatenation (⊕) as they represent different meanings, whereas words coming from same topic are
average as it’s represent same meaning. The final document vector ~vdn has more representational
power as it’s represented in a higher 5× d dimensional vector space. Thus partitioned averaging with
topic weighting is important for representing documents. Empirically, P-SIF gave score dissimilar
sentences (d1n,d2n) 0.16 (0-1 scale) where the ground truth of 0.15 (rescale to 0-1 scale), whereas
SIF gave similarity score of 0.57 (0-1 scale), farther then ground score. Thus we obtain a relative
improvement of 98% in the error difference from ground truth. Here, simple averaging-based em-
bedding of d1n and d2n, bring the document representation closer. But, partitioned based averaging
P-SIF of d1n and d2n as, project the document in a higher dimensional space.
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Table 13: STS Task 2012 MSRVid dataset similarity example pair where P-SIF gave score dissimi-
lar sentences (d1n,d1n) 0.16 (0-1 scale) where the ground truth of 0.15 (rescale to 0-1 scale), whereas
SIF gave similarity score of 0.57 (0-1 scale). Thus, we obtain a relative improvement of 98% in the
error difference. Here, ⊕ represent concatenation. ~vzero is the zero padding vector.

Document 1 (d1n) Document 2 (d2n) Score
Doc A man is riding a motorcycle A woman is riding a horse 0.15
SIF ~vman2 + ~vriding3 + ~vmotorcycle4 ~vwoman1 + ~vriding3 + ~vhorse5 0.57

P-SIF ~vzero1 ⊕ ~vman2 ⊕ ~vriding3 ⊕ ~vmotorcycle4 ⊕ ~vzero5 ~vwomen1 ⊕ ~vzero2 ⊕ ~vriding3 ⊕ ~vzero4 ⊕ ~vhorse5 0.16

Figure 3: Word vector space for corpus C. Words in different topic is represented by different sub-
script and separated by hyperplanes. Bold represent words from example documents.

F EXPERIMENTAL DETAILS

F.1 TEXTUAL SIMILARITY TASK:

We use the PARAGRAM-SL999 (PSL) from (Wieting et al., 2015) as word embeddings, obtained
by training on PPDB (Ganitkevitch et al., 2013) dataset 9. We use the fix weighting parameter α
value of 10−3, and the word frequencies p(w) are estimated from the common-crawl dataset. We
tune the number of contexts (K) to minimize the reconstruction loss over word vectors. We fix the
non-zero coefficient m = K/2, for the SIF experiments. For GMM based partitioning of the words
vocabulary we tune the number of cluster parameter K through 5-fold cross validation.

F.2 TEXTUAL CLASSIFICATION TASK:

We fix the document embeddings and only learn the classifier. We learn word vector embedding
using Skip-Gram with a window size of 10, Negative Sampling (SGNS) of 10 and minimum word
frequency of 20. We use 5-fold cross-validation on the F1 score to tune hyperparameters. We use
LinearSVM for multi-class classification and Logistic regression with the OneVsRest setting for
multi-label classification. We fix the number of dictionary elements either 40 or 20 (with Doc2vecC
initialize word vectors) and non-zero coefficient tom =K/2 during dictionary learning for all exper-
iments. We use the best parameter settings as reported in all our baselines to generate their results.
We use 200 dimensions for tf-idf weighted word-vector model, 400 for paragraph vector model,
80 topics and 400 dimensional vectors for TWE, NTSG, LTSG and 60 topics and 200 dimensional
word vectors for SCDV (Mekala et al., 2017). We will released P-SIF’s embedding source code
with necessary parameters details and other data-sets used in the paper for reproducing results.

9 For a fair comparison with SIF we uses PSL vectors instead of unsupervised Glove and Word2Vec vectors
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G CODE FLOW ARCHITECTURE
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H HIGH LEVEL FLOW
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I PROOF SKETCH: DERIVATION OF OUR EMBEDDING

To derive our embedding, we propose a generative model which treats corpus generation as a dy-
namic process, where the tth word is produced at step t. The process is driven by random walk over
a unit norm sphere with centre at the origin. Let, ~vct be the vector from origin to current walk point
at time t. We called this vector as context vector, as it represents the context in the discussion. Below,
we introduce formal notation needed for the discussion

• C represents text corpus and V represents vocabulary of words in corpus.
• ~vw ∈ Rd represents the word vector of word w , where d is dimension of word vector.
• ct represents context and ~vct ∈Rd represents context vector at time t, where d is dimension

of context vector.
• Zc represents partition function for the random context vector ~vct , given by Zc =∑

w exp(〈~vct , ~vw〉).
• p(w) represents the unigram probability of word w in the corpus.
• c0 and ~vc0 ∈ Rd represent common context and its corresponding context vector based on

syntax.

Using log linear model of Mnih & Hinton (2007), we define the probability of observing a word w
from the random walk with current context ct at time t as

Pr[w|ct] ∝ exp(〈~ct, ~vw〉) (3)

It is easy to show that such random walk under some reasonable assumptions (Arora et al. (2016a))
can gives word-word co-occurrence probabilities similar to empirical works like word2vec (Mikolov
et al. (2013a)) and Glove (Pennington et al. (2014a)). To account for frequent stop-words which oc-
cur more often regardless of context and common context related to document syntax, two correction
terms need be added: one based on p(w) and other on common context vector ~vc0 in Equation equa-
tion 3. These terms allow words with low inner product with ~ct, a chance to appear either from term
p(w) if they are frequent or by common context ~c0 , if they have large dot product with ~c0. Given a
context vector ct, the probability of a word w in document d being generated by context ct is given
by,

Pr[w|ct] = λp(w) + (1− λ) exp(〈~c
′
t, ~vw〉)

Zc′t

(4)

where, ~c′t = β~c0 + (1− β) ~ct, 〈~c0,~ct〉 = 0, λ and β are scalar hyper-parameters.

For generating a document from above random walk based latent variable model, we consider the
following two assumptions :

1. Total number of theme/topics in the entire corpus is K. The K themes/topics can be de-
termine by sparse dictionary learning as shown by Arora et al. (2016b) over word vectors
~vw =

∑m
j=1 αw,j

~Aj + ~ηw, where, ~Aj’s are unit norm vectors representing basis of theme,
αw,j are coefficient determining whether w is generated with ~Aj

10 , and ~ηw is a noise
vector.

2. Word vectors ~vw are uniformly distributed, thus making the partition function Zc, roughly
same in all direction for given context c, where c belongs to one of the K themes/topics, as
described earlier. The context vector does not change significantly much while words are
generated from random walk, as shown by Arora et al. (2017) except during jumps a.k.a
when theme/topic change.

For a document d, the likelihood of document is being generated by the K contexts, is given by :

10 In practice, only k (much lesser than total number of themes/topicK) αw,j will be non-zero, because a word
can’t belong to all contexts (exception for frequent stop-words)
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p(d|{c1, c2 . . . cK}) ∝
K∏

j=1

∏
{w∈d}

p(w|cj) (5)

=

K∏
j=1

∏
w∈d

[
λp(w) + (1− λ)

exp(〈~vw, ~vcj 〉)
Zj

]
(6)

Let,

fw(cj) = log
[
λp(w) + (1− λ)

exp(〈~vw, ~vcj 〉)
Zj

]
(7)

Here, p(w|cj) is the probability that word w is generated by context cj , the value of which is
determine by 1) overall frequency of word w in corpus a.k.a prior probability (p(w)) and 2) relative
frequency of w appear with context j w.r.t other contexts (determine by α(w,j)).

Using simple calculus, treating p(w) as constant, we can show that∇(fw(cj)) equals,

1

λp(w) + (1− λ) exp(〈~vw, ~vcj 〉)/Zj
∗ 1− λ

Zj
exp(〈~vw, ~vcj 〉)~vw (8)

Then, by using the Taylor expansion, we can show

fw(cj) ≈ fw(cj = 0) +∇(fw(cj = 0))T~vcj (9)

fw(cj) ≈ constant+∇(fw(cj = 0))T~vcj (10)

Therefore, the maximum likelihood estimator (MLE) for ~vcj on the unit sphere (ignoring normal-
ization) is approximately, 11

argmax
∑
w∈d

fw(cj) ∝
∑
w∈d

a

p(w) + a
~vw (11)

here, a = 1−λ
λZj

Thus, the MLE estimate is approximately a weighted average of the word vectors generated from
context j in the document d from random walk. We can get the overall context representation ~vcd of
document, by simple concatenation over all K themes/topics.

~vcd =

K⊕
j=1

~vcj (12)

Here,
⊕

represents concatenation operation. For a document if no words is generated from the
context cj the we can substitute the context vector ~vcj by ~0 vector, for representation ~vcd in K × d
dimensions.

Relation to SIF model: Arora et al. (2017), shows under the two assumptions :

• uniform distribution of word vectors ~vw’s which implies that the partition function Zt is
roughly same in all direction for the a sentence.

• the context vector ~vct , remain constant while the words in the sentence are emitted, imply-
ing replacing of ~vct in sentence’s by a single vector ~vcs and partition function by Zs

11 Note that argmaxc:‖~c‖=1C + 〈~c,~g〉 = ~g
‖~g‖ for any constant C
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the sentence embedding of a sentence can be obtained by ~vcs =
∑
{w∈s}

a
p(w)+a~vw, here, a = 1−λ

λZs
.

However, the above assumptions does not hold true for a document with multiple sentences, where
one can expect to have more frequent random jumps during random walk 12. Instead of assuming a
single context for whole document ch, we assume that the total number of theme/topics over a given
corpus is bounded by K (as shown by Arora et al. (2016b)) and the random walk can perform jumps
to switch context from one context to the rest K − 1 contexts. The partition function remain same
in all directions for only words coming from a same context cj , instead of words coming from all
K contexts. Thus, our approach is generalization of sentence embedding approach by Arora et al.
(2017) (special case K = 1).

J KERNEL CONNECTION TO WORD MOVER DISTANCE

Below, we introduce formal notation needed for the discussion:

• C represents text corpus and V represents vocabulary of words in corpus.
• ~wvw ∈ Rd represents the word vector of word w , where d is dimension of word vector.
• ~tvw ∈ RK represents the theme/topic vector of word w, where K is number of

themes/topics.
tw,j = αw,j = P (j|w)

• dA, dB represent two document containing n and m words respectively. wA1 , w
A
2 . . . w

A
n

represent words of dA and wB1 , w
B
2 . . . w

B
n represents word of dB .

Consider the following document similarity kernels:

K1(dA, dB) =
1

nm

n∑
i=1

m∑
j=1

〈 ~wvwA
i
· ~wvwB

j
〉 = E

i,j
〈 ~wvwA

i
· ~wvwB

j
〉

K2(dA, dB) =
1

nm

n∑
i=1

m∑
j=1

〈 ~wvwA
i
· ~wvwB

j
〉× 〈~tvwA

i
· ~tvwB

j
〉 = E

i,j
〈 ~wvwA

i
· ~wvwB

j
〉× 〈~tvwA

i
· ~tvwB

j
〉

K3(dA, dB) =
1

n

n∑
i=1

max
j

~wvwA
i
· ~wvwB

j
〉 = E

i

(
max
j
〈 ~wvwA

i
· ~wvwB

j
〉
)

K4(dA, dB) =
1

m

m∑
j=1

max
i
〈 ~wvwA

i
· ~wvwB

j
〉 = E

i

(
max
i
〈 ~wvwA

i
· ~wvwB

j
〉
)

K5(dA, dB) = K3(dA, dB) +K4(dA, dB)

We can conclude the following from the respective kernels:

• K1(dA, dB) represent document similarity between document represented by average word
vectors dx =

∑
i ~wv

x
i

• K1(dA, dB) represent document similarity between document represented by partition av-
erage word vectors

• K3(dA, dB) represent document similarity between document represented by relax word
mover distance when words of dA are matched to dB

• K4(dA, dB) represent document similarity between document represented by relax word
mover distance when words of dB are matched to dA

• K5(dA, dB) represent document similarity between document represented by word mover
distance.

We empirically showed that our proposed embedding (kernel) outperform the word mover dis-
tance(Kusner et al., 2015) and word mover embedding (Wu et al., 2018) and many other baselines
in Table 14 on several datasets 13.
12 It is trivial to assume that these jumps occur more frequently in multiple sentences document, because of
increased chances of context change 13 For datasets and baseline details refer to (Wu et al., 2018)
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Table 14: Comparison of our embedding P-SIF (SGNS) with recently proposed word mover distance
and word mover embedding. All dataset and baseline are taken from (Wu et al., 2018)

.
Dataset BB Twitter Ohsu CLASSIC Reu Amazon 20News RECIPE-L

umed ters Group
BOW 79.4 ± 1.2 56.4 ± 0.4 38.9 64.0 ± 0.5 86.1 71.5 ± 0.5 42.2 -

TF-IDF 78.5 ± 2.8 66.8 ± 0.9 37.3 65.0 ± 1.8 70.9 58.5 ± 1.2 45.6 -
BM25 83.1F1.5 57.3 ± 7.8 33.8 59.4 ± 2.7 67.2 41.2 ± 2.6 44.1 -

LSI 95.7 ± 0.6 68.3 ± 0.7 55.8 93.3 ± 0.4 93.7 90.7 ± 0.4 71.1 -
LDA 93.6 ± 0.7 66.2 ± 0.7 49 95.0 ± 0.3 93.1 88.2 ± 0.6 68.5 -

mSDA 91.6 ± 0.8 67.7 ± 0.7 50.7 93.1 ± 0.4 91.9 82.9 ± 0.4 60.5 -
SIF(GloVe) 97.3 ± 1.2 57.8 ± 2.5 67.1 92.7 ± 0.9 87.6 94.1 ± 0.2 72.3 71.1 ± 0.5
Word2Vec 97.3 ± 0.9 72.0 ± 1.5 63 95.2 ± 0.4 96.9 94.0 ± 0.5 71.7 74.9 ± 0.5

+nbow
Word2Vec 96.9 ± 1.1 71.9 ± 0.7 60.6 93.9 ± 0.4 95.9 92.2 ± 0.4 70.2 73.1 ± 0.6

+tf-idf
PV-DBOW 97.2 ± 0.7 67.8 ± 0.4 55.9 97.0 ± 0.3 96.3 89.2 ± 0.3 71 73.1 ± 0.5

PV-DM 97.9 ± 1.3 67.3 ± 0.3 59.8 96.5 ± 0.7 94.9 88.6 ± 0.4 74 71.1 ± 0.4
Doc2VecC 90.5 ± 1.7 71.0 ± 0.4 63.4 96.6 ± 0.4 96.5 91.2 ± 0.5 78.2 76.1 ± 0.4
Doc2VecC 89.2 ± 1.4 69.8 ± 0.9 59.6 96.2 ± 0.5 96 89.5 ± 0.4 72.9 75.6 ± 0.4

(Train)
KNN-WMD 95.4 ± 1.2 71.3 ± 0.6 55.5 97.2 ± 0.1 96.5 92.6 ± 0.3 73.2 71.4 ± 0.5
WME(SR) 95.5 ± 0.7 72.5 ± 0.5 55.8 96.6 ± 0.2 96 92.7 ± 0.3 72.9 72.5 ± 0.4
WME(LR) 98.2 ± 0.6 74.5 ± 0.5 64.5 97.1 ± 0.4 97.2 94.3 ± 0.4 78.3 79.2 ± 0.3

P-SIF 99.05 ± 0.9 74.39 ± 0.9 66.2 97.95 ± 0.5 97.5 95.17 ± 0.3 79.15 79.86 ± 0.3

K RECENT BASELINE FOR TEXTUAL SIMILARITY TASK

We compared out P-SIF embedding with many other recently proposed baseline like ELMO (Peters
et al., 2018), p-means (Rücklé et al., 2018), FastText (Joulin et al., 2016), Skip-Thoughts (Kiros
et al., 2015), (Conneau et al., 2017), Charphrase (Wieting et al., 2016b), WME (Wu et al., 2018) and
u-SIF Ethayarajh (2018). We used the SentEval package (Conneau & Kiela, 2018) and embedding
evaluation paper Perone et al. (2018) for baselines. Except u-SIF we outperform all other embedding.
Our P-SIF results was very close to u-SIF in most tasks. Details results are provided in Table 15

Table 15: Comparison of our P-SIF embedding with recently proposed embedding techniques on
various STS tasks. Many baselines taken from (Conneau & Kiela, 2018),Perone et al. (2018). (Wu
et al., 2018) and Ethayarajh (2018)

Task ELMO ELMO p-mean Fast Skip Infer Char WME PSIF u-SIF
orig orig Text Thou Sent pharse +PSL +PSL +PSL
+all +top ghts

STS 12 55 54 54 58 41 61 66 62.8 65.7 65.8
STS 13 51 49 52 58 29 56 57 56.3 63.98 65.2
STS 14 63 62 63 65 40 68 74.7 68.0 74.8 75.9
STS 15 69 67 66 68 46 71 76.1 64.2 77.29 77.6
STS 16 64 63 67 64 52 77 - - 73.7 72.3
Average 60.4 59 60.4 62.6 41.6 66.6 68.45 62.85 71.09 71.36
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L MORE EXPERIMENTAL RESULTS

We also compared our embedding extensively on random hashing of words (instead of GMM) (refer
Table 16), p-means (Rücklé et al., 2018) (refer Table 17), and ELMO (Peters et al., 2018) (refer
Table 18) embedding on 20NewsGroup. P-SIF outperform all three embedding on 20NewsGroup.

Table 16: Performance on 20NewsGroup classification by uniform random hashing of word-vectors
into 40 bins/groups

Run Accuracy Precision Recall F1-meas
1 83.86 83.92 83.86 83.71
2 83.68 83.81 83.68 83.54
3 84.17 84.25 84.17 84.04

Average 83.9 83.99 83.9 83.76
P-SIF 86.0 86.1 86.1 86.0

(Doc2VecC)
P-SIF 85.4 85.5 85.4 85.2

Table 17: Performance on 20NewsGroup classification using p-means embedding
Power z-norm Dimension Accuracy Precision Recall F1-score

1,2 FALSE 400 81.97 81.91 81.97 81.57
1 FALSE 200 81.55 81.48 81.55 81.06

1,2,3 FALSE 600 80.63 80.48 80.63 80.34
1,2,-inf FALSE 600 80.32 80.2 80.32 80.02
1,2,+inf FALSE 600 80.01 79.91 80.01 79.67
1,+inf FALSE 400 79.59 79.46 79.59 79.25

1,-inf,+inf FALSE 600 79.1 78.91 79.1 78.74
1 TRUE 200 78.7 78.63 78.7 78.48

1,2 TRUE 400 75.23 75.15 75.23 75.03
1,+inf TRUE 400 74.46 74.17 74.46 74.19
1,2,3 TRUE 600 73.42 73.35 73.42 73.27

1,2,-inf TRUE 600 73.25 73.15 73.25 73.08
1,2,+inf TRUE 600 72.66 72.54 72.66 72.47

1,2,3,-inf TRUE 800 72.28 72.32 72.28 72.18
1,2,3,-inf,+inf TRUE 1000 72.15 72.33 72.15 72.11

1,2,3,+inf TRUE 800 71.63 71.76 71.63 71.58
1,2,-inf,+inf TRUE 800 71.59 71.67 71.59 71.48
1,-inf,+inf TRUE 600 71.1 70.97 71.1 70.96
1,-inf,+inf TRUE 600 69.21 68.79 69.21 68.67

1,2,-inf,+inf FALSE 800 69.16 68.73 69.16 68.61
1,-inf FALSE 400 59.6 59.04 59.6 58.63
1,-inf TRUE 400 59.59 59.02 59.59 58.61
P-SIF - - 86.0 86.1 86.1 86.0

(Doc2VecC)
P-SIF - - 85.4 85.5 85.4 85.2

We also compared our embedding extensively on p-means (Rücklé et al., 2018) embedding on
Reuters. P-SIF outperform p-means on Reuters for various values of p (refer Table 19).
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Table 18: Performance on 20NewsGroup classification using ELMO embedding
Average tfidf layers dimension Accuracy Precision Recall f1-score

word FALSE 1,2 2048 74.07 74.02 74.07 73.94
word FALSE 1,2,3 3072 73.21 73.25 73.21 73.14
word FALSE 2,3 2048 71.14 71.03 71.14 70.99
word TRUE 1,2,3 3072 70.5 70.81 70.5 70.6
word FALSE 2 1024 70.76 70.48 70.76 70.48
word FALSE 3 1024 70.01 69.83 70.01 69.79
word FALSE 1 1024 69.16 68.88 69.16 68.85
word TRUE 1,2 2048 67.79 67.99 67.79 67.83
word TRUE 2,3 2048 67.25 68.01 67.25 67.48
sent FALSE 1,2,3 3072 66.9 67.01 66.9 66.9
sent FALSE 1 3072 66.5 66.04 66.3 66.2
sent FALSE 1,2 3072 66.3 66.04 66.6 66.4
word TRUE 2 1024 64.79 64.92 64.79 64.77
word TRUE 3 1024 64.45 64.99 64.45 64.57
word TRUE 1 1024 59.19 59.32 59.19 59.17
P-SIF - - - 86.0 86.1 86.1 86.0

(Doc2VecC)
P-SIF - - - 85.4 85.5 85.4 85.2

Table 19: Performance on Reuters classification using p-means embedding
Power Znorms Dim Prec@1 Prec@5 nDCG@5 Coverage LRAPS F1

nDCG@1 Error -meas
1,2 FALSE 400 93.07 36.69 48.96 7.66 91.73 76.76
1,2 TRUE 400 92.49 36.23 48.45 13.93 90.58 79.13

1,2,-1,+1 FALSE 800 91.9 35.79 47.91 9.19 90.04 75.93
P-SIF - - 94.92 37.98 50.40 6.03 93.95 82.87

(Doc2VecC)
P-SIF - - 94.77 37.33 49.97 6.24 93.72 82.41

28


	Introduction
	Related Work
	Motivation: Averaging vs Partition Averaging
	The Proposed Algorithm: P-SIF
	P-SIF Discussions
	Experimental Results
	Textual Similarity Task
	Textual Classification Task

	Analysis and Discussion
	Conclusions and Future Work
	Unsupervised Task: Textual Similarity
	Other Supervised Tasks
	Class Performance: 20NewsGroup
	Qualitative Results
	Qualitative Example
	Experimental Details
	Textual Similarity Task: 
	Textual Classification Task: 

	Code Flow Architecture
	High Level Flow
	Proof Sketch: Derivation of our Embedding
	Kernel connection to Word Mover Distance
	Recent Baseline for Textual Similarity Task
	More Experimental Results

