
Under review as a conference paper at ICLR 2019

CDEEPEX: CONTRASTIVE DEEP EXPLANATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a method which can visually explain the classification decision of
deep neural networks (DNNs). There are many proposed methods in machine
learning and computer vision seeking to clarify the decision of machine learning
black boxes, specifically DNNs. All of these methods try to gain insight into
why the network “chose class A” as an answer. Humans, when searching for
explanations, ask two types of questions. The first question is, “Why did you
choose this answer?” The second question asks, “Why did you not choose answer
B over A?” The previously proposed methods are either not able to provide the
latter directly or efficiently.
We introduce a method capable of answering the second question both directly and
efficiently. In this work, we limit the inputs to be images. In general, the proposed
method generates explanations in the input space of any model capable of efficient
evaluation and gradient evaluation. We provide results, showing the superiority of
this approach for gaining insight into the inner representation of machine learning
models.

1 INTRODUCTION

Deep neural networks (DNN) have shown extraordinary performance on computer vision tasks such as
image classification (Szegedy et al., 2015; Simonyan and Zisserman, 2014; Springenberg et al., 2015;
He et al., 2016), image segmentation (Chen et al., 2018), and image denoising (Zhang et al., 2017).
The first example of such a performance was on image classification, where it outperformed other
computer vision methods which were carefully handcrafted for image classification (Krizhevsky et al.,
2012). Following this success, DNNs continued to grow in popularity. Although the performances of
DNNs on different tasks are getting close to human expertise (Rajpurkar et al., 2017) and in some cases
surpass them (Springenberg et al., 2015), there is hesitation to use them when interpretability of the
results is important. Accuracy is a well-defined criterion but does not provide useful understandings
of the actual inner workings of the network. If the deployment of a network may result in inputs
whose distribution differs from that of the training or testing data, interpretability or explanations of
the network’s decisions can be important for securing human trust in the network.

Explanations are important in settings such as medical treatments, system verification, and human
training and teaching. Naturally, one way of getting an explanation is asking the direct question,
"Why did the DNN choose this answer?" Humans often also seek contrasting explanations. For
instance, they maybe more familiar with the contrasting answer, or they want to find the subtle
differences in input which change the given answer to the contrasting one. This way of questioning
can be phrased as, "Why did the DNN not choose B (over A)?" In this work, we present a framework
to answer this type of question.

We learn a model over the input space which is capable of generating synthetic samples similar to
the input. Then, we ask how we can alter this synthetic input to change the classification outcome.
Our proposed framework is not based on heuristics, does not need to change the given network, is
applicable as long as the given model can handle backpropagation (no further requirements for layers),
and can run much faster than methods with input perturbation. The only overhead of this method
is the assumed availability of a latent model over the input. If this latent model is not available, we
can learn such a model using generative adversarial methods or variational auto encoders. Learning
this latent space needs to be done only a single time and is independent of the learned classifier to be
explained.

1

Under review as a conference paper at ICLR 2019

2 RELATED WORK

There are different ways to categorize interpretability methods such as the one discussed by Shrikumar
et al. (2017). Here we categorize the existing approaches into three overlapping categories.

2.1 NETWORK VISUALIZERS

The first group of methods try to understand units of the network (Erhan et al., 2009; Yosinski et al.,
2015; Bau et al., 2017). These methods test each individual unit or a set of units in the network to
gain insight into what network has learned.

The disadvantage of these methods is that they need to check all the units to see which one (or
combination of units) is responsible for a concept. Morcos et al. (2018) showed it is unlikely that only
a single unit learns a concept. Rather, a combination of units usually combined to represent a concept.
This, in turn, makes these methods inapplicable in practice when the network contains thousands
of units. These methods are example-based explanations. That is, they generate an explanation for
a single input. By contrast, Fong and Vedaldi (2018) proposed a method to determine whether the
network learned a concept based on a set of probe images and pixel-level annotated ground truth
which may not be readily available or easy to obtain for many tasks.

2.2 INPUT SPACE VISUALIZERS

The second category corresponds to networks that try to explain the network’s decision in the space of
the input image. Ribeiro et al. (2016) proposed a method to find out which parts of the image have the
largest contribution to the decision of the network by making changes to the image and forwarding
the new image through network. Zintgraf et al. (2017) proposed a similar approach with a more
clever way of sampling the image parts. These methods need to consider changing each dimension of
images and get explanation for each change in order that the aggregated results are visually coherent.

Zhou et al. (2016) proposed a method which forwards the image through the network, records the
activations in the last pooling or convolution layer, and uses them as an explanation. Selvaraju et al.
(2017) proposed a similar method, but which uses the back-propagated signal for a more accurate
explanation. There are two potential difficulties with these approaches. First, they assume that the
explanation can be summarized in the last pooling or convolution layer which has a broad receptive
field. Explanations with such broad receptive field cannot give useful information in explaining
fine-grained datasets. Second, these methods are restricted to use in convolutional networks.

Simonyan et al. (2013) used the gradient of the output with respect to the pixels of the input image
to generate a heat map. They showed that their proposed method is closely related to DeconvNets
(Zeiler and Fergus, 2014). The difference is in the handling of backpropagation of ReLU units. The
weakness of these methods is that the generated backpropagated signal in image space is not visually
specific. They need to use heuristics in backpropagation to make the results more specific and useful
to humans, such as changing the backpropagation rules for ReLU unit (Springenberg et al., 2015).
Kindermans et al. (2018) showed the unreliability of these methods to shifts in input. Some of these
methods needs a reference input image (Shrikumar et al., 2017) whose choice can greatly change the
generated explanation (Kindermans et al., 2018).

While preparing this manuscript, we discovered xGEMs (Joshi et al., 2018), a preprint available on
arXiv. It is similar to our work in that it uses a GAN to regularize the explanation and also seeks
to find a “why not” explanation. Their work is different in that it does not formulate a constrained
optimization problem as we do (and our results show the importance of our constraints) and they
focus on producing a “morph” from one class to another, rather than highlighting the differences
directly in the input image (as we do).

2.3 JUSTIFICATION EXPLANATIONS

Finally, there are methods that learn to justify the classification of a network by producing textual or
visual justifications (Hendricks et al., 2016; Park et al., 2018). Although related to image descriptions
or definitions, they differ in that their goal is to explain why. However, the justification network is

2

Under review as a conference paper at ICLR 2019

z0 G Îz0
-

I

∆z0

z ∼ N (0, 1)

loss(I, Iz)

IzG G D+ D(G(z))z

∆z0

minz ‖z− z0‖22 s.t. output class constraints
(a) (b)

Figure 1: The schematics of the proposed approach. (a) First, find z0 which gives G (z0) ≈ I. Then,
let ∆z0 to be the difference between the input image I and reconstructed one, G (z0). (b) Last,
generate the final explanation by optimization over z. z0 and ∆z0 are fixed.

trained to match human explanations. Therefore, they are not direct explanations of how the learned
classification network makes its decisions, but rather what humans would like as the explanation.

2.4 SUMMARY

In summary, the existing approaches in literature have at least one of the following downsides.

I By learning an explanation network, they use another black box to explain a current black box
(Park et al., 2018).

II They are not always applicable since they need specific layers or architecture (Zhou et al., 2016;
Selvaraju et al., 2017).

III They use heuristics during backpropagation to generate explanations (Springenberg et al., 2015;
Zeiler and Fergus, 2014).

IV They need of a set of probe images or concepts which may not be available or cannot be easily
obtained (Shrikumar et al., 2017).

V They need network alteration to record the activations (Zeiler and Fergus, 2014; Bau et al., 2017;
Shrikumar et al., 2017).

VI They need of considerable amount of computational time to provide an explanation (Zintgraf
et al., 2017; Ribeiro et al., 2016).

Our model does not suffer from the aforementioned shortcomings, except that we require a generative
model of the input space. Note that this input-space model does not force the explanation. Its purpose
is similar to that of reference input images, except (as required by other methods) it does not need
any domain knowledge. The input-space model can be estimated entirely independently from the
network to be explained.

3 PROPOSED METHOD

First, we introduce the notation used in this work in Section 3.1. Then, in Section 3.2, we describe how
to learn a latent space capable of generating natural looking images similar to the input space. Last, in
Section 3.3, we describe our method on how to generate explanations from the latent representation
of input space. The overall framework is summarized in Procedure 1 and Figure 1.

3.1 TERMINOLOGY

D : Rn → Rc is the given discriminator network, for which we want to generate explanations.
G : Rk → Rn generates natural looking images similar to the ones in the dataset. We choose G to be
an adversarial network trained on the input dataset used for D. I ∈ Rn is the input image; z ∈ Rk is
a latent variable; and Iz is the output of G, i.e. Iz = G (z). ytrue is the correct label for image I, and
yprobe is the class label for the class of interest.

Thus, the question we would like to answer is “Why did D produce label ytrue and not label yprobe for
input I?”

3

Under review as a conference paper at ICLR 2019

Procedure 1 Generating the explanation on given D and I

1: Learn a function G : Rk → Rn . See 3.2
2: Find a representation for input I using procedure 2
3: Find ze from Equation 2
4: Return the explanation G (z0)−G (ze)

Procedure 2 Getting latent representation on the input I
1: procedure LEARN z0 (G, I, λ, loss (.))
2: z0 ∼ N (0, 1)
3: while G (z0) 6≈ I do
4: z0← z0 −λ∇zloss (I, G (z))

5: ∆z0
= G (z0)− I

6: return z0,∆z0

3.2 LEARNING INPUT DISTRIBUTION

The question “why not class yprobe?” implies a query image about which the question is being asked.
We need to capture the manifold of natural looking images similar to this input to be able to answer
this question in a meaningful way for a human. Learning a compact manifold enables us to move
along this manifold instead of directly optimizing on the input space, i.e., each pixel.

There are different ways to find this mapping including variational auto encoders (Kingma and
Welling, 2013) and generative adversarial networks (GANs) (Goodfellow et al., 2014). In this work,
we used GANs to map latent space into input space. We used the method proposed by Arjovsky et al.
(2017) to train the GAN. The structure of the networks is similar to that proposed by Radford et al.
(2015).

3.3 GENERATING EXPLANATIONS

First, we need to find an initial point in latent space which represents the input image, i.e., G (z0) ≈ I.
We find this initial point by solving z0 as

z0 = arg min
z

loss (G (z) , I) (1)

in which loss (.) is a suitable loss function, e.g. ||.||2 distance for images. Since the generated image
may classified into different class by the discriminator, we add a misclassification cost to our loss
function. As the final fit will not be exact, we define ∆z0

to be the residual error: ∆z0
= G(z0)− I.

See Procedure 2 for more details.

Next, we find a change in latent space for which the change in the input space explains why, for this
particular image, class yprobe is not the answer. In particular, we seek the closest point (in the latent
space of z) for which yprobe would be equally likely as ytrue, and all other classes are less probable.
This is a point which is most like the input, yet would be class yprobe. Thus, the answer to the question
is, “It is not like this.”

To do so, we solve a constrained optimization problem:

ze = arg min
z

||z− z0||22
subject to llh (D(G(z)) + ∆z0 , ytrue)− llh (D(G(z)) + ∆z0 , yprobe) = 0

llh (D(G(z)) + ∆z0
, ytrue)− llh (D(G(z)) + ∆z0

, yi) ≤ ε, ∀i 6= ytrue, i 6= yprobe

llh (D(G(z)) + ∆z0
, yprobe)− llh (D(G(z)) + ∆z0

, yi) ≤ ε, ∀i 6= ytrue, i 6= yprobe
(2)

in which llh(f, y) is log likelihood of class y for classifier output f .

The first constraint forces the explanation to be on the boundary of the two classes. However, because
D is complex, this can lead to solutions in which the likelihood of yprobe and ytrue are equal, but

4

Under review as a conference paper at ICLR 2019

(a) (b) (c) (d) (e) (f)

Figure 2: (a) True label is 0 and not 6. (b) True label is 7 and not 1. (c) True label is 9 and not 8. (d)
True label is 8 and not 6. (e) True label is 3 and not 9 or 8. (f) True label is 4 and not 9.

another class has an even higher likelihood. To overcome this, we impose the last two constraints
which enforce that the true and probe classes remain the most likely. We further illustrate the necessity
of these constraints in Section 4.

4 EXPERIMENTAL RESULTS

In this section we compare our method, contrastive deep explanation (CDeepEx), with those of
Ribeiro et al. (2016); Selvaraju et al. (2017); Zintgraf et al. (2017); Samek et al. (2017). We have
tested these methods on two datasets: MNIST (LeCun et al., 1998) and fashion-MNIST (Xiao et al.,
2017). Although MNIST seems to be a very simple dataset, it has its own challenges when it comes
to contrasting two outputs. This dataset has subtleties that are hard even for humans to grasp, such as
the ones depicted in Figure 2.

4.1 EXPERIMENTS ON MNIST

In this section, we find explanations for contrasting categories using our method (CDeepEx), Lime
(Ribeiro et al., 2016), GradCam (Selvaraju et al., 2017), PDA (Zintgraf et al., 2017), LRP Samek
et al. (2017) and xGEMs (Joshi et al., 2018). Our network architecture is similar to that used by the
original MNIST papers, consisting of two sets of Conv/MaxPool/ReLU layers following by two fully
connected layers. The input is resized to 64x64. The kernel size for each convolution layer is 5x5 and
the first fully connected layer is 3380x50.

GradCam and Lime were not designed to answer this type of question directly. Therefore, we generate
the explanation by first extracting the explanations for the true and probe classes, and then subtracting
a weighted explanation of the probe class from the true class. If imposing this explanation on the
input image decreases the network probability for the true class and increases it for the probe class,
we keep this explanation. The weights for the probe explanation we used are from 0.005 to 2 with
increments of 0.005. The final explanation is the average of all the maps that satisfies the mentioned
condition. We tried multiple other methods to contrast the explanations of the true and probe classes
and this method produced the best and most reliable results, although clearly GradCam and Lime
were not designed for this scenario.

We performed two sets of experiments. In the first set, we trained the discriminator on the unmodified
MNIST dataset with a resulting success rate of 99% in testing phase. For testing examples, we
asked why the output was not the second-highest likelihood class. (That is the probe class is the
second-most likely class, according to the classifier.)

Figure 3 shows explanations generated using CDeepEx, PDA, GradCam, Lime and LRP. The first
example shows why it is a 4 and not a 9. Our method shows that this is because the gap on the
top of the digit is not closed. The second row is the explanation for why a 0 and not a 6. The
only meaningful explanation is generated from CDeepEx: because the circle is thicker and the top
extending line is not more pronounced. The third row is for why a 5 and not a 6. Although Lime
shows that the opening gap would have to be closed, it produces many other changes that detract from
the central reason. For the last row, the only correct explanation for why a 3 and not an 8 comes from
our method. Note that GradCam and Lime were not designed for this type of explanation, but we
tried hard to find the best way to make contrasting explanations from their single-class explanations
(see above).

5

Under review as a conference paper at ICLR 2019

true vs. probe CDeepEx
(GAN)

CDeepEx
(VAE) PDA GradCam Lime LRP

4 vs. 9

0 vs. 6

5 vs. 6

3 vs. 8

Figure 3: Generated explanations for MNIST on the same trained network. The input image is in gray.
Red indicates regions that should be added and blue regions that should be removed (to move from
the true/predicted label to the probe label). Thus, the absence of the red regions and the presences of
the blue regions explain why the input is the true label and not the predicted label.

4 vs. 9 6 vs. 5 7 vs. 9 1 vs. 6 9 vs. 8

CDeepEx

xGEMs

Figure 4: Comparison of CDeepEx to xGEMs. Colors are as in Figure 3.

6

Under review as a conference paper at ICLR 2019

9�8
CDeepEx

xGEMs

6�5
CDeepEx

xGEMs

probe label (w/o constr)
true label (w/o constr)
probe label
true label

optimization iteration

cl
as

s
lik

el
ih

oo
d

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 5: Examples of the optimization path for Equation 2. CDeepEx is our method. xGEMs is very
similar, but without the last pair of constraints. The goal is to find a z such that G(z) is maximally
confused between the two classes. (a) Examples from G(z) along the optimization path of z. (b)
Average class likelihood from D(G(z)) for all examples (probe is second-most-likely class). Both
demonstrate that without the constraints (xGEMs), the optimization finds an example for which the
true and probe likelihoods are equal, but another class has an even higher likelihood. Our method
(CDeepEx) with the constraints keeps the explanation targeted to the true and probe classes.

input CDeepEx PDA Lime GradCam

Figure 6: Explanations for “why not 8?” for a network trained on data in which every 8 has a small
square in the upper-left corner.

In Figure 4, we compare our results with our implementation of xGEMs. The primary difference
between the methods is the last two sets of constraints in Equation 2. This figure shows that without
the constraints the explanation are not correct or are of worse quality, compared to explanations with
constraints.

To illustrate why, in Figure 5, we show the optimization path to find the explanation, with (CDeepEx)
and without (xGEMs) constraints. The program has a non-linear objective with non-linear constraints,
so the path is particularly important, as we will not (generally) find the global optimum. We use
an augmented Lagrangian method for the optimization (Bertsekas, 1999, Section 4.2). Without the
constraints, the found z results in equal likelihood for ytrue and yprobe, but a third class consistently
has even higher likelihood, thus generating an explanation more suitable to this third class than the
requested probe class.

For the second experiment, we trained a network with the same structure as the previous one on the
modified data. In this experiment we added a 6x6 gray square to the top left of all the images for
class “8.” If tested on the true data (without the modifications), the network only recognizes 5% of
the 8s correctly. Also, adding the square to all the testing images, the network recognized 77% of
other classes as 8.

7

Under review as a conference paper at ICLR 2019

T-shirt vs. shirt trousers vs. coat
CDeepEx xGEMs CDeepEx xGEMs

ResNet101

Vgg16

Figure 7: Top and bottom rows are the results for ResNet101 and VGG16 respectively. (a) Change
fro T-shirt to a Shirt with constraints. (b) T-shirt to shirt without constraints. (c) Change from trousers
to coat with constraints. (d) Change from trousers to coat without constraints.

We then compare our method to others on this same network, trained on biased data. Our results
are shown in Figure 6. Our method is clearly able to articulate that adding a square in the upper left
makes something an 8, whereas the other methods are not able to find this bias of the network.

4.2 FASHION MNIST

We trained two different networks on the Fashion MNIST dataset: Vgg16 (Simonyan and Zisserman,
2014) and ResNet101 (He et al., 2016). The testing accuracy for both networks is 92%. For the
generating network, we used the structures and learning method presented by Arjovsky et al. (2017)
with latent space of size 200. We then illustrate our method’s ability to gain insight into the robustness
of the classifiers through constrastive explanations.

We generated explanation with and with out constraints in Figure 7. Comparing CDeepEx with
xGEMx, we can see the importance of the constraints. Using CDeepEx, it is clear that Vgg16 learned
more general concepts than ResNet101. The first column shows that ResNet101 learned very subtle
differences on the surface of the T-shirt to distinguish it from a (long-sleeved) shirt. By contrast,
Vgg16 understands removing the short sleeves makes the appearance of a shirt with long sleeves.
In the “trousers vs. coat” examples, ResNet101 believes that adding a single sleeve will change the
trouser into a coat, while Vgg16 requires both sleeves.

5 CONCLUSIONS

Our constrastive explanation method (CDeepEx) provides an effective method for querying a learned
network to discover its learned representations and biases. We demonstrated the quality of our
method, compared to other current methods and illustrated how these contrastive explanations can
shed light on the robustness of a learned network.

Asking a network contrastive questions of the form, “Why is this example not of class B?” can yield
important information about how the network is making its decisions. Most previous explanation
methods do not address this problem directly, and modifying their output to attempt to answer
constrastive questions fails.

Our formulation draws on three ideas: The explanation should be in the space of natural inputs,
should be an example that is maximally ambiguous between the true and probe classes, and should
not be confused with other classes. The method does not require knowledge of or heuristics related to
the architecture or modality of the network. The explanations can point to unintended correlations in
the input data that are expressed in the resulting learned network.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In
ICML, volume 70 of Proceedings of Machine Learning Research, pages 214–223. PMLR.

Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba, A. (2017). Network dissection: Quantifying
interpretability of deep visual representations. In Computer Vision and Pattern Recognition.

Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific, second edition.

Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2018). Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs.
IEEE Trans. Pattern Anal. Mach. Intell., 40(4):834–848.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. (2009). Visualizing higher-layer features of a
deep network. Technical Report 1341, Département d’Informatique et Recherche Opérationnelle,
Université de Montréal.

Fong, R. and Vedaldi, A. (2018). Net2vec: Quantifying and explaining how concepts are encoded
by filters in deep neural networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing
Systems 27, pages 2672–2680. Curran Associates, Inc.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

Hendricks, L. A., Akata, Z., Donahue, J., Schiele, B., and Darrell, T. (2016). Generating visual
explanations. In ECCV.

Joshi, S., Koyejo, O., Kim, B., and Ghosh, J. (2018). xGEMs: Generating examplars to explain
black-box models. ArXiv e-prints.

Kindermans, P.-J., Hooker, S., Adebayo, J., Schütt, K. T., Alber, M., Dähne, S., Erhan, D., and Kim,
B. (2018). The (un)reliability of saliency methods.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. CoRR, abs/1312.6114.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolu-
tional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors,
Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Morcos, A. S., Barrett, D. G., Botvinick, M., and Rabinowitz, N. C. (2018). On the importance of
single directions for generalization. In ICLR.

Park, D. H., Hendricks, L. A., Akata, Z., Rohrback, A., Schiele, B., Darrell, T., and Rohrbach, M.
(2018). Multimodal explanations: Justifying decisions and pointing to the evidence. In CVPR.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434.

Rajpurkar, P., Irvin, J., Bagul, A., Ding, D., Duan, T., Mehta, H., Yang, B., Zhu, K., Laird, D., Ball,
R. L., Langlotz, C., Shpanskaya, K., Lungren, M. P., and Ng, A. (2017). Mura dataset: Towards
radiologist-level abnormality detection in musculoskeletal radiographs. cite arxiv:1712.06957.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why should I trust you?”: Explaining the
predictions of any classifier. In Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pages 1135–1144, New York, NY, USA.
ACM.

9

Under review as a conference paper at ICLR 2019

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., and Müller, K.-R. (2017). Evaluating the
visualization of what a deep neural network has learned. IEEE Transactions on Neural Networks
and Learning Systems, 28(11):2660–2673.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam:
Visual explanations from deep networks via gradient-based localization. In The IEEE International
Conference on Computer Vision (ICCV).

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through propagat-
ing activation differences. CoRR, abs/1704.02685.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks: Visualis-
ing image classification models and saliency maps. CoRR, abs/1312.6034.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. A. (2015). Striving for simplicity:
The all convolutional net. ICLR, abs/1412.6806.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A. (2015). Going deeper with convolutions. In Computer Vision and Pattern
Recognition (CVPR).

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. ArXiv e-prints.

Yosinski, J., Clune, J., Nguyen, A. M., Fuchs, T. J., and Lipson, H. (2015). Understanding neural
networks through deep visualization. CoRR, abs/1506.06579.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In
ECCV.

Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017). Beyond a gaussian denoiser: Residual
learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26.

Zhou, B., Khosla, A., A., L., Oliva, A., and Torralba, A. (2016). Learning Deep Features for
Discriminative Localization. CVPR.

Zintgraf, L. M., Cohen, T. S., Adel, T., and Welling, M. (2017). Visualizing deep neural network
decisions: Prediction difference analysis. ICLR.

10

Under review as a conference paper at ICLR 2019

6 SUPPLEMENTARY

In this section we show more qualitative results using both GAN and VAE. In Figure 8, we show the
robustness of our method regardless of using a GAN or a VAE. We compared our results against
xGEMs. Figure 9 shows how the optimization procedure may find another point that has equal
likelihood for probe and the true class but another class has a higher likelihood.

Input CDeepEX
z1

CDeepEX
z2

CDeepEX
z3

CDeepEX
VAE

xGEMs
z1

xGEMs
z2

0 vs. 6

0 vs. 6

2 vs. 0

2 vs. 7

2 vs. 3

3 vs. 5

3 vs. 7

4 vs. 9

4 vs. 6

7 vs. 2

8 vs. 0

9 vs. 7

Figure 8: Additional experiments comparing our method using a GAN, using VAE, and xGEMs. The
multiple columsn for the GAN methods are for different random starting points for the optimization
of z.

11

Under review as a conference paper at ICLR 2019

4 vs. 9 7 vs. 9 1 vs. 6
CDeepEX

xGEM

Figure 9: Optimization path showing the importance of constraints. In this figure, we used a VAE
instead of a GAN. Top row shows CDeepEx optimization path while the bottom row shows xGEMs
optimization path.

6.1 NETWORKS ARCHITECTURE

The structure of VAE for the MNIST dataset is described below. VAE consists of two parts, a encoder
and a decoder. The encoder structure is:
input size: 4096 -> Linear(4096 to 784) -> Linear(784 to 400) -> Linear(400 to 120).
The decoder structure is:
Linear(120 to 400) -> Linear(400 to 784) -> Linear(784 to 4096)

The Discriminator network on MNIST dataset has the following structure:
input size: 4096
Conv2d(1, 10, kernelsize=(5,5), stride=(1,1))
MaxPool2d(kernelsize=(2,2), stride=(2, 2))
ReLU
Conv2d(10, 20, kernelsize=(5, 5), stride=(1, 1))
MaxPool2d(kernelsize=(2, 2), stride=(2, 2))
ReLU
Dropout2d(p=0.5)
Linear(infeatures=3380, outfeatures=50, bias=True)
Linear(infeatures=50, outfeatures=10, bias=True).

The architecture of the generator network used for FMNIST experiments is as follows:
ConvTranspose2d(200, 512, kernel size=(4,4), stride=(1,1), bias=False)
BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace)
ConvTranspose2d(512, 256, kernel size=(4,4), stride=(2,2), padding=(1,1), bias=False)
BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace)
ConvTranspose2d(256, 128, kernel size=(4,4), stride=(2,2), padding=(1,1), bias=False)
BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace)
ConvTranspose2d(128, 64, kernel size=(4,4), stride=(2,2), padding=(1,1), bias=False)
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace)
ConvTranspose2d(64, 1, kernel size=(4,4), stride=(2,2), padding=(1,1), bias=False)
Tanh()

6.2 DISCRIMINATOR ACCURACY FOR GENERATING EXPLANATION

We desinged another experiment, showing the explanation results are coming from the discriminator
network and not the generative model. We trained a network in the following fashion on MNIST
dataset. First, we train the network, without showing it any images from class 8. It drops the testing
accuracy on that class to 0. Then, we show some samples of the class 8 to the network, increasing its
accuracy over class 8 to 0.3. We repeat this procedure by showing more and more samples to the
network, saving its parameters at 0.6 and 0.99 accuracy. Then, we run an experiment asking network
to change an input image to class 8. The results are shown at Fig 10.

12

Under review as a conference paper at ICLR 2019

class 8
accuracy input z1 z2 z3

0%

30%

60%

99%

Figure 10: In this figure we show that the explanation comes from the network we want to speculate,
not the generative model. The left column shows the accuracy of the networks over classifying class
8The given discriminator networks have different accuracy for classifying class 8. The second column
is the input image. The last three columns are explanations generated using a GAN as generative
model, using three different latent codes. The first row shows without the discriminator knowing what
is a class 8 instance should look like, the generated explanations are strange and inconsistent. With
the first latent code, the network decides to remove the gap from the top curve, while with the other
two latent codes, it decides to close the gap. In none of explanations network generates a explanation
which wants to close the lower curve. As the accuracy of the network for class 8 increases, the
generated explanations are getting better and consistent. Note that increasing the network accuracy
does not necessarily adds up linearly to the quality of the generated images (second and third row).

13

	Introduction
	Related Work
	Network Visualizers
	Input space Visualizers
	Justification explanations
	Summary

	Proposed method
	Terminology
	Learning input distribution
	Generating Explanations

	Experimental Results
	Experiments on MNIST
	Fashion MNIST

	Conclusions
	Supplementary
	Networks Architecture
	Discriminator Accuracy for Generating Explanation

