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ABSTRACT

In this paper, we introduce a new post-training compression paradigm for Large
Language Models (LLMs) to facilitate their wider adoption. We delve into LLM
weight low-rank decomposition, and find that the challenges of this task stem from
❶ the distribution variance in the LLM activations and ❷ the sensitivity difference
among various kinds of layers. To address these issues, we propose a training-free
approach called Activation-aware Singular Value Decomposition (ASVD). Specif-
ically, ❶ ASVD manages activation outliers by transforming the weight matrix
based on the activation distribution. This transformation allows the outliers in
the activation matrix to be absorbed into the transformed weight matrix, thereby
enhancing decomposition accuracy. ❷ Additionally, we propose an efficient iter-
ative calibration process to optimize layer-specific decomposition by addressing
the varying sensitivity of different LLM layers. In this way, ASVD can compress
a network by 10%-30%. Based on the success of the low-rank decomposition of
projection matrices in the self-attention module, we further introduce ASVD to
compress the KV cache. By reducing the channel dimension of KV activations,
memory requirements for KV cache can be largely reduced. ASVD can further
achieve 50% KV cache reductions without performance drop in a training-free
manner. Code is anonymously available in supplementary materials.

1 INTRODUCTION

In the realm of Large Language Models (LLMs) compression, various techniques have been exten-
sively explored, including weight quantization [Dettmers et al., 2022], network pruning [Frantar &
Alistarh, 2023], and knowledge distillation [Agarwal et al., 2023]. Distinct from these approaches, the
paradigm of low-rank matrix decomposition is less explored in LLMs but holds significant promise.
Decomposition involves approximating the weight matrices in neural networks with matrices of lower
rank, effectively reducing the model size. Given the massive number of parameters in LLMs, low-rank
decomposition offers significant potential for memory reduction. Furthermore, low-rank decompo-
sition can complement existing LLM compression techniques by further compressing quantized or
pruned models, enhancing overall efficiency [Cheng et al., 2017].

From the perspective of network compression, traditional low-rank decomposition methods typically
adhere to a straightforward process: initially training the original model and subsequently fine-tuning
the decomposed model [Jaderberg et al., 2014, Khodak et al., 2021, Wang et al., 2021, Hsu et al.,
2022]. While this approach is effective, it is resource-intensive and requires the entire training dataset
and substantial computational power for end-to-end backpropagation. Applying this method to LLMs
would encounter major challenges. Firstly, the training data for LLMs may not always be readily
available, often restricted by privacy and commercial considerations. Secondly, the training process
for these models is notoriously expensive, both in terms of time and computational resources.

Given these constraints, the concept of “training-free” compression emerges as a more viable
approach for LLMs [Zhu et al., 2023]. This approach includes methods like LLM post-training
quantization [Dettmers et al., 2022, Yuan et al., 2023] and LLM post-training pruning [Frantar &
Alistarh, 2023], which compress LLMs without the need for extensive retraining. These training-free
(i.e., post-training) methods offer a more practical solution for efficiently compressing LLMs.
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(b) High-level idea of using ASVD to compress KV cache.

Figure 1: (a) Our post-training LLM decomposition method is orthogonal to existing LLM compression
techniques, enabling it to function as a versatile and plug-and-play solution for prevalent compression paradigms,
including popular quantization methods. (b) By applying low-rank decomposition via ASVD to the Key/Value
projection matrices, the original high-dimensional KV cache can be replaced with a low-dimensional storage.

To realize LLM low-rank decomposition in a training-free manner, we conduct an extensive
analysis of the baseline methods for LLM decomposition. We first observe that straightforward
application of existing low-rank decomposition techniques, which typically necessitate training, turns
out ineffective for LLMs [Denton et al., 2014, Lebedev et al., 2014, Sainath et al., 2013, Moczulski
et al., 2015, Jaderberg et al., 2014, Khodak et al., 2021, Wang et al., 2021].

Digging into the failures, we reveal two challenges to post-training decomposition for LLMs. ❶
Managing activation distribution in LLMs: This challenge involves addressing outliers in the acti-
vations, which can intensify the decomposition error. The importance of handling such outliers in
LLMs echoes findings in recent quantization research [Lin et al., 2023, Kim et al., 2023]. These
outliers can disproportionately affect the accuracy of matrix approximations, leading to suboptimal
compression results. ❷ Balancing layer’s decomposition sensitivity: Some layers are more sensitive
to the decompostion than others, and decomposing them uniformly can lead to significant perfor-
mance degradation. The key challenge is to balance the sensitivity of each layer with the efficiency
of the whole network’s decomposition.

Targeting challenge ❶, we propose the activation-aware decomposition method, where the distribution
of activations are considered into the weight decomposition process. Specifically, we transform the
values in the weight matrix column-wisely via a scaling matrix. The scaling matrix is designed
based on the distribution patterns observed across input activation channels. This adjustment proves
particularly beneficial for activation with outliers, allowing the decomposition to allocate enhanced
focus to these specific weights. Targeting challenge ❷, we further investigate the varying sensitivity
of different LLM layers to decomposition. We find that weights in Multi-Head Attention layers
[Vaswani et al., 2017] tend to be more resilient to decomposition compared to those in Multi-Layer
Perceptron layers. This sensitivity variability across layers prompts us to develop a method to assign
the compression ratio for each layer. ASVD assesses each layer’s sensitivity to decomposition at
different ranks, enabling us to assign a suitable rank for optimal decomposition. Note that this probing
assess is very efficient, requiring only a limited sample set for evaluation.

Our experiments reveal that ASVD can reduce the rank of the weight matrix by 10% to 90% in
different layers, and it can achieve compression of model size 10%-30% in LLaMA models [Touvron
et al., 2023a;b]. We also validate ASVD is compatible with 4/8-bit weight quantization, which is
described in Sect. 4.4.

Importantly, leveraging the successful low-rank decomposition of projection matrices in the self-
attention module, we can integrate ASVD with KV cache compression. Specifically, by applying
ASVD to decompose the Key/Value projection matrices, we can derive low-rank intermediate acti-
vations that serve as replacements for the KV cache stored in a high-dimension space, as shown in
Fig. 1b. This substitution significantly reduces the memory usage of the KV cache, enabling support
for larger batch sizes or longer sequence lengths, which are essential for real-world applications [Yuan
et al., 2024]. In practice, by replacing the KV cache with intermediate low-rank activations, we can
reduce up to 50% of the memory consumption of the KV cache.

2 RELATED WORK

Large Language Model Compression. The field of model compression for Large Language Models
(LLMs) has seen a surge of innovative techniques aimed at mitigating the substantial computation and
memory requirements these models demand [Zhu et al., 2023, Yuan et al., 2024]. Various methods
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have emerged to address this challenge, each taking a unique approach to reduce the memory footprint
of LLMs. These methods primarily fall into three categories: weight quantization [Courbariaux et al.,
2015, Dettmers et al., 2022], network pruning [LeCun et al., 1989, Frantar & Alistarh, 2023], and
knowledge distillation [Hinton et al., 2015, Agarwal et al., 2023]. For the wide body of research
on LLM compression, please refer to [Zhu et al., 2023] for the comprehensive survey. Among
these methods, weight quantization has gained significant traction in the context of LLMs due to its
effectiveness. However, despite its popularity as a neural network compression technique, low-rank
factorization has not been extensively explored in the realm of LLMs. Recognizing this gap, we
introduce a novel low-rank decomposition method tailored specifically for decomposing the weight
matrices of LLMs in a training-free manner.

Low-rank Decomposition. In the realm of low-rank decomposition [Schotthöfer et al., 2022] for
neural network compression, existing methods can be broadly classified into two categories: fixed low
rank and variable low rank approaches. Fixed rank methods typically involve decomposing weight
matrices of pre-trained networks using techniques like Singular Value Decomposition (SVD) or tensor
decomposition, followed by fine-tuning the factorized network [Denton et al., 2014, Lebedev et al.,
2014, Sainath et al., 2013, Moczulski et al., 2015]. They also involve constraining weight matrices to
maintain a fixed low rank during training [Jaderberg et al., 2014, Khodak et al., 2021, Wang et al.,
2021], or constructing layers as linear combinations of layers with varying ranks [Ioannou et al.,
2015]. A notable limitation of these methods is the introduction of matrix decomposition rank as
a hyperparameter requiring fine-tuning. In contrast, rank-adaptive methods address this limitation
by automatically determining and adjusting the low-rank structure. In particular, Kim et al. [2015;
2019] apply heuristics search to pre-determine the decomposition rank, while Wen et al. [2017] learn
low-rank weights through a loss function penalizing approximated matrix ranks. Li et al. [2023] use
low-rank approximation plus a sparse matrix to compress the weight matrix in transformers.

However, none of these methods have worked in the era of LLMs due to their training-require nature.
We propose ASVD, a post-training LLM decomposition approach enabling the adaptive determination
of SVD ranks to optimize the matrix approximations based on feature activations. To our knowledge,
ASVD represents the first attempt to compress the weights of LLMs through decomposition in a
training-free manner. Since the introduction of ASVD, there have been subsequent works on training-
free LLM decomposition, such as SVD-LLM [Wang et al., 2024] and Palu [Chang et al., 2024].
These follow-up studies underscore the significance and potential of our approach. We hope that
our proposed post-training LLM decomposition method can establish a new paradigm for LLM
compression, opening up avenues for more efficient and accessible deployment of LLMs. Recently,
Lin et al. [2024] highlight a key issue of SVD-based LLM compression methods including ASVD: the
full-rank decomposition initially doubles the parameter count of the original model. Consequently,
achieving a 90% compression ratio of the original model’s parameters requires approximately 55%
rank reduction in the decomposed matrices. They observe that more efficient compression can be
achieved in layers without intermediate non-linear activation functions, where a 50% rank reduction
directly corresponds to a 50% parameter reduction. This paradigm shows more potential of low-rank
decomposition for LLM compression.

3 METHOD

3.1 NAÏVE SVD FOR COMPRESSING WEIGHT MATRIX

Singular Value Decomposition (SVD) can be used to decompose the weights of linear layers, which
involves decomposing a weight matrix W ∈ Rm×n into three matrices: U, Σ, and VT , such that
W ≈ UΣVT ), where Σ is an m × n diagonal matrix, the diagonal values in Σ are the singular
values of W, and U ∈ Rm×m and V ∈ Rn×n are corresponding right and left singular vector
matrices, respectively [Demmel, 1997].

The SVD compression process for a weight matrix can be summarized in three steps: Decomposition:
Factorize W using SVD. Truncation: Retain the top k singular values and their corresponding right
and left singular vectors. This results in approximated matrices Uk, Σk, and VT

k , where the right
singular vector matrix Uk is m × k, singular Σk is k × k, and left singular vector matrix VT

k is
k × n. The choice of k is critical in balancing the compression ratio and the compressed model’s
performance. Reconstruction: Reconstruct an approximated weight matrix: Wk = UkΣkV

T
k .
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SVD × =

× =ASVD

Figure 2: Comparison between SVD and ASVD. Outlier channels in input activations (X) are highlight in red,
and ASVD takes these into consideration, which can contribute to a reduction in output error.

3.2 CHALLENGES OF COMPRESSING LLMS VIA SVD

Decomposing the large matrices in LLMs (e.g., 4096 × 4096 matrices ubiquitous in LLaMA-
7b [Touvron et al., 2023a]) into lower ranks presents a viable pathway for model compression.
However, straightforward application of existing low-rank decomposition techniques [Denton et al.,
2014, Lebedev et al., 2014, Moczulski et al., 2015, Khodak et al., 2021, Wang et al., 2021, Li et al.,
2023], which typically necessitate training, proves ineffective for LLMs.

Challenge 1: Influence of Activation: This perspective shifts the focus from solely relying on the
truncation error Lt, which depends only on the model’s weights, to also accounting for the activations.
The rationale behind this is the critical role of outliers in activations within LLMs [Lin et al., 2023,
Wei et al., 2022, Kim et al., 2023]. Thus, for effective LLM decomposition, our objective optimization
becomes:

W⋆
k = argmin

Wk

∥WkX−WX∥2F . (1)

Here, X represents the input activations, which are cached from a small calibration set. This set is
derived from the pre-training dataset to avoid overfitting to a specific task. Essentially, our objective
is to ensure that the output of the decomposed LLM closely mimics the output of the original LLM,
rather than merely aligning their weights. This approach prioritizes functional equivalence over
structural similarity, recognizing that accurate output replication is more critical for maintaining
the model’s post-decomposition performance. We define the variation in activations between the
compressed matrix Wk and the original matrix W as:

∆Y = (Wk −W)X. (2)

To illustrate this concept, we visualize an example of W, Wk (decomposed by simply SVD), X, and
the resulting variation in activations ∆Y in Fig. 2 (Top line). This visualization reveals a critical
insight: even when the variation in weights ∆W = W −Wk is relatively minor, the corresponding
variation in activations ∆Y can be huge. This significant variation in activations is a key factor in
why a straightforward SVD-based decomposition approach falls short in effectively decomposing
LLMs. The activation variations, despite being derived from input activations of large magnitude
(not the weight variations), can lead to considerable changes in the whole model’s output, thereby
undermining the decomposition’s efficacy.

Challenge 2: Singular Values Variations among Layers: The distribution of singular values
within a matrix is indicative of its sparsity and, by extension, its sensitivity to certain types of
information [Kim et al., 2015; 2019, Wen et al., 2017]. In LLMs, there is a notable variation in
singular values across different layers. Specifically, some layers exhibit a concentration of large
singular values, signifying less sensitivity to weight variation. This characteristic often correlates with
these layers being easy to compress. Conversely, other layers in the LLMs display a more uniform
distribution of smaller singular values. Such a pattern suggests a balanced contribution from various
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singular vector pairs. This variability in the distribution of singular values among layers presents a
unique challenge, as it implies that each layer may require a tailored approach to decompose and
maintain the overall functionality of the LLM.

These challenges underscore the necessity for innovative approaches specifically designed for the
LLM decomposition. Our objective is to achieve efficient compression while circumventing the
substantial computational and data demands associated with training-based methods. To address the
first challenge, we introduce an Activation-aware SVD mechanism, which is detailed in Section 3.3.
This method is designed to mitigate the impact of weight variation on activations. For the second
challenge, we propose a Sensitivity-based Truncation Rank Searching mechanism, elaborated in
Section 3.4, which adapts to the varying singular value distributions among different layers.

3.3 ASVD: ACTIVATION-AWARE SINGULAR VALUE DECOMPOSITION

ASVD is designed to refine the weight matrix W in LLMs by taking into account the effect of input
activation channels. The process comprises the following three steps:

Transforming the Weight Matrix. The first step involves transforming the weight matrix W into an
invertible matrix S.

The transform is denoted as WS. Because the matrix S is invertible, we can have this equation:

W = WSS−1 = (WS)S−1. (3)

Applying SVD to the Transformed Matrix. After transforming the weight matrix, the next step is
to apply SVD to the transformed matrix WS. The SVD of WS is expressed as WS = U′Σ′V′T .
To reduce the elements in these matrices, we truncate them to retain only the top-k singular values.
The truncated form of the decomposition is represented as:

WS ≈ U′
kΣ

′
kV

′
k
T
. (4)

This step ensures that the most significant aspects of the scaled weight matrix are retained. While
less critical information, which contributes minimally to the model’s output, is discarded.

Reconstructing the Approximated Weight Matrix. The final step is to reconstruct an approximation
of the original weight matrix. We multiply V′

k
T with S−1 to produce a new matrix V′′

k
T :

V′′
k
T
= V′

k
T
S−1. (5)

Note that the matrix V′′
k
T has the same shape as the matrix V′

k
T . In this way, the weight matrix can

be approximated by:

W = (WS)S−1 ≈ (U′
kΣ

′
kV

′
k
T
)S−1 = U′

kΣ
′
kV

′′
k
T
= Wk. (6)

Setting the Transform Matrix S. The transform matrix S is constructed to adjust W to better adapt
with the activation patterns of the input X. A simple method is to set the transform matrix as a
diagonal matrix. The computation of the linear layer can be transformed by:

WX = (WS)(S−1X). (7)

Each diagonal element in the matrix Sii transforms the i-th input channel of weight as: (WS):,i =

W:,iSii. Because S−1 is also a diagonal matrix, the S−1
ii scales the i-th channel of the activation

as S−1
ii Xi,:. This scaling adjusts how each activation channel impacts the weight matrix during the

decomposition process. We visualize the impact of the adjustment in Fig.2. We use a small number
of corpus sent to the LLM and calculate the absolute mean value of input activation channel. Then
we set Sii according to the absolute mean value of the activations in the i-th channel:

Sii := (
1

n

n∑
j=1

|Xij |)α, (8)

where n is the total number of activations for the i-th channel and hyper-parameter α provides
flexibility to adjust the level of activation sensitivity incorporated into the scaling. This method
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focuses on the average magnitude of activation in each channel, capturing the general intensity of
activation signals regardless of their positive or negative nature. Since we only need to do the LLM
inference several times, this method is very fast.

Another method to set the transform matrix S to is to optimize the output error introduced by
decomposition directly: argminS ∥∆Y∥2F . Wang et al. [2024] demonstrate that this optimization
problem has analytic expression by setting the S to a lower triangular matrix L, where L is the
Cholesky decomposition of XXT :

S := L, where LLT = XXT . (9)
This method takes an additional step to execute the Cholesky decomposition [Meyer, 2000]. Despite
this extra computation, it results in a lower output error ∆Y.

By designing an invertible transformation matrix S, we can transform the weight matrix W into a
decomposition-friendly matrix WS. This transformation takes into account both input and output
activations, making the subsequent decomposition more effective for compression. This is so-called
Activation-aware Singular Value Decomposition (ASVD).

3.4 SENSITIVITY-BASED TRUNCATION RANK SEARCHING
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Figure 3: Perplexity across Various Linear Layers and Parameter Ratios on LLaMA-2-7b.
The second challenge arises from the fact that different layers in LLMs exhibit varying degrees
of sensitivity to information compression, which is reflected in the distribution of their singular
values. Targeting this challenge, we propose the Sensitivity-based Truncation Rank Searching (STRS)
method. STRS evaluates the layer sensitivity and decides the best truncation of singular values. In
the realm of NLP, perplexity is a key metric for assessing how effectively a language model predicts
a sequence of tokens [Brown et al., 2020]. Therefore, we use the reduction in perplexity on the
calibration dataset to evaluate the sensitivity of each layer. Similar to post-training compression
methods [Dettmers et al., 2022, Frantar et al., 2022, Frantar & Alistarh, 2023], we collect a small
number of input token sequences as calibration dataset. Concurrent work by Gao et al. [2024]
addresses rank optimization through a differentiable binary masking mechanism. Their method
employs regularization to ensure masked ranks maintain consistency with SVD’s inherent property of
sorted singular values.

The core of the sensitivity evaluation process involves an in-depth exploration of how the neural
network reacts to varying levels of truncation. We define a set of potential truncation ratios, denoted
as R = {0.1, 0.2, · · · , 0.9}. These ratios r = km+kn

mn determine the fraction of the rank k preserved
during the SVD truncation for a weight matrix with dimensions m× n. For each linear layer in the
LLM, we iterate through these candidate ratios. At each ratio, truncated SVD is applied to the layer’s
weight matrix, temporarily replacing the original layer in the model with this decomposed version.
The model’s perplexity is then evaluated on the calibration dataset.

This detailed exploration of sensitivity across various truncation levels provides essential insights
into each layer’s performance dynamics, informing the optimization and decision-making processes
in model compression. As illustrated in Fig. 3, there are noticeable variations in sensitivity among
the different layers. Three key observations emerge from this analysis: 1. Inversely Proportional
Relationship: lower parameter ratios tend to result in higher perplexity scores. 2. Higher Sensitivity in
MLP Layers: MLP layers demonstrate higher sensitivity, indicating where more cautious truncation
is necessary. 3. Variable Sensitivity Among Layers: Some layers exhibit relatively lower sensitivity,
indicating potential for more aggressive compression.

Assuming the affects of layers are independent, we should set the truncation rank of each layer to
minimize the total affect to perplexity under the constraint of parameter size. We propose a binary
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search algorithm to search for the best truncation rank. Detailed explanations of algorithm can be
found in the Appendix.

3.5 ASVD FOR KV CACHE COMPRESSION
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Figure 4: A demonstration of how ASVD reduces the memory cost of the K cache. (Left) With
long text lengths L, the memory required for storing the K cache in a N -dimensional space becomes
substantial. (Right) ASVD decomposes the key projection weight matrix W into two low-rank
matrices U and V (see Sec. 3.3). This low-rank structure allows the K representation to be stored in
a reduced r-dimensional space, where r ≪ N . Consequently, we only need to save the intermediate
K in the r dimension instead of N dimension, saving the K cache N

r times. Note that saving V cache
is the same, and when content length L becomes really large (e.g., 1M tokens) or with larger batch
size, the KV cache becomes a significant factor in memory cost.
LLM inference with large context lengths can be incredibly resource-intensive, requiring high-end
GPUs and, for the largest models, costly multi-GPU setups. Analysis of generative inference with
LLMs reveals that, for relatively small batch sizes, the computation is primarily memory-bound
[Hooper et al., 2024, Liu et al., 2024]. Given the growing gap between computational speeds and
memory speeds, this issue is expected to worsen over time, making it crucial to address the memory
bottleneck. Further analysis indicates that the memory bottleneck is strongly correlated with context
size. For long sequence lengths, the main contributor to memory consumption is the KV cache storing,
so minimizing the KV cache can reduce both memory consumption and bandwidth requirements
[Yuan et al., 2024].

As we discussed in Sec.3.3, ASVD decomposes the key and value projection weight matrix W ∈
RN×N into two low-rank matrices, U ∈ RN×r and V ∈ RN×r, in a training-free manner, where
N is the dimension of K/V embedding space. As shown in Fig.4, replacing the high-rank matrix
with two low-rank matrices via ASVD allows us to obtain intermediate activations in low-rank form.
These intermediate activations can be stored as a replacement for the original KV cache. In other
words, the original KV cache requires storing two L×N matrices. With ASVD, the new KV cache
only needs to store two L × r matrices. In summary, ASVD can compress the KV cache N

r times.
This significant reduction in memory usage for the KV cache enables larger batch sizes or longer
sequence lengths, which are critical for real-world applications.

4 EXPERIMENTS

In this section, we assess the effectiveness of ASVD by conducting experiments on LLaMA [Touvron
et al., 2023a] and LLaMA-2 [Touvron et al., 2023b], and presenting results on various tasks, such as
Perplexity in WIKI [Merity et al., 2016] and MMLU [Hendrycks et al., 2020].

4.1 SETTINGS

We conducted a comprehensive evaluation of Activation-aware Singular Value Decomposition (ASVD)
on two series of Large Language Models (LLMs): LLaMA and LLaMA-2 [Touvron et al., 2023a;b].
Our experiments encompassed models ranging from 7 billion to 13 billion parameters. For each
model, we selected a calibration set with 32 samples, and each sample contains 2048 tokens, from
the Wikitext dataset to assess the layer-wise sensitivity. We explore two methods to set transform
matrix S. The first is the magnitude-based method (Eq.8), which is indicated by ASVD. We set α to
0.5 in our experiments 1. We also experimented with the Cholesky decomposition method (Eq.9) to
set the transform matrix, denoted ASVD+ in our experiments.

1The exploration of hyper-parameter α can be found in the Appendix.
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Figure 5: Perplexity trends of ASVD compression on LLaMA-2-13b, LLaMA-2-7b and LLaMA-7b.

Table 1: Performance under various compression scenarios. Param ratio indicates the proportion
of parameters remaining after decomposition. MMLU results are 0-shot. SVD* means SVD using
Sensitivity-based Truncation Rank Searching.

LLaMA-7b LLaMA-2-7b LLaMA-2-13b

method param ratio MMLU wiki ptb MMLU wiki ptb MMLU wiki ptb

original 1 30.76% 5.68 29.63 34.86% 5.47 20.82 40.16% 4.88 29.21
SVD 0.95 22.98% 2800 5458 - nan nan - nan nan

SVD* 0.95 23.92% 136.05 183.92 24.78% 46.79 363.37 24.86% 167.63 567.02
SVD* 0.9 23.54% 698.66 262.03 24.31% 114.45 27660 - nan nan

ASVD 0.95 30.26% 5.78 32.64 33.24% 5.64 23.98 39.52% 4.94 31.93
ASVD 0.9 29.67% 6.09 37.80 32.58% 5.93 32.63 40.04% 5.12 34.03
ASVD 0.85 29.70% 6.80 52.11 31.57% 6.74 59.84 37.95% 5.54 39.32
ASVD 0.8 27.85% 8.89 88.09 28.15% 8.91 114.70 34.63% 6.53 59.68
ASVD 0.75 24.94% 14.51 212.80 25.97% 18.97 432.57 28.59% 8.71 110.10

4.2 PARAMETERS COMPRESSION

Sensitivity-based Truncation Rank Searching (STRS in Sec.3.4) involves setting varying thresholds
binary searching process, enabling us to observe the impact of different compression levels on model
performance. This approach resulted in a range of compressed networks, each characterized by
a unique compression ratio. We evaluated the performance of these compressed networks using
perplexity as the primary metric, focusing on two datasets: Wikitext-2 (wiki) and the Penn Treebank
(ptb). The results, illustrated in Fig.5, reveal several key insights: (1) As the parameter ratio decreases,
there is a corresponding increase in perplexity. (2) A plateau region is observed when the parameter
ratio exceeds 0.9. In this range, ASVD predominantly decompresses the less sensitive layers, resulting
in minimal impact on prediction accuracy. (3) Below a parameter ratio 2 of 0.85, there is a rapid
increase in perplexity, indicating that the more sensitive layers are being decompressed to a lower
truncation rank, adversely affecting the model’s performance.

We also present a detailed analysis of the performance of compressed networks at various parameter
ratios. Table 1 displays the performance metrics for two LLaMA models, LLaMA-7b and LLaMA-
2-7b, under several compression scenarios. These metrics include MMLU zero-shot evaluation,
perplexity on the Wikitext dataset (wiki), and perplexity on the Penn Treebank dataset (ptb). Our ob-
servations reveal significant performance variations based on the parameter ratio and the compression
method used. Specifically, the table highlights the performance of each model when using standard
SVD, SVD with binary search for truncation ranks (SVD*), and ASVD at different parameter ratios
ranging from 0.75 to 0.95.

We compare ASVD and ASVD+3 with SVD-LLM [Wang et al., 2024]. The results in Table 2 show
that ASVD+ can improve the performance of ASVD, especially when the compression ratio is high.
ASVD+ also outperforms the SVD-LLM method, particularly when the compression ratio is less than
30%. This is because SVD-LLM does not consider the layer-wise differences. In contrast, our method
uses Sensitivity-based Truncation Rank Searching to set each layer with a different compression
ratio. However, when the compression ratio is larger than 30%, all of these methods can significantly
improve the perplexity of the LLMs.
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Table 2: The perplexity on wikitext2 of SVD-LLM, ASVD and ASVD+. In this table, we take the
setting of SVD-LLM that the lm head is not taken into consideration to compute the param ratio.

LLama-2-7b LLama-2-13b

Param ratio SVD-LLM ASVD ASVD+ Param ratio SVD-LLM ASVD ASVD+

0.95 6.93 5.64 5.56 0.95 5.70 4.94 4.93
0.9 7.27 5.93 5.74 0.9 5.94 5.12 5.03

0.85 7.76 6.74 6.10 0.85 6.24 5.54 5.26
0.8 8.38 8.91 6.86 0.8 6.66 6.53 5.77

0.75 9.30 18.97 8.38 0.75 7.22 8.71 6.54
0.7 10.67 159.21 10.62 0.7 8.00 20.82 7.82

0.65 12.82 1034.59 13.87 0.65 9.10 53.30 9.84
0.6 16.14 730.60 19.12 0.6 10.78 133.88 13.18

Table 3: Performance under different KV cache compression ratio.

KV cache ratio

model dataset 1(original) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

LLaMA-2-7b wiki 5.47 5.46 5.48 5.50 5.55 5.67 5.94 6.55 8.71
ptb 20.82 21.04 21.52 21.66 21.91 22.16 24.33 26.89 38.72

LLaMA-2-13b wiki 4.88 4.89 4.90 4.91 4.92 4.96 5.08 5.33 6.06
ptb 29.21 29.64 29.95 30.21 30.99 31.69 34.03 36.61 47.24

4.3 KV CACHE COMPRESSION

We evaluate the KV Cache compression by using ASVD to decompose k projection and v projection
in transformer [Vaswani et al., 2017]. Table 3 summarizes the results, showing the perplexities on the
wikitext2 and Penn Treebank datasets for different KV cache compression ratios. It is evident that
the perplexity values remain stable when the KV cache ratio is above 40%. When the ratio is lower
than 40%, the performance of the network is decreased. These observations suggest that ASVD is
effective to compress the KV cache without negatively impacting the model.

4.4 INTEGRATING ASVD WITH QUANTIZATION

This section investigates the compatibility of ASVD with quantization techniques for compressing
LLMs. We explore the integration of ASVD with different quantization methods. Simple quantization
methods include Round-To-Nearest (RTN) and 4-bit NormalFloat (NF4) [Dettmers et al., 2023]. The
advanced LLM quantization method is Activation-aware Weight Quantization (AWQ) [Lin et al.,

2parameter ratio 0.85 means compress the model size by 15%.
3ASVD+ refer to ASVD with whitening method for obtaining the transformation matrix in Eq.9

Table 4: Combining weight quantization with ASVD. Param ratio indicates the proportion of parame-
ters remaining after ASVD, with 1 implying no decomposition.

LLaMA-2-7b LLaMA-2-13b

param ratio FP16 INT8
(RTN)

INT8
(AWQ) NF4 INT4

(AWQ) FP16 INT8
(RTN)

INT8
(AWQ) NF4 INT4

(AWQ)

wiki

1 5.47 5.48 5.45 5.65 5.59 4.88 4.88 4.88 4.98 4.97
0.95 5.64 5.64 5.56 5.83 5.82 4.94 4.95 4.97 5.08 5.18
0.9 5.93 5.94 5.82 6.2 6.21 5.12 5.11 5.15 5.31 5.43

0.85 6.74 6.73 6.51 7.43 7.18 5.54 5.56 5.59 5.9 5.96

ptb

1 20.82 20.82 20.93 22.7 21.50 29.15 29.12 29.29 30.31 30.47
0.95 23.98 23.95 25.47 35.91 27.79 31.93 31.67 30.19 33.89 31.21
0.9 32.63 32.19 37.11 40.82 39.31 34.03 33.64 35.47 34.93 38.95

0.85 59.84 63.76 84.52 427.59 95.85 39.32 40.02 43.01 44.49 50.56

9
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Figure 6: Per-type parameters ratio and per-block parameters ratio on LLaMA-2-7b after ASVD com-
pression.

2023]. Note that our study focuses on establishing the orthogonal property of ASVD to these basic
quantization methods. Future work could extend this investigation to more advanced quantization
techniques and other LLM compression approaches. Our experimental framework involves two stages.
Firstly, we apply ASVD to decompose the network. Subsequently, we quantize the decomposed
weights.

Table 4 summarizes the results of our experiments on LLaMA-2-7b, LLaMA-2-13b models [Touvron
et al., 2023b]. The following observations were made: 8-bit Weight Quantization: The results
indicate that 8-bit quantization has a negligible impact on model performance, both for the original
and the ASVD-compressed networks. 4-bit weight Quantization: Upon quantizing the network into
NF4 and INT4(AWQ), a further deterioration in prediction accuracy is observed. When param ratio is
greater than 0.9, the performance decline attributed to quantization is approximately consistent with
that of the non-decomposed network. We observe that the performance degradation of LLaMA-2-13b
is less than that of LLaMA-2-7b, indicating that the larger model is more robust to compression. In
summary, the findings suggest that ASVD is compatible with weight quantization techniques.

4.5 DECOMPOSED NETWORK ANALYSIS

We conduct a detailed analysis of the decomposed network. Figure 6 presents the per-type parameters
ratio and per-block parameters ratio. Observing the plot, we note that parameters in the MLP
components (gate projection, up projection, and down projection) exhibit minimal compression. In
MHA, the V projection layer experiences relatively small compression, whereas q projection and
k projection can be significantly compressed, indicating redundancy in these components. Turning
our attention to the per-block compression ratio, we find that the first layer can undergo substantial
compression. In contrast, the compression ratios for the other layers, except for two middle layers,
show similar compression rates.

This computation ratio can be expressed as the ratio of Ck to C, which is equivalent to the parameter
ratio:

Ck

C
=

km+ kn

nm
(10)

Remarkably, this computation ratio mirrors the weight number compression ratio, highlighting the
efficient use of computational resources achieved through ASVD. In summary, ASVD can not only
reduce the weight storage and weight transferring overheads in LLM deployment but also reduce the
computation required by LLM inference.

5 CONCLUSION

This study presents a training-free approach to compressing Large Language Models (LLMs). We
propose Activation-aware Singular Value Decomposition (ASVD) and Sensitivity-based Truncation
Rank Searching (STRS), effectively address the challenges posed by activation outliers and varying
layer sensitivities. These techniques enable more accurate and efficient decomposition, reducing
memory usage and computational demands while maintaining model performance. The successful in-
tegration of ASVD into KV cache compression further underscores its potential for broad applicability
and substantial impact in real-world scenarios.
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6 REPRODUCIBILITY STATEMENT

We have submitted the code for the experiments as part of the supplementary material. The code is
anonymous and self-contained and includes detailed instructions to facilitate the replication of our
experiments and findings. We also plan to publicly release the code, data, pretrained models, and any
additional resources needed for the community to fully reproduce our work.

REFERENCES

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier Bachem.
Gkd: Generalized knowledge distillation for auto-regressive sequence models. arXiv preprint
arXiv:2306.13649, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, and Kai-Chiang Wu. Palu: Compressing kv-cache with low-rank
projection. arXiv preprint arXiv:2407.21118, 2024.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. Advances in neural information processing
systems, 28, 2015.

James W Demmel. Applied numerical linear algebra. SIAM, 1997.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. Advances in neural information
processing systems, 27, 2014.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. ICML, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Shangqian Gao, Ting Hua, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Adaptive rank selections
for low-rank approximation of language models. In NAACL, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In ICLR, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla, and Antonio Criminisi. Training
cnns with low-rank filters for efficient image classification. arXiv preprint arXiv:1511.06744,
2015.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Mikhail Khodak, Neil Tenenholtz, Lester Mackey, and Nicolo Fusi. Initialization and regularization
of factorized neural layers. In ICLR, 2021.

Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min Kyung. Efficient neural network
compression. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12569–12577, 2019.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530, 2015.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse approxi-
mation. In International Conference on Machine Learning, pp. 20336–20350. PMLR, 2023.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen, Hongxia
Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model compression.
arXiv preprint arXiv:2408.09632, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu Kivi. A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Carl Dean Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. Acdc: A structured
efficient linear layer. arXiv preprint arXiv:1511.05946, 2015.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
2295–2317, 2011.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets. In
2013 IEEE international conference on acoustics, speech and signal processing, pp. 6655–6659.
IEEE, 2013.
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A APPENDIX

A.1 IMPACT STATEMENTS AND LIMITATIONS

In this study, we propose a technique that improves the efficiency of Large Language Models (LLMs),
making them more accessible. This approach helps to democratize LLMs by lowering deployment
costs and hardware barriers, facilitating their use in edge computing. However, it does not mitigate
the potential misuse of LLMs by malicious actors.

Despite the remarkable achievements of the ASVD method in compressing large language models
(LLMs), several limitations persist. One limitation arises when ASVD is combined with quantization
techniques, which can lead to a decline in model performance. While 8-bit weight quantization has
minimal effects on both original and ASVD-compressed networks, switching to 4-bit quantization can
result in a slight decrease in predictive accuracy. Additionally, ASVD faces difficulties in compressing
multi-layer perceptron (MLP) in LLMs, as these layers typically contain more parameters than self-
attention mechanisms, resulting in increased computational burdens due to their high-dimensional
feature mappings. Although ASVD effectively compresses the weights in multi-head attention (MHA)
with fewer parameters, it struggles with MLP. Furthermore, the need to evaluate the sensitivity of each
layer requires a forward propagation step to calculate perplexity, demanding significant computational
resources.

A.2 RELEASE SAFEGUARDS

While ASVD itself does not release new pretrained models, the compression capabilities it provides
could enable easier sharing and deployment of powerful models that have risks of misuse. To mitigate
risks of misuse, we have implemented access control. Users must agree to terms prohibiting unethical
applications.

A.3 INFERENCE COST WITH DECOMPOSED LLMS

Regarding the computational aspect, let’s consider the input matrix X ∈ Rn×t and the weight matrix
W ∈ Rm×n. In the original linear layer, the matrix multiplication is represented as Y = WX. The
number of Multiply-Accumulate (MAC) operations, denoted as C, in the original linear layer can be
computed as: C = tmn. After the ASVD decomposition, the matrix multiplication transforms into
Y ≈ U′

kΣ
′
kV

′′
kX. We can fuse the Σk into U′

k and V′′
k . Then we have:

Y ≈ U′
kΣ

′
kV

′′
kX (11)

= (U′
k

√
Σ′

k)(
√
Σ′

kV
′′
k)X (12)

= ABX (13)

To analyze the computational efficiency, we calculate the MAC operations, denoted as Ck, for this
decomposed form. The computation for Ck is given by: Ck = tkm+ tkn

This computation ratio can be expressed as the ratio of Ck to C, which is equivalent to the parameter
ratio:

Ck

C
=

km+ kn

nm
(14)

Remarkably, this computation ratio mirrors the weight number compression ratio, highlighting the
efficient use of computational resources achieved through ASVD. In summary, ASVD can not only
reduce the weight storage and weight transferring overheads in LLM deployment but also reduce the
computation required by LLM inference.

A.4 BINARY SEARCH FOR TRUNCATION RANKS

We have the option to employ either a performance target or parameters target for our search. In the
case of a performance target, our objective is to identify the truncation rank configuration that ensures
the compressed network attains the desired performance, such as achieving a specific perplexity.
Alternatively, in the pursuit of a parameters target, our goal is to identify the truncation ranks that
result in the network attaining the specified target parameters.
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Algorithm 1: Binary Search for Truncation Ranks (parameters target)
Input: List of tuples (layer, truncation rank, sensitivity) and parameters target
Output: Optimal truncation rank configuration for each layer
Sort the list by sensitivity in ascending order
Initialize pointers: pL = 0, pH = length of list − 1
pM =

⌊
pL+pH

2

⌋
while pL ̸= pH do

for each layer in the list do
Initialize r = ∞
for each tuple in the list starting from pM to the end do

if tuple’s layer is the same as the current layer then
r = min(r, tuple’s truncation rank)

end if
end for
if r = ∞ then

Do not modify the truncation rank for the layer
else

Set the truncation rank for the layer to r
end if

end for
Calculate the parameters after compression
if parameters ≤ parameters target then
pH = pM

else
pL = pM + 1

end if
Update pM =

⌊
pL+pH

2

⌋
end while

The algorithm of performance target: Initially, the low pointer (pL) is positioned at the start of the list,
while the high pointer (pH ) is set at the list’s end. The middle pointer (pM ), as the name suggests,
is placed midway between pL and pH , calculated as pM =

⌊
pL+pH

2

⌋
. During each iteration of

the binary search, we adjust the truncation rank for each layer. Specifically, for a given layer, its
truncation rank is set to the smallest rank found to the right of the middle pointer (pM ) in our list.

Following this adjustment, we evaluate the network’s performance using the updated configuration
on a calibration dataset. The primary metric for assessment is perplexity. Should the perplexity fall
within or below a pre-established threshold, we move the high pointer (pH ) to the middle position
(pM ). This action indicates our search for a configuration with a potentially lower rank that still
adheres to performance standards. Conversely, if the perplexity exceeds our maximum acceptable
threshold, we shift the low pointer (pL) to (pM + 1). This adjustment signifies the need to increase
the truncation ranks to maintain or enhance performance levels. The binary searching will converge
to an optimal configuration of truncation ranks for each layer that balances compression ratio and
perplexity.

The algorithm of parameters target is shown in Algorithm 1. It doesn’t need calibration dataset.

A.5 DIFFERENCE WITH TENSORGPT.

In the content of LLM compression via decomposition, the most related work is the concurrent
TensorGPT Xu et al. [2023], Zhu et al. [2023], in which the embedding layer of LLMs is compressed
through Tensor-Train Decomposition (TTD) Oseledets [2011] in order to store large embeddings in a
low-rank tensor format, with much fewer parameters. However, there are several differences between
those two methods: (1) Unlike TensorGPT which focuses solely on the token embedding matrix,
ASVDaims to compress the entire weight spectrum of LLMs. This holistic approach addresses a more
critical aspect of LLM compression, as highlighted in recent studies Lin et al. [2023], Kim et al.
[2023]; (2) From the perspective of low-rank decomposition categorization, our method can realize
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the low-rank decomposition in a rank-adaptive manner, contrasting with the fixed or predetermined
ranks used in TensorGPT.

A.6 EMPIRICAL COMPARISON WITH FWSVD

We also compare ASVD with FWSVD Hsu et al. [2022], which uses Fisher information to weigh the
importance of parameters affecting the model prediction. Note that FWSVD is training-required. As
shown in Table 5, our method can outperform FWSVD comprehensively.

Table 5: Comparing with FWSVD on LLaMA-7b. FWSVD* denotes Fisher information weighted
SVD.

param ratio 0.95 0.9 0.85 0.8

LLaMA-7b

FWSVD+STRS wiki 5.86 6.32 7.48 10.70
ASVD 5.78 6.09 6.80 8.89

FWSVD+STRS ptb 34.33 38.05 58.75 125.80
ASVD 32.64 37.80 52.11 88.09

LLaMA-2-7b

FWSVD+STRS wiki 5.59 6.12 8.01 13.07
ASVD 5.64 5.93 6.74 8.91

FWSVD+STRS ptb 25.06 36.58 105.53 222.03
ASVD 23.98 32.63 59.84 114.70

A.7 HYPER-PARAMETERS EXPLORATION

Table 6: Perplexity on Wikitext2 for exploring hyper-parameters on OPT-125m.

α 0.1 0.25 0.5 1 2

SVD+STRS 103.39
ASVD abs mean 47.54 37.12 36.89 41.53 43.81
ASVD abs max 52.63 47.17 40.14 41.94 52.55

In our study, we initiate an exploration of hyper-parameters in ASVD, focusing on the activation
channel significance metric and the control factor α. This exploration is conducted on OPT-125m, a
relatively small network that facilitates rapid evaluation.

We rigorously explored the control factor α at various settings: 0.1, 0.25, 0.5, 1, and 2. This
exploration aimed to understand how varying α influences the performance and parameter efficiency
of the network. Additionally, we investigated two methods for quantifying activation significance:
Absolute Mean Value of Input Activation and Absolute Maximum Value of Input Activation. These
methods are crucial in determining the most effective approach for activation channel significance
evaluation. We set a target parameters ratio of 0.9. Utilizing the binary search approach for truncation
ranks, we report the perplexity on Wikitext2 test set after compression. The results of our experiments
are summarized in Table 6.

From the data presented in the table, we observe that both activation-aware methods show superior
performance compared to standard SVD+STRS. We also notice that Lower and higher values of
α (0.1 and 2) exhibit lower performance, while mid-range values (0.5) lead to better performance,
and the Absolute Mean Value method consistently outperforms the Absolute Max Value method.
Therefore, based on our observations, we chose α = 0.5 and the Absolute Mean Value method for
setting the transform matrix S in the ASVD process in the following experiments.

A.8 ABSORBING SINGULAR VALUES

After we decompose a matrix via ASVD, we can represent the weight matrix as a product of three
matrices, i.e., W ≈ UkΣkV

T
k . Thanks to the diagonal nature of matrix Σk, we can further optimize

the inference process. Specifically, we can efficiently absorb the singular values in Σk into the
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Table 7: Perplexity on Wikitext-2 under different absorbing strategies after ASVD on OPT-125m.

param ratio weight quant absorbed by UV absorbed by U absorbed by V

0.9 INT6 37.58 39.67 40.62
0.85 INT6 60.44 64.19 61.02

matrices Uk and V T
k . We achieve this fusion using the following strategy: Ak = Uk

√
Σk and

Bk =
√
ΣkV

T
k . Consequently, we obtain a more computationally efficient matrix operation:

Y = WX ≈ Ak(BkX) (15)

Compared to the methods of fusing the singular values Σk solely into either U or V matrices,
our proposed fusion technique offers significant advantages in terms of weight quantization, as
demonstrated in Table 7. Our approach involves evenly distributing the singular values from the
diagonal matrix Σk into both Uk and VT

k matrices. This ensures a more uniform distribution of Ak

and Bk, leading to a reduction in the disparity across different channels and reducing the quantization
error.
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