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ABSTRACT

The extraction of useful deep features is important for many computer vision
tasks. Deep features extracted from classification networks have proved to per-
form well in those tasks. To obtain features of greater usefulness, end-to-end
distance metric learning (DML) has been applied to train the feature extractor di-
rectly. End-to-end DML approaches such as Magnet Loss and lifted structured
feature embedding show state-of-the-art performance in several image recogni-
tion tasks. However, in these DML studies, there were no equitable comparisons
between features extracted from a DML-based network and those from a softmax-
based network. In this paper, by presenting objective comparisons between these
two approaches under the same network architecture, we show that the softmax-
based features are markedly better than the state-of-the-art DML features for tasks
such as fine-grained recognition, attribute estimation, clustering, and retrieval.

1 INTRODUCTION

Recent developments in deep convolutional neural networks have made it possible to classify many
classes of images with high accuracy. It has also been shown that such classification networks
work well as feature extractors. Features extracted from classification networks show excellent
performance in image classification (Donahue et al., 2014), detection, and retrieval (Razavian et al.,
2014; Liu et al., 2015), even when they have been trained to classify 1000 classes of the ImageNet
dataset (Russakovsky et al., 2015). It has also been shown that fine-tuning for target domains further
improves the features’ performance (Wan et al., 2014; Babenko et al., 2014).

On the other hand, distance metric learning (DML) approaches have recently attracted considerable
attention. These obtain a feature space in which distance corresponds to class similarity; it is not a
byproduct of the classification network. End-to-end distance metric learning is a typical approach
to constructing a feature extractor using convolutional neural networks and has been the focus of
numerous studies (Bell & Bala, 2015; Schroff et al., 2015). Some DML methods have been reported
to show state-of-the-art performance in fine-grained classification (Rippel et al., 2016) and clustering
and retrieval (Song et al., 2016) contexts.

However, there have been few experiments comparing softmax-based feature extraction with DML-
based feature extraction under the same network architecture or with adequate fine-tuning. An
analysis providing a true comparison of DML features and softmax-based features is long overdue.
As we explain more fully in the following section, we contend that there is no reason that DML,
which learns feature embedding explicitly, should outperform a softmax-based feature extractor.

Fig. 1 depicts the feature vectors extracted from a softmax-based classification network and a metric
learning-based network. We used LeNet architecture for both networks, and trained on the MNIST
dataset (LeCun et al., 1998). For DML, we used the contrastive loss function (Hadsell et al., 2006)
to map images in two-dimensional space. For softmax-based classification, we added a two- or
three-dimensional fully connected layer before the output layer for visualization. DML succeeds
in learning feature embedding (Fig. 1a). Softmax-based classification networks can also achieve a
result very similar to that obtained by DML: Images are located near one another if they belong to
the same class and far apart otherwise (Fig. 1b, Fig. 1c).
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Figure 1: Depiction of MNIST dataset. (a) Two-dimensional features obtained by siamese network.
(b) Two-dimensional features extracted from softmax-based classifier; these features are well sepa-
rated by angle but not by Euclidean norm. (c) Three-dimensional features extracted from softmax-
based classifier; we normalized these to have unit L2 norm and depict them in an azimuth–elevation
coordinate system. The three-dimensional features are well separated by their classes.

Our contributions in this paper are as follows:

• We show methods to exploit the ability of deep features extracted from softmax-based net-
works, such as normalization and proper dimensionality reduction. This is not technically
novel, but this must be useful for fair comparison between image representations.

• We demonstrate that deep features extracted from softmax-based classification networks
show markedly better results on fine-grained classification, attribute estimation, clustering,
and retrieval tasks than those from DML-based networks in almost all datasets.

• We show that DML-based methods offer performance competitive to softmax-based meth-
ods only when the training dataset consists of a very small number of samples per class.

2 BACKGROUND

2.1 PREVIOUS WORK

2.1.1 SOFTMAX-BASED CLASSIFICATION AND REPURPOSING OF THE CLASSIFIER AS A
FEATURE EXTRACTOR

Convolutional neural networks have demonstrated great potential for highly accurate image recog-
nition (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al., 2016).
It has been shown that features extracted from classification networks can be repurposed as a good
feature representation for novel tasks (Donahue et al., 2014; Razavian et al., 2014; Qian et al., 2015)
even if the network was trained on ImageNet (Russakovsky et al., 2015). For obtaining better feature
representations, fine-tuning is also effective (Babenko et al., 2014).

2.1.2 DEEP DISTANCE METRIC LEARNING

Distance metric learning (DML), which learns a distance metric, has been widely studied (Bromley
et al., 1994; Chopra et al., 2005; Chechik et al., 2010; Qian et al., 2015). Recent studies have focused
on end-to-end deep distance metric learning (Bell & Bala, 2015; Schroff et al., 2015; Li et al., 2015;
Rippel et al., 2016; Song et al., 2016). However, in most studies comparisons of end-to-end DML
with features extracted from classification networks have not been performed using architectures
and conditions suited to enable a true comparison of performance. Bell & Bala (2015) compared
classification networks and siamese networks, but they used coarse class labels for classification
networks and fine labels for siamese networks; thus, it was left unclear whether siamese networks
are better for feature-embedding learning than classification networks. Schroff et al. (2015) used
triplet loss for deep metric learning in their FaceNet, which showed performance that was state of
the art at the time, but their network was deeper than that of the previous method (Taigman et al.,
2014); thus, triplet loss might not have been the only reason for the performance improvement, and
the contribution from adopting triplet loss remains uncertain. Rippel et al. (2016) used the Magnet

2



Under review as a conference paper at ICLR 2017

Softmax

Siamese

iter 1
(1,0,0)

(0,1,0) (0,0,1)

(1,0,0)

(0,1,0) (0,0,1)

(1,0,0)

(0,1,0) (0,0,1)

(1,0,0)

(0,1,0) (0,0,1)

iter 2 iter 3 iter 4

...

...

Figure 2: Illustration of learning processes for softmax-based classification network and siamese-
based DML network. For softmax, the gradient is defined by the distance between a sample and a
fixed one-hot vector, and for siamese by the distance between samples.

Loss function for their DML. They tried softmax-based features as a comparison, but their results
are unfairly low from our results as shown in Section 4.2 and 4.3. Song et al. (2016) used lifted
structured feature embedding, another state-of-the-art DML method; however, they only compared
their method with a softmax-based classification network pretrained on ImageNet (Russakovsky
et al., 2015) and did not compare it with a fine-tuned network.

2.2 DIFFERENCES BETWEEN SOFTMAX-BASED CLASSIFICATION AND METRIC LEARNING

For classification, the softmax function (Eq. 1) is typically used:

pc =
exp(uc)∑C
i=1 exp(ui)

, (1)

where pc denotes the probability that the vector u belongs to the class c. The loss of the softmax
function is defined by the cross-entropy

E = −
C∑

c=1

qc log pc, (2)

where q is a one-hot encoding of the correct class of u. To minimize the cross-entropy loss, networks
are trained to make the output vector u close to its corresponding one-hot vector. It is important to
note that the target vectors (the correct outputs of the network) are fixed during the entire training
(Fig. 2).

On the other hand, DML methods use distance between samples. They do not use the values of the
labels; rather, they ascertain whether the labels are the same between target samples. For example,
contrastive loss Hadsell et al. (2006) considers the distance d between a pair of samples:

E =
1

2
qd2 + (1− q)max(α− d, 0), (3)

where α represents the margin and q ∈ {0, 1} indicates whether the images in a pair are in the same
class (1) or not (0). Recent studies (Schroff et al., 2015; Rippel et al., 2016; Song et al., 2016) use
pairwise distances between three or more images at the same time for fast convergence and efficient
calculation. However, these methods have some drawbacks. DML methods sometimes require
complicated operations such as hard negative sampling (Schroff et al., 2015; Rippel et al., 2016) and
k-means clustering for every epoch (Rippel et al., 2016). For DML, in contrast to optimization of the
softmax cross-entropy loss, the optimization targets are not always consistent during training even if
all possible distances within the mini-batch are considered. Thus, the DML optimization converges
very slowly and is not stable and unsteadily. An additional problem is that methods for sampling
positive pairs and negative pairs have not been established.
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3 METHODS

3.1 DIMENSIONALITY REDUCTION LAYER

One of DML’s strength in using fine-tuning is the flexibility of its output dimensionality. When us-
ing features of a mid-layer of a softmax classification network, on the other hand, the dimensionality
of the features is fixed. Some existing methods (Babenko et al., 2014) use PCA or discriminative di-
mensionality reduction to reduce the number of feature dimensions. In our experiment, we evaluated
three methods for changing the feature dimensionality. Following conventional PCA approaches, we
extracted features from a 1024-dimensional pool5 layer of GoogLeNet (Szegedy et al., 2015; Ioffe &
Szegedy, 2015) (Fig. 3a) and applied PCA to reduce the dimensionality. In a contrasting approach,
we made use of a fully connected layer: We added a fully connected layer having the required num-
ber of neurons just before the output layer (FCR 1, Fig. 3b). We also investigated a third approach
in which a fully connected layer is added followed by a dropout layer (FCR 2, Fig. 3c). We intend
to show that the features extracted from the pool5 layer of FCR 2 provide better performance than
those from FCR 1 even though they differ only in the positions of their dropout layers.

3.2 NORMALIZATION

In this study, all the features extracted from the classification networks were from the last layer
before the last output layer. The outputs were normalized by the softmax function and then
evaluated by the cross-entropy loss function in the networks. Assume that the output vector is
p = {pi|

∑
i pi = 1}. For arbitrary positive constant α, y = {logαpi} returns the same vector

p after the softmax function is applied. The features x we extract from the networks are given as
x = W−1y, where W denotes the linear projection matrix from the layer before the output layer
to the output layer. The vector y has an ambiguity in its scale, thus vector x, a linear transform of
y, also has an ambiguity in the scale; therefore x should be normalized. As Fig. 1b clearly indi-
cates, the distance between features extracted from a softmax-based classifier should be evaluated
by cosine similarity, not by the Euclidean distance.

Some studies used L2 normalization for deep features extracted from softmax-based classification
networks (Taigman et al., 2014), whereas many recent studies have used the features without any
normalization (Krizhevsky et al., 2012; Rippel et al., 2016; Song et al., 2016; Wei et al., 2016). In
this study, we also planned to validate the efficiency of normalizing deep features.

4 EXPERIMENTS

In this section, we compare the deep features extracted from classification networks to those reported
from state-of-the-art deep metric learning methods (Rippel et al., 2016; Song et al., 2016) in their
performance on several tasks.

4.1 PROCEDURE

All our networks were fine-tuned from the weights that were pretrained on ImageNet (Russakovsky
et al., 2015). To evaluate fine-grained classification and attribute estimation performances, we used
GoogLeNet with batch normalization (Ioffe & Szegedy, 2015) and did not use any dimentionality
reduction layers described in Section 3.1. To evaluate clustering and retrieval performances we used
GoogLeNet without batch normalization (Szegedy et al., 2015) and dimentionality reduction layers.
We used the Caffe (Jia et al., 2014) framework for our experiments.

4.2 FINE-GRAINED CLASSIFICATION

For the evaluation of deep features in fine-grained classification tasks, we used three image datasets:
Stanford Dogs (Khosla et al., 2011), Oxford 102 Flowers (Nilsback & Zisserman, 2008), and
Oxford-IIIT Pet (Parkhi et al., 2012). For the softmax-base method we fine-tuned the classifier
from weights that were pretrained on ImageNet. We defined the learning rate using validation data,
setting the learning rate to 0.0001 for the Stanford Dogs dataset and the Oxford-IIIT Pet dataset and
to 0.001 for the Oxford 102 Flowers dataset. Learning rates were not changed during the training.
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(a) GoogLeNet (dimensionality reduction by PCA)

(b) GoogLeNet with dimensionality reduction by a fully connected layer just before the
output layer (FCR 1)

(c) GoogLeNet with dimensionality reduction by a fully connected layer followed by a
dropout layer (FCR 2)

Figure 3: GoogLeNet Szegedy et al. (2015) architecture we use in this paper. We extracted the
features from the red-colored layers. For (a), we applied PCA to reduce the number of feature
dimensions. For (b) and (c), the dimensionality is already reduced to the required number by the
fc reduction layer.

We rescaled all the input up by 30% and randomly cropped 224 × 224. These strategies are exactly
the same as those of the previous method (Rippel et al., 2016).

We show the mean error rates for the three datasets in Table 1. All our results were evaluated us-
ing a 1-nearest neighbor search of the 1024-dimensional vectors extracted from the pool5 layer of
GoogLeNet with batch normalization (Ioffe & Szegedy, 2015). In all the experiments, the features
extracted from the fine-tuned classification network show the best fine-grained classification perfor-
mance. Our results of softmax-based classification are better than the results in Rippel et al. (2016).
The experiments of softmax-based classification in Rippel et al. (2016) were not the best.

4.3 ATTRIBUTE ESTIMATION

Rippel et al. (2016) evaluated features’ expressiveness using mean attribute precision and showed
that the features generated by their proposed method contain intra-class diversity. In this section,
we investigate the intra-class diversity of softmax features. We use the ImageNet Attribute dataset
(Rippel et al., 2016), which consists of overlap between the ImageNet training set (Russakovsky
et al., 2015) and the Object Attribute dataset (Russakovsky & Fei-Fei, 2010). We used only the
images and their class labels during our training of the softmax classifier and did not use attributes.

Table 2 shows the error rates of 90-way classification under different training methods. Our fine-
tuned softmax classifier outperformed those of Rippel et al. (2016) by a considerable margin. Fig. 4
shows the mean attribute precision for the ImageNet Attribute dataset. Our fine-tuned softmax
features markedly outperformed those from Rippel et al. (2016). These results implicitly indicate
that the features extracted from the pool5 layer contain intra-class diversity that is better than those
from DML networks designed to keep intra-class diversity.
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Table 1: Error rates for various fine-grained image datasets.

(a) Stanford Dogs.

Approach Error

Angelova & Long (2014) 51.7%
Xie et al. (2015) 50.6%
Gavves et al. (2013) 49.9%
Gavves et al. (2015) 43.0%
Qian et al. (2015) 30.9%
Rippel et al. (2016) (Softmax prob) 26.6%
Rippel et al. (2016) (Triplet) 35.8%
Rippel et al. (2016) (Magnet) 24.9%

Ours (Softmax prob) 18.3%
Ours (Softmax pool5) 21.0%
Ours (Softmax pool5 + L2) 20.3%

(b) Oxford 102 Flowers.

Approach Error

Angelova & Zhu (2013) 23.3%
Angelova & Long (2014) 19.6%
Murray & Perronnin (2014) 15.4%
Razavian et al. (2014) 13.2%
Qian et al. (2015) 11.6%
Rippel et al. (2016) (Softmax prob) 11.2%
Rippel et al. (2016) (Triplet) 17.0%
Rippel et al. (2016) (Magnet) 8.6%

Ours (Softmax prob) 8.69%
Ours (Softmax pool5) 7.90%
Ours (Softmax pool5 + L2) 7.09%

(c) Oxford -IIIT Pet.

Approach Error

Angelova & Zhu (2013) 49.2%
Parkhi et al. (2012) 46.0%
Angelova & Long (2014) 44.6%
Murray & Perronnin (2014) 43.2%
Qian et al. (2015) 19.6%
Rippel et al. (2016) (Softmax prob) 11.3%
Rippel et al. (2016) (Triplet) 13.5%
Rippel et al. (2016) (Magnet) 10.6%

Ours (Softmax prob) 9.04%
Ours (Softmax pool5) 9.09%
Ours (Softmax pool5 + L2) 9.04%

Table 2: Classification error
rates for the ImageNet At-
tribute dataset.

Approach Error

Rippel et al. (2016) (Softmax prob) 14.1%
Rippel et al. (2016) (Triplet) 26.8%
Rippel et al. (2016) (Magnet) 15.9%

Ours (Softmax prob) 7.68%
Ours (Softmax pool5) 11.9%
Ours (Softmax pool5 + L2) 10.7%
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Figure 4: Mean attribute
precision for the ImageNet
Attribute dataset.

Table 3: Properties of datasets
used in Section 4.4. Each cell
shows the number of images
(upper figure) and the number
of classes (lower figure).

Dataset Train Test Total

CUB 5,864 5,924 11,788
100 100 200

CAR 8,054 8,131 16,185
98 98 196

OP 59,551 60,502 120,053
11,318 11,316 22,634

4.4 CLUSTERING AND RETRIEVAL

Here, we give our evaluation of clustering and retrieval scores for the state-of-the-art DML method
(Song et al., 2016) and for the softmax classification networks. We used the Caltech UCSD Birds
200-2011 (CUB) dataset (Wah et al., 2011), the Stanford Cars 196 (CAR) dataset (Krause et al.,
2013), and the Stanford Online Products (OP) dataset (Song et al., 2016). For CUB and CAR, we
used the first half of the dataset classes for training and the rest for testing. For OP, we used the
training–testing class split provided. The dataset properties are shown in Table 3. We emphasize
that the class sets used for training and testing are completely different. We multiplied the learning
rates of the changed layers (output layers for all models and the fully connected layer added for FCR
1 and FCR 2) by 10. The batch size was set to 128, and the maximum number of iterations for our
training was set to 20,000. These training strategies are exactly the same as those used in the earlier
study (Song et al., 2016).

For clustering evaluation, we applied k-means clustering 100 times and calculated the average stan-
dard F1 and NMI (Manning et al., 2008); the value for k was set to the number of classes in the test
set. For retrieval evaluation, we used the Recall@K metric (Jegou et al., 2011).

We show the results for the CUB dataset in Fig. 5 and for the CAR dataset in Fig. 6. We notice
that we have been able to reproduce nearly exactly the scores of lifted structured feature embedding
(Song et al., 2016). However, the deep features extracted from the softmax-based classification
networks outperformed the lifted structured feature embedding in all the evaluation metrics.

For F1 and NMI, all of the softmax models, including PCA, FCR 1, and FCR 2, show markedly
better scores than does lifted structured feature embedding. It is clear that L2 normalization im-
proves the scores of all the softmax-based models. The scores of PCA and FCR 1 drop slightly as
the feature dimensionality decreases from 1024 for both the CUB dataset and the CAR dataset. On
the other hand, FCR 2, which has a fully connected layer followed by a dropout layer, improves the
scores in spite of the reduction in dimensionality, as shown in Fig. 6. It may be that 1024 dimensions
is too large to describe the image classes. This result may imply that to obtain the best features we
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Figure 5: F1, NMI, and Recall@K scores for the test set of the Caltech UCSD Birds 200-2011
dataset.
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Figure 6: F1, NMI, and Recall@K scores for the test set of the Stanford Cars 196 dataset.
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Figure 7: F1, NMI, and Recall@K scores for the test set of the Online Products dataset.

need to first determine the optimum dimensionality of the feature space for the dataset and then
apply PCA.

For the Recall@K metric, we used 1024-dimensional features for the CUB dataset and 256-
dimensional features for the CAR dataset. The softmax-based features outperformed the DML-
based features. The differences between PCA, FCR 1, and FCR 2 are very minor. Regarding feature
normalization, features without normalization show worse scores than do L2-normalized features.

Fig. 7 shows the standard F1, NMI, and Recall@K for the Online Products dataset. We used 1024-
dimensional features for the Recall@K metric. As shown in Table 3, the OP dataset is very different
from the CUB and CAR datasets in terms of the number of classes and the number of samples per
class; the number of samples per class in the OP dataset is limited to 5.3 on average. In contrast to
CUB and CAR, in the OP dataset the scores for softmax and for lifted structured feature embedding
are nearly the same.

From the results for these three datasets, we conjecture that the number of images contained in the
dataset has a considerable effect on softmax-based classification. In other words, it is difficult for
DML to make use of the rich information from a large number of samples because of the randomness
described in the previous section. Hence, we changed the size of datasets by subsampling the images
of CUB and CAR datasets for each class and ran the experiments again. We constructed seven
datasets of different sizes, containing 5, 10, 20, 40, 60, 80, and 100 %, respectively, of the whole
dataset. As shown in Fig. 8 and Fig. 9, the difference between the scores for softmax and DML is
small or close to zero if the size of the training dataset is small. The gap between softmax and DML
becomes larger as the dataset size increases. It is surprising that the scores of lifted structured feature
embedding on the CUB dataset did not increase even though we used more images for the training
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Figure 8: F1, NMI, and Recall@K scores for test set of the Caltech UCSD Birds 200-2011 dataset
under different dataset sizes. The feature dimensionality is fixed at 1024.
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Figure 9: F1, NMI, and Recall@K scores for test set of the Stanford Cars 196 dataset under different
dataset sizes. The feature dimensionality is fixed at 256.

(Fig. 8). It can be said that DML cannot exploit large training datasets, whereas the softmax-based
classifier can obtain features of high expressiveness.

5 CONCLUSION

Because there was no equitable comparison in previous studies, we conducted comparisons of the
softmax-based classifier and DML methods using a design that would enable the methods to objec-
tively demonstrate their true performance capabilities. Our results show that the features extracted
from softmax-based classifiers perform better than those from state-of-the-art DML methods (Rip-
pel et al., 2016; Song et al., 2016) on fine-grained classification, clustering, and retrieval tasks,
especially when the size of the training dataset is large. The experimental results also show that
softmax-based features exhibit rich intra-class diversity even though the softmax classifier is not
explicitly designed to do so, unlike to the previous method (Rippel et al., 2016). It is obvious that
the softmax-based features are still strong baselines. We hope that softmax-based features are taken
into account when evaluating the performance of deep features.

Limitations. When the number of classes are huge, it is hard to train classification networks due
to GPU memory constraints. DML-based methods are suitable for such cases because they do not
need the output layer which is proportional to the number of classes. For cross-domain tasks, such as
sketches to photos (Yu et al., 2016; Sangkloy et al., 2016) or aerial views to ground views (Lin et al.,
2015), DML is also effective. Classification-based learning needs complicated learning strategies
like in Castrejon et al. (2016). DML-based methods can learn cross-domain representation only by
using a pair of networks.

REFERENCES

Anelia Angelova and Philip M. Long. Benchmarking large-scale fine-grained categorization. In
WACV, pp. 532–539, 2014.

Anelia Angelova and Shenghuo Zhu. Efficient object detection and segmentation for fine-grained
recognition. In CVPR, pp. 811–818, 2013.

Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. Neural codes for image
retrieval. In ECCV, pp. 584–599, 2014.

8



Under review as a conference paper at ICLR 2017

Sean Bell and Kavita Bala. Learning visual similarity for product design with convolutional neural
networks. SIGGRAPH, 34(4), 2015.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verifi-
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