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ABSTRACT

Reading comprehension is a challenging task, especially when executed across
longer or across multiple evidence documents, where the answer is likely to re-
occur. Existing neural architectures typically do not scale to the entire evidence,
and hence, resort to selecting a single passage in the document (either via trunca-
tion or other means), and carefully searching for the answer within that passage.
However, in some cases, this strategy can be suboptimal, since by focusing on a
specific passage, it becomes difficult to leverage multiple mentions of the same
answer throughout the document. In this work, we take a different approach by
constructing lightweight models that are combined in a cascade to find the answer.
Each submodel consists only of feed-forward networks equipped with an atten-
tion mechanism, making it trivially parallelizable. We show that our approach can
scale to approximately an order of magnitude larger evidence documents and can
aggregate information at the representation level from multiple mentions of each
answer candidate across the document. Empirically, our approach achieves state-
of-the-art performance on both the Wikipedia and web domains of the TriviaQA
dataset, outperforming more complex, recurrent architectures.

1 INTRODUCTION

Reading comprehension, the task of answering questions based on a set of one more documents,
is a key challenge in natural language understanding. While data-driven approaches for the task
date back to Hirschman et al. (1999), much of the recent progress can be attributed to new large-
scale datasets such as the CNN/Daily Mail Corpus (Hermann et al., 2015), the Children’s Book
Test Corpus (Hill et al., 2015) and the Stanford Question Answering Dataset (SQuAD) (Rajpurkar
et al., 2016). These datasets have driven a large body of neural approaches (Wang & Jiang, 2016;
Lee et al., 2016; Seo et al., 2016; Xiong et al., 2016, inter alia) that build complex deep models
typically driven by long short-term memory networks (Hochreiter & Schmidhuber, 1997). These
models have given impressive results on SQuAD where the document consists of a single paragraph
and the correct answer span is typically only present once. However, they are computationally
intensive and cannot scale to large evidence texts. Such is the case in the recently released TriviaQA
dataset (Joshi et al., 2017), which provides as evidence, entire webpages or Wikipedia articles, for
answering independently collected trivia-style questions.

So far, progress on the TriviaQA dataset has leveraged existing approaches on the SQuAD dataset
by truncating documents and focusing on the first 800 words (Joshi et al., 2017; Pan et al., 2017).
This has the obvious limitation that the truncated document may not contain the evidence required
to answer the question1. Furthermore, in TriviaQA there is often useful evidence spread throughout
the supporting documents. This cannot be harnessed by approaches such as Choi et al. (2017) that
greedily search for the best 1-2 sentences in a document. For example, in Fig.1 the answer does not
appear in the first 800 words. The first occurrence of the answer string is not sufficient to answer
the question. The passage starting at token 4089 does contain all of the information required to infer
∗Work done during internship at Google NY.
1Even though the answer string itself might occur in the truncated document.

1



Published as a conference paper at ICLR 2018

the answer, but this inference requires us to resolve the two complex co-referential phrases in ‘In the
summer of that year they got married in a church’. Access to other mentions of Krasner and Pollock
and the year 1945 is important to answer this question.

Question : Which US artist married Lee Krasner in 1945?

Answer : Jackson Pollock ; Pollock ; Pollock, Jackson

Document : Wikipedia entry for Lee Krasner (Excerpts shown)

Start Passage
952 She lost interest in their usage of hard-edge geometric style

after her relationship with Pollock began.

3364 Pollock’s influence.

3366 Although many people believe that Krasner stopped working in
the 1940s in order to nurture Pollock’s home life and career,
she never stopped creating art.

4084 Relationship with Jackson Pollock
4089 Lee Krasner and Jackson Pollock established a relationship with

one another in 1942 after they both exhibited at the McMillen
Gallery. Krasner was intrigued by his work and the fact she
did not know who he was since she knew many abstract painters
in New York. She went to his apartment to meet him. By 1945,
they moved to The Springs on the outskirts of East Hampton. In
the summer of that year, they got married in a church with two
witnesses present.

4560 While she married Pollock in a church, Krasner continued to
identify herself as Jewish but decided to not practice the re-
ligion.

Figure 1: Example from TriviaQA in which multiple mentions contain information that is useful
in inferring the answer. Only the italicized phrase completely answers the question (Krasner could
have married multiple times) but contains complex coreference that is beyond the scope of current
natural language processing. The last phrase is more easy to interpret but it misses the clue provided
by the year 1945.

In this paper we present a novel cascaded approach to extractive question answering (§3) that can
accumulate evidence from an order of magnitude more text than previous approaches, and which
achieves state-of-the-art performance on all tasks and metrics in the TriviaQA evaluation. The
model is split into three levels that consist of feed-forward networks applied to an embedding of
the input. The first level submodels use simple bag-of-embeddings representations of the question,
a candidate answer span in the document, and the words surrounding the span (the context). The
second level submodel uses the representation built by the first level, along with an attention mech-
anism (Bahdanau et al., 2014) that aligns question words with words in the sentence that contains
the candidate span. Finally, for answer candidates that are mentioned multiple times in the evidence
document, the third level submodel aggregates the mention level representations from the second
level to build a single answer representation. At inference time, predictions are made using the
output of the third level classifier only. However, in training, as opposed to using a single loss, all
the classifiers are trained using the multi-loss framework of Al-Rfou et al. (2016), with gradients
flowing down from higher to lower submodels. This separation into submodels and the multi-loss
objective prevents adaptation between features (Hinton et al., 2012). This is particularly important
in our case where the higher level, more complex submodels could subsume the weaker, lower level
models c.f. Al-Rfou et al. (2016).

To summarize, our novel contributions are

• a non-recurrent architecture enabling processing of longer evidence texts consisting of sim-
ple submodels

• the aggregation of evidence from multiple mentions of answer candidates at the represen-
tation level

• the use of a multi-loss objective.
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Our experimental results (§4) show that all the above are essential in helping our model achieve
state-of-the-art performance. Since we use only feed-forward networks along with fixed length
window representations of the question, answer candidate, and answer context, the vast majority of
computation required by our model is trivially parallelizable, and is about 45× faster in comparison
to recurrent models.

2 RELATED APPROACHES

Most existing approaches to reading comprehension (Wang & Jiang, 2016; Lee et al., 2016; Seo
et al., 2016; Xiong et al., 2016; Wang et al., 2017; Kadlec et al., 2016, inter alia) involve using
recurrent neural nets (LSTMs (Hochreiter & Schmidhuber, 1997) or memory nets (Weston et al.,
2014)) along with various flavors of the attention mechanism (Bahdanau et al., 2014) to align the
question with the passage. In preliminary experiments in the original TriviaQA paper, Joshi et al.
(2017) explored one such approach, the BiDAF architecture (Seo et al., 2016), for their dataset.
However, BiDAF is designed for SQuAD, where the evidence passage is much shorter (122 tokens
on an average), and hence does not scale to the entire document in TriviaQA (2895 tokens on an
average); to work around this, the document is truncated to the first 800 tokens.

Pointer networks with multi-hop reasoning, and syntactic and NER features, have been used recently
in three architectures — Smarnet (Chen et al., 2017b), Reinforced Mnemonic Reader (Hu et al.,
2017) and MEMEN (Pan et al., 2017) for both SQuAD and TriviaQA. Most of the above also use
document truncation .

Approaches such as Choi et al. (2017) first select the top (1-2) sentences using a very coarse model
and then run a recurrent architecture on these sentences to find the correct span. Chen et al. (2017a)
propose scoring spans in each paragraph with a recurrent network architecture separately and then
take taking the span with the highest score.

Our approach is different from existing question-answering architectures in the following aspects.
First, instead of using one monolithic architecture, we employ a cascade of simpler models that en-
ables us to analyze larger parts of the document. Secondly, instead of recurrent neural networks, we
use only feed-forward networks to improve scalability. Third, our approach aggregates information
from different mentions of the same candidate answer at the representation level rather than the score
level, as in other approaches (Kadlec et al., 2016; Joshi et al., 2017). Finally, our learning problem
also leverages the presence of several correct answer spans in the document, instead of considering
only the first mention of the correct answer candidate.

3 MODEL

For the reading comprehension task (§3.1), we propose a cascaded model architecture arranged in
three different levels (§3.2). Submodels in the lower levels (§3.3) use simple features to score can-
didate answer spans. Higher level submodels select the best answer candidate using more expensive
attention-based features (§3.4) and by aggregating information from different occurrences of each
answer candidate in the document (§3.5). The submodels score all the potential answer span can-
didates in the evidence document2, each represented using simple bags-of-embeddings. Each sub-
model is associated with its own objective and the final objective is given by a linear combination of
all the objectives (§3.6). We conclude this section with a runtime analysis of the model (§3.7).

3.1 TASK

We take as input a sequence of question word embeddings q = {q1 . . .qm}, and document word
embeddings d = {d1 . . .dn}, obtained from a dictionary of pre-trained word embeddings.

Each candidate answer span, s = {ds1 . . .dso} is a collection of o ≤ l consecutive word embed-
dings from the document, where l is the maximum length of a span. The set of all candidate answer
spans is S := {si}nli=1. Limiting spans to length l minimally affects oracle accuracy (see Section §4)
and allows the approach to scale linearly with document size.

2We truncate extremely long documents (§4), but with a truncation limit 10× longer than prior work.
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Figure 2: Cascaded model for reading comprehension. Input vectors are shown in green. Yellow
rounded squares with dotted borders correspond to attention computation and attended vectors are
shown in yellow. Submodels are shown in rounded squares with solid borders and the corresponding
objectives are shown in color-coded circles. Level 1 submodels are in grey, level 2 in red and level 3
in blue. The ffnn operator is shown by the cross symbol within each submodel. The final objective,
shown in the top black circle, is a linear interpolation of submodel objectives.

Since the same spans of text can occur multiple times in each document, we also maintain the set of
unique answer candidate spans, u ∈ Su, and a mapping between each span and the unique answer
candidate that it corresponds to, s � u. In TriviaQA, each answer can have multiple alternative
forms, as shown in Fig.1. The set of correct answer strings is S∗ and our task is to predict a single
answer candidate û ∈ S.

3.2 OVERVIEW OF META-ARCHITECTURE

We first describe our meta-architecture, which is a collection of simple submodels Mk(·) organized
in a cascade. The idea of modeling separate classifiers that use complementary features comes
from Al-Rfou et al. (2016) who found this gave considerable gains over combining all the features
into a single model for a conversational system. As shown in Figure 2, our architecture consists of
two submodels M1, M2 at the first level, one submodel M3 at the second, and one submodel M4 at
the third level. Each submodel Mk returns a score, φ(k)s as well as a vector, h

(k)
s that is fed as input

to the submodel at the next level.

φ(1)s ,h(1)
s := M1(q,d, s) ∀s ∈ S φ(2)s ,h(2)

s := M2(q,d, s) ∀s ∈ S LEVEL 1

φ(3)s ,h(3)
s :=M3(q,d, s,h(1)

s ,h(2)
s ) ∀s ∈ S LEVEL 2

φ(4)u ,h(4)
u :=M4(q,d, s, {h(3)

s }s�u}) ∀s ∈ Su LEVEL 3

Using their respective scores, φ(k)s , the models M1...M3 define a distribution over all spans, while
M4 uses φ(4)u to define a distribution over all unique candidates, as follows:

p(k)(s|q,d) =
expφ

(k)
s∑

s′∈S expφ
(k)
s′

k ∈ {1, 2, 3} p(4)(u|q,d) =
expφ

(4)
u∑

u′∈Su
expφ

(4)
u′

(1)

In training, our total loss is given by an interpolation of losses for each of M1, ..,M4. However,
during inference we make a single prediction, simply computed as û = arg maxu∈Su

φ
(4)
u .
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3.3 LEVEL 1: AVERAGED BAGS OF EMBEDDINGS

The first level is the simplest, taking only bags of embeddings as input. This level contains two
submodels, one that looks at the span and question together (§3.3.1), and another that looks at the
span along with the local context in which the span appears (§3.3.2). We first describe the span
representations used by both.

Span Embeddings: We denote a span of length o as a vector s, containing

• averaged document token embeddings, and
• a binary feature γqs indicating whether the spans contains question tokens

s̃ = [
1

o

o∑
j=1

dsj ; γqs]

.

The binary feature γqs is motivated by the question-in-span feature from Chen et al. (2017a), we use
the question-in-span feature, motivated by the observation that questions rarely contain the answers
that they are seeking and it helps the model avoid answers that are over-complete — containing
information already known by the questioner.

3.3.1 QUESTION + SPAN (M1)

The question + span component of the level 1 submodel predicts the correct answer using a feed-
forward neural network on top of fixed length question and span representations. The span repre-
sentation is taken from above and we represent the question with a weighted average of the question
embeddings.

Question Embeddings: Motivated by Lee et al. (2016) we learn a weight δqi for each of the words
in the question using the parameterized function defined below. This allows the model to learn to
focus on the important words in the question. δqi is generated with a two-layer feed-forward net
with rectified linear unit (ReLU) activations (Nair & Hinton, 2010; Glorot et al., 2011),

hqi = ReLU{U{ReLU{Vqi + a}}+ b}
= ffnnq(qi)

δqi = wThqi + z

= linearq(hqi
)

where U, V, w, z, a and b are parameters of the feed-forward network. Since all three submodels
rely on identically structured feed-forward networks and linear prediction layers, from now on we
will use the abbreviations ffnn and linear as shorthand for the functions defined above.

The scores, δqi are normalized and used to generate an aggregated question vector q̃ as follows.

q̃ =

m∑
i=1

exp δqiqi∑m
j=1 exp δqj

Now that we have representations of both the question and the span, the question + span model
computes a hidden layer representation of the question-span pair as well as a scalar score for the
span candidate as follows:

h(1)
s = ffnnqs([̃s; q̃; γqs]), φ(1)si = linearqs(h

(1)
s )

where [x; y] represents the concatenation of vectors x and y.

3.3.2 SPAN + SHORT CONTEXT (M2)

The span + short context component builds a representation of each span in its local linguistic
context. We hypothesize that words in the left and right context of a candidate span are important
for the modeling of the span’s semantic category (e.g. person, place, date).
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Context Embeddings: We represent the K-length left context cLs , and right context cRs using
averaged embeddings

cLs =
1

K

K∑
j=1

ds1−j
, cRs =

1

K

K∑
j=1

dso+j

and use these to generate a span-in-context representation h
(2)
s and answer score φ(2)s

h(2)
s = ffnnc([s; cLs ; cRs ; γqs]), φ(2)s = linearc(h

(2)
s ).

3.4 LEVEL 2: ATTENDING TO THE CONTEXT (M3)

Unlike level 1 which builds a question representation independently of the document, the level 2
submodel considers the question in the context of each sentence in the document. This level aligns
the question embeddings with the embeddings in each sentence using neural attention (Bahdanau
et al., 2014; Lee et al., 2016; Xiong et al., 2016; Seo et al., 2016), specifically the attend and compare
steps from the decomposable attention model of Parikh et al. (2016). The aligned representations
are used to predict if the sentence could contain the answers. We apply this attention to sentences,
not individual span contexts, to prevent our computational requirements from exploding with the
number of spans. Subsequently, it is only because level 2 includes the level 1 representations h

(1)
s

and h
(2)
s that it can assign different scores to different spans in the same sentence.

Sentence Embeddings: We define gs = {dgs,1 . . .dgs,G} to be the embeddings of the G words
of the sentence that contains s. First, we measure the similarity between every pair of question and
sentence embeddings by passing them through a feed-forward net, ffnnatt1 and using the resulting
hidden layers to compute a similarity score, η. Taking into account this similarity, attended vectors
q̄i and d̄gs,j are computed for each question and sentence token, respectively.

ηij =ffnnatt1(qi)
Tffnnatt1(dgs,j )

q̄i =
∑̀
j=1

exp ηij∑`
k=1 exp ηik

dgs,j d̄gs,j =

m∑
i=1

exp ηij∑m
k=1 exp ηkj

qi

The original vector and its corresponding attended vector are concatenated and passed through an-
other feed-forward net, ffnnatt2 the final layers from which are summed to obtain a question-aware
sentence vector ḡs, and a sentence context-aware question vector, q̄.

q̄ =
m∑
i=1

ffnnatt2([qi; q̄i]) ḡs =
∑̀
j=1

ffnnatt2([dgs,j ; d̄gs,j ])

Using these attended vectors as features, along with the hidden layers from level 1 and the question-
span feature, new scores and hidden layers are computed for level 2:

h(3)
s = ffnnL2([h(1)

s ; h(2)
s ; q̄; ḡs; γqs]), φ(3)s = linearL2(h(3)

s )

3.5 LEVEL 3: AGGREGATING MULTIPLE MENTIONS (M4)

In this level, we aggregate information from all the candidate answer spans which occur multiple
times throughout the document. The hidden layers of every span from level 2 (along with the
question-in-span feature) are passed through a feed-forward net, and then summed if they correspond
to the same unique span, using the s � u map. The sum, hu is then used to compute the score and
the hidden layer3 for each unique span, u in the document.

h(4)
u = ffnnL3

(∑
s∈u

ffnnagg([h(3)
s ; γqs])

)
, φ(4)s = linearL3

(h(4)
u )

3The hidden layer in level 3 is used only for computing the score φ(4)
u , mentioned here to preserve consis-

tency of notation.
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3.6 OVERALL OBJECTIVE AND LEARNING

To handle distant supervision, previous approaches use the first mention of the correct answer span
(or any of its aliases) in the document as gold (Joshi et al., 2017). Instead, we leverage the exis-
tence of multiple correct answer occurrences by maximizing the probability of all such occurrences.
Using Equation 1, the overall objective, `(U∗,V∗,w∗, z∗,a∗,b∗) is given by the total negative log
likelihood of the correct answer spans under all submodels:

−
3∑

k=1

λk log
∑
ŝ∈S∗

p(k)(ŝ|q,d)− λ4 log
∑
û∈S∗

p(4)(û|q,d)

where λ1, .., .λ4 are hyperparameters, such that
∑4

i=1 λi = 1, to weigh the contribution of each loss
term.

3.7 COMPUTATIONAL COMPLEXITY

We briefly discuss the asymptotic complexity of our approach. For simplicity assume all hidden
dimensions and the embedding dimension are ρ and that the complexity of matrix(ρ×ρ)-vector(ρ×1)
multiplication is O(ρ2). Thus, each application of a feed-forward network has O(ρ2) complexity.
Recall that m is the length of the question, n is the length of the document, and l is the maximum
length of each span. We then have the following complexity for each submodel:

Level 1 (Question + Span) : Building the weighted representation of each question takes O(mρ2)
and running the feed forward net to score all the spans requires O(nlρ2), for a total of
O(mρ2 + nlρ2).

Level 1 (Span + Short Context) : This requires O(nlρ2).
Level 2 : Computing the alignment between the question and each sentence in the document takes

O(nρ2 + mρ2 + nmρ) and then scoring each span requires O(nlρ2). This gives a total
complexity of O(nlρ2 + nmρ), since we can reasonably assume that m < n.

Level 3 : This requires O(nlρ2).

Thus, the total complexity of our approach is O(nlρ2 + mnρ). While the nl and nm terms can
seem expensive at first glance, a key advantage of our approach is that each sub-model is trivially
parallelizable over the length of the document (n) and thus very amenable to GPUs. Moreover note
that l is set to 5 in our experiments since we are only concerned about short answers.

4 EXPERIMENTS AND RESULTS

4.1 TRIVIAQA DATASET

The TriviaQA dataset (Joshi et al., 2017) contains a collection of 95k trivia question-answer pairs
from several online trivia sources. To provide evidence for answering these questions, documents are
collected independently, from the web and from Wikipedia. Performance is reported independently
in either domain. In addition to the answers from the trivia sources, aliases for the answers are
collected from DBPedia; on an average, there are 16 such aliases per answer entity. Answers and
their aliases can occur multiple times in the document; the average occurrence frequency is almost
15 times per document in either domain. The dataset also provides a subset on the development
and test splits which only contain examples determined by annotators to have enough evidence in
the document to support the answer. In contrast, in the full development and test split of the data,
the answer string is guaranteed to occur, but not necessarily with the evidence needed to answer the
question.

4.2 EXPERIMENTAL SETTINGS

Data preprocessing: All documents are tokenized using the NLTK4 tokenizer. Each document
is truncated to contain at most 6000 words and at most 1000 sentences (average the number of

4http://www.nltk.org
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Figure 3: Analysis of model predictions. Left: Performance of the top k predictions of different
models on the human-validated Wikipedia development set. Right: Effect of truncation on perfor-
mance. Oracle indicates the maximum possible performance for that truncation level.

sentences per document in Wikipedia is about 240). Sentences are truncated to a maximum length
of 50 (avg sentence length in Wikipedia is about 22). Spans only up to length l = 5 are considered
and cross-sentence spans discarded — this results in an oracle exact match accuracy of 95% on
the Wikipedia development data. To be consistent with the evaluation setup of Joshi et al. (2017),
for the Wikipedia domain we create a training instance for every question (with all its associated
documents), while on the web domain we create a training instance for every question-document
pair.

Hyperparameters: We use GloVe embeddings (Pennington et al., 2014) of dimension 300 (trained
on a corpus of 840 billion words) that are not updated during training. Each embedding vector
is normalized to have `2 norm of 1. Out-of-vocabulary words are hashed to one of 1000 random
embeddings, each initialized with a mean of 0 and a variance of 1. Dropout regularization (Srivastava
et al., 2014) is applied to all ReLU layers (but not for the linear layers). We additionally tuned the
following hyperparameters using grid search and indicate the optimal values in parantheses: network
size (2-layers, each with 300 neurons), dropout ratio (0.1), learning rate (0.05), context size (1), and
loss weights (λ1 = λ2 = 0.35, λ3 = 0.2, λ4 = 0.1). We use Adagrad (Duchi et al., 2011) for
optimization (default initial accumulator value set to 0.1, batch size set to 1). Each hyperparameter
setting took 2-3 days to train on a single NVIDIA P100 GPU. The model was implemented in
Tensorflow (Abadi et al., 2016).

Wikipedia Web
Full Verified Full Verified

EM F1 EM F1 EM F1 EM F1

BiDAF Seo et al. (2016);
Joshi et al. (2017)

40.33 45.91 44.17 50.52 40.73 47.05 48.63 55.07

Smarnet
Chen et al. (2017b)

42.41 48.84 50.51 55.90 40.87 47.09 51.11 55.98

Reinforced Mnemonic Reader
Hu et al. (2017)

46.90 52.90 54.50 59.50 46.70 52.90 57.00 61.50

Leaderboard Best (10/24/2017) 48.64 55.13 53.42 59.92 50.56 56.73 63.20 67.97

Neural Cascades (Ours) 51.59 55.95 58.90 62.53 53.75 58.57 63.20 66.88

Table 1: TriviaQA results on the test set. EM stands for Exact Match accuracy.

4.3 RESULTS

Table 1 presents our results on both the full test set as well as the verified subsets, using the ex-
act match (EM) and F1 metrics. Our approach achieves state-of-the-art performance on both the
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Wikipedia and web domains outperforming considerably more complex models 5 . In the web
domain, except for the verified F1 scores, we see a similar trend. Surprisingly, we outperform ap-
proaches which use multi-layer recurrent pointer networks with specialized memories (Chen et al.,
2017b; Hu et al., 2017)6.

Wikipedia Dev (EM)

3-Level Cascade, Multi-loss (Ours) 52.18
3-Level Cascade, Single Loss 43.48
3-Level Cascade, Combined Level 1 ** 52.25
Level 1 + Level 2 Only 46.52
Level 1 (Span + Context) Only 19.75
Level 1 (Question + Span) Only 15.75

Table 2: Model ablations on the full Wikipedia development set.
For row labeled **, explanation provided in Section §4.3.

Table 2 shows some ablations
that give more insight into the
different contributions of our
model components. Our final ap-
proach (3-Level Cascade, Multi-
loss) achieves the best perfor-
mance. Training with only a
single loss in level 3 (3-Level
Cascade, Single Loss) leads to a
considerable decrease in perfor-
mance, signifying the effect of
using a multi-loss architecture. It
is unclear if combining the two
submodels in level 1 into a single

feed-forward network that is a function of the question, span and short context (3-Level Cascade,
Combined Level 1) is significantly better than our final model. Although we found it could obtain
high results, it was less consistent across different runs and gave lower scores on average (49.30)
compared to our approach averaged over 4 runs (51.03). Finally, the last three rows show the results
of using only smaller components of our model instead of the entire architecture. In particular, our
model without the aggregation submodel (Level 1 + Level 2 Only) performs considerably worse,
showing the value of aggregating multiple mentions of the same span across the document. As ex-
pected, the level 1 only models are the weakest, showing that attending to the document is a powerful
method for reading comprehension. Figure 3 (left) shows the behavior of the k-best predictions of
these smaller components. While the difference between the level 1 models becomes more enhanced
when considering the top-k candidates, the difference between the model without the aggregation
submodel (Level 1 + Level 2 Only) and our full model is no longer significant, indicating that the
former might not be able to distinguish between the best answer candidates as well as the latter.

Effect of Truncation: The effect of truncation on Wikipedia in Figure 3 (right) indicates that more
scalable approaches that can take advantage of longer documents have the potential to perform better
on the TriviaQA task.

Multiple Mentions: TriviaQA answers and their aliases typically reoccur in the document (15 times
per document on an average). To verify whether our model is able to predict answers which occur
frequently in the document, we look at the frequencies of the predicted answer spans in Figure 4
(left). This distribution follows the distribution of the gold answers very closely, showing that our
model learns the frequency of occurrence of answer spans in the document.

Speed: To demonstrate the computational advantages of our approach we implemented a simple
50-state bidirectional LSTM baseline (without any attention) that runs through the document and
predicts the start/end positions separately. Figure 4 (right) shows the speedup ratio of our approach
compared to this LSTM baseline as the length of the document is increased (both approaches use a
P100 GPU). For a length of 200 tokens, our approach is about 8× faster, but for a maximum length
of 10,000 tokens our approach is about 45× faster, showing that our method can more easily take
advantage of GPU parallelization.

4.4 ANALYSIS

We observe the following phenomena in the results (see Table 3) which provide insight into the
benefits of our architecture, and some directions of future work.

5TriviaQA allows private submissions, but we are only able to compare with results that are made public
and/or published before our submission.

6We cannot compare to MEMEN (Pan et al., 2017) in this table since they provide only development set
results; our Wikipedia dev EM is 52.18 compared to their 43.16.
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Figure 4: Left: Distribution of answer frequencies in the document, for model predictions (blue),
correct model predictions (green) and true answers (orange). Right: Speedup ratio of our approach
compared to a vanilla biLSTM that predicts start/end positions independently. As the document
length increases, our approach can better take advantage of GPU parallelization.

Question Answer Level 3 Level 1 + 2 Level 1 Phenomena
(ours) Span+Context Question+Span

Which famous novelist
also wrote under the
pseudonym Richard
Bachman ?

Stephen
King

Stephen
King

Stephen
King

Stephen
King

Lemony
Snicket

Submodels which consider
more context do better than
the level 1 model which only
considers the question and the
span, out of context.

Terry Molloy , David
Gooderson and Julian
Bleach have all
portrayed which villain
in the UK television
series Dr Who ?

Davros Davros
Doctor
Who

The
Borgias

Dalek
Caan

Davros is present a few
times across the different evi-
dence documents, which level
3 is able to aggregate and pre-
dict correctly. Doctor Who
is the most frequently occur-
ring entity across all evidence
documents. Nevertheless, the
aggregator (level 3) model re-
frains from selecting it.

Which villain , played
by Richard Kiel ,
appeared in two James
Bond movies , ’The
Spy Who Loved Me ’ and
’Moonraker ’ ?

Jaws Jaws
Lee
Falk

Thunderball
Stavro
Blofeld

Jaws occurs 45 times across
all the evidence documents,
whereas Thunderball
occurs 25 times, Stavro
Blofeld twice and Lee
Falk once.

What name is given
to a substance that
accelerates a chemical
reaction without itself
being affected ?

Catalysts
1.Catalysts
2.Inhibitors
3.Catalyst

1.Inhibitors
2.Catalysts
3.Catalysts

1.Joseph
Proust
2.Oxidation
3.Double
Arrow

1.Molybd.
Dioxide
2.Chlorine
3.Chlorine

Level 2 contains the correct
answer multiple times further
down its top predictions list
(ranks shown), but is unable
to combine these mentions.

High Willhays is the
highest point of what
National Park ?

Dartmoor
High
Willhays

High
Willhays

Dartmoor Goblet
of Fire

Lower levels get the predic-
tion right, but not the upper
levels. Model predicts enti-
ties from the question.

Table 3: Example predictions from different levels of our model. Evidence context and aggrega-
tion are helpful for model performance. The model confuses between entities of the same type,
particularly in the lower levels.

Aggregation helps As motivated in Fig 1, we observe that aggregating mention representations
across the evidence text helps (row 3). Lower levels may contain, among the top candidates, multiple
mentions of the correct answer (row 4). However, since they cannot aggregate these mentions, they
tend to perform worse. Moreover, level 3 does not just select the most frequent candidate, it selects
the correct one (row 2).

Context helps Models which take into account the context surrounding the span do better (rows
1-4) than the level 1 (question + span) submodel, which considers answer spans completely out of
context.

Entity-type confusion Our model still struggles to resolve confusion between different entities
of the same type (row 4). Context helps mitigate this confusion in many cases (rows 1-2). How-
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ever, sometimes the lower levels get the answer right, while the upper levels do not (row 5) — this
illustrates the value of using a multi-loss architecture with a combination of models.

Our model still struggles with deciphering the entities present in the question (row 5), despite the
question-in-span feature.

5 CONCLUSION

We presented a 3-level cascaded model for TriviaQA reading comprehension. Our approach,
through the use of feed-forward networks and bag-of-embeddings representations, can handle
longer evidence documents and aggregated information from multiple occurrences of answer spans
throughout the document. We achieved state-of-the-art performance on both Wikipedia and web
domains, outperforming several complex recurrent architectures.
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