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ABSTRACT
We address the challenge of solving locally checkable labeling (LCL)
problems on graphs using machine learning. Unlike prior super-
vised approaches that depend on ground-truth algorithms or en-
force unique solutions, we propose a reinforcement learning frame-
work that requires only verifiers to evaluate correctness. This for-
mulation allows models to learn solution strategies independently,
without bias toward specific algorithmic procedures, and inherently
supports the discovery of non-unique solutions. We evaluate our
method on four fundamental LCL problems, demonstrating its abil-
ity to generalize effectively, outperform supervised baselines, and
provide a versatile foundation for learning algorithmic reasoning
on graphs.
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1 INTRODUCTION
Graph algorithms play a central role in solving problems across
diverse domains, including network optimization, resource man-
agement, and data organization [27]. Many such algorithms are
designed to assign discrete labels to graph elements, such as nodes
or edges, based on well-defined rules. Examples include finding
maximal independent sets, minimal vertex covers, or edge colorings.
A particularly intriguing subset of these tasks is locally checkable
labeling (LCL) problems, where solutions can be verified using
localized checks on small subgraphs.

The algorithms used to solve these problems typically operate
through step-wise procedures involving discrete state transitions.
For instance, Luby’s algorithm [20] iteratively builds a maximal
independent set by selecting nodes based on local rules and updat-
ing their states. Learning to replicate such algorithmic behavior
poses significant challenges, as it requires bridging the gap between
the continuous representations of machine learning models and
the discrete nature of algorithmic solutions. Recent work, such
as GraphFSA [13] or Discrete Neural Algorithmic Reasoning [30],
have addressed this challenge by incentivizing discrete transitions
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Figure 1: Finding a maximal independent set is locally check-
able. A verifier can validate both conditions — the solution
set has to be independent and maximal — for each node and
its neighborhood. In this visualization, dark nodes represent
nodes that are part of the solution set. Executing the verifier
on the blue highlighted node entails checking all incident
nodes and adjacent edges within the blue area. On the left,
the conditions are met, while this is not the case on the right.

during the training of a continuous system. However, these meth-
ods often struggle with more complex problems or rely on access
to ground-truth labels and solutions, which limits their scalability
and applicability.

In this work, we propose a reinforcement learning (RL) frame-
work for solving LCL problems in a multi-agent setting. In our
approach, each agent, representing a node or edge, learns decision-
making policies based solely on local observations. They are trained
through problem-specific verifiers that evaluate solutions on local-
ized neighborhoods for correctness. This verifier-driven approach
removes the need for ground-truth labels or pre-defined algorithms,
allowing the model to discover solutions independently of specific
solving strategies. Additionally, unlike supervised learning meth-
ods, which often require unique solutions or external symmetry-
breaking mechanisms, our framework naturally handles problems
with multiple valid solutions. This flexibility broadens its applica-
bility to a wider range of graph problems.

The paper introduces this RL-based framework and provides a
practical implementation tailored to LCL problems. We evaluate
the method on several fundamental graph problems, including max-
imal independent set and minimal vertex cover, and demonstrate
its ability to generalize effectively across problem instances. Our



experimental results showcase its potential to learn discrete algo-
rithmic behavior in graph-based tasks. These findings suggest that
RL, coupled with local verifiers, offers a promising direction for
addressing algorithmic graph problems with broader implications
for learning and reasoning in discrete domains.

2 RELATEDWORK
2.1 Algorithmic Learning
Extrapolation and logical reasoning are considered to be major
weaknesses of neural network-based methods today. The field of
neural algorithmic reasoning [35] aims to combine ideas from clas-
sical algorithms, which provide strong generalization and runtime
guarantees, with machine learning. The goal is to learn the under-
lying algorithmic principles in a data-driven approach, resulting in
learned solvers that manifest corresponding, desirable properties.

Arguably, the simplest form of an algorithm is captured through
finite state automata (FSA) and cellular automata (CA), which are
computation models based on discrete states. These discrete tran-
sitions are often challenging when trying to mimic the intended
behavior with learning-based systems. The earliest example that
combines machine learning and CA comes from Wulff and Hertz
[40]. The authors learn the state transitions of simple one and
two-dimensional automata with neural networks. More recently,
Mordvintsev et al. [25] have utilized convolution to learn CA transi-
tion rules that generate images from a single seed pixel. GraphFSA
[13] builds on top of concepts from CA and proposes a framework
for algorithmic learning of problems on general graphs. GraphFSA
is based on the observation that some graph algorithms can be mod-
eled by each node following a simple automaton-like state recipe.
The main algorithmic component is the transition function, which
guides the nodes’ state changes. Given a dataset of pairs of input and
output graphs labeled with states, such a function can be learned
by back-propagation through a transition table. Their approach
demonstrates both extrapolation capabilities and interpretability.
However, it is limited by the need for complete discreteness. Rodi-
onov and Prokhorenkova [30] relax that limitation in their work
called Discrete Neural Algorithmic Reasoning (DNAR). While not
explicitly referencing automata, they rely on discrete state transi-
tions to encode algorithm behavior. However, they extend the usage
to continuous inputs and additional edge states to train transitions
in a supervised fashion, relying on hints for mimicking the known
algorithm.

Algorithmic reasoning has gained more interest in recent years.
In order to unify research efforts, Veličković et al. [34] have pro-
posed a benchmark suite consisting of multiple different algo-
rithms, input graphs, and corresponding outputs and was extended
in subsequent work such as [21, 24]. On top of this many meth-
ods to advance neural reasoning capabilities have been proposed
[4, 11, 12, 17, 22, 26, 28]. However, these methods have focused on
supervised approaches to imitate a known ground truth algorithm,
often relying on additional hints. In contrast, in this work we try
to overcome this limitation.

2.2 Reinforcement Learning
Using reinforcement learning (RL) to solve tasks that involve logical
reasoning is not uncommon. Probably the most well-known RL-
based work, AlphaGo [31], involves training an agent to compete
in the world of Go, a complex strategy board game.

Applications over graphs are oftentimes looked at through the
lens of combinatorial optimization and are more centered around
the problem statement than known solving algorithms. For example,
Tönshoff et al. [33] propose an approach viable for any constraint
satisfaction problem such as MaxCut or 3-Sat. Formulating the
satisfaction problem in the form of a graph allows the authors to
train an RL-based search heuristic parametrized as a GNN, whose
inherent parallelism can be exploited to speed up training.

The work by Joshi et al. [18] also combines GNNs and RL. The
authors focus on the traveling salesperson problem (TSP). A com-
parison between a supervised approach and an RL formulation
supports that the latter is a viable alternative and that it can even
outperform the former. Other famously hard problems are also stud-
ied. E.g. Huang et al. [15] investigate coloring problems. A rigorous
survey of works that combine RL with combinatorial optimiza-
tion is provided by [23], or more recently with a focus on GNNs
by [7]. In our work we formulate learning graph algorithms as a
multi-agent reinforcement learning (MARL) task where the number
of agents scales with the size of the graph. A method of keeping
the number of trainable parameters manageable even under such
circumstances is using shared policies. [10] show that parameter-
shared approaches are capable of solving well-known RL sample
tasks such as Level-based Foraging and Starcraft Multi-Agent Chal-
lenge. The theoretical justifications for policy sharing are provided
by Terry et al. [32]. In their work, the authors prove that agents
that are aware of a unique identifier and operate under parameter
sharing may converge to the optimal multi-agent policy. Finally, ex-
tensive benchmarking of MARL learning algorithms by Papoudakis
et al. [29] shows that shared policies can outperform other options
when combined with independent learning and trained through
policy-gradient methods; even while operating under sparse reward
signals.

2.3 Multi-Agent Reinforcement Learning
Many applications can not bemodeled with a single agent. Allowing
𝑘 agents leads to the notion of multi-agent reinforcement learning
(MARL). The above definition of MDPs can be adjusted accordingly:
each agent 𝑖 operates over its own action space A𝑖 , is assigned its
own reward signal R𝑖 : S × A𝑖 ↦→ R, and the transition function’s
domain changes to S × ®A × S, where ®A is the joint-action space
A1 × A2 × · · · × A𝑘 .

We can also extend the notion of policies to the multi-agent
scenario: policy 𝜋𝑖 maps 𝑎 𝑗 ∈ A𝑖 given 𝑠 ∈ 𝑆 to the probability of
agent 𝑖 taking action 𝑗 when in state 𝑠 . Alternatively, a joint-policy
®𝜋 models the behavior of all the agents in parallel: It assigns a
probability to a joint action ®𝑎 ∈ ®A given the environment’s state.
However, central learning [1] — a MARL approach that operates on
joint policies — faces the problem that the joint action space size
grows exponentially for each added agent, i.e.: | ®A| = |A1 | · |A2 | ·
· · · · |A𝑘 |.



A method that avoids this quickly growing joint-action space is
called independent learning [1]. Each agent 𝑖 is modeled separately in
a way that assumes all other agents as part of the environment. For
an agent, this assumption may make the transition function appear
non-markovian as other agent’s behavior may change through-
out training. However, it also allows the use of single-agent RL
algorithms.

3 PRELIMINARIES
3.1 The GraphFSA Framework
In GraphFSA, ach node executes a finite state automaton operating
over a discrete set of states. More formally, the GraphFSAF consists
of a tuple (M,Z,A,T). F is applied to a graph 𝐺 = (𝑉 , 𝐸) and
consists of a set of statesM, an aggregation A and a transition
function T . At time 𝑡 , each node 𝑣 ∈ 𝑉 is in state 𝑠𝑣,𝑡 ∈ M. In
its most general form, the aggregation A maps the multiset of
neighboring states to an aggregated value 𝑎 ∈ Z of a finite domain.

𝑎𝑣,𝑡 = A({{𝑠𝑢,𝑡 | 𝑢 ∈ 𝑁 (𝑣)}})

Here {{}} denotes the multiset and 𝑁 (𝑣) the neighbors of 𝑣 in 𝐺 .
At each timestep 𝑡 , the transition function T :M ×Z →M takes
the state of a node 𝑠𝑣,𝑡 and its corresponding aggregated value 𝑎𝑣,𝑡
and computes the state for the next timestep 𝑠𝑣,𝑡+1 = T (𝑠𝑣,𝑡 , 𝑎𝑣,𝑡 ).
Note thatZ is modeled to be a finite domain.

Aggregation functions. The transition value 𝑎 for node 𝑣 at time 𝑡
is directly determined by aggregating the multi-set of states from all
neighboring nodes at time 𝑡 . The aggregation A specifies how the
aggregated value is computed from this neighborhood information.
Note that this formulation of the aggregationA allows for a general
framework in which many different design choices can be made
for a concrete class of GraphFSAs.

Starting and final states. The FSA uses starting states 𝑆 ⊆ M to
encode the discrete set of inputs to the graph problem. Final states
𝐹 ⊆ M are used to represent the output of a problem. In node
prediction tasks, we choose one final state per class. Opposed to
other states, it is not possible to transition away from a final state,
meaning that once such a state is reached, it will never change.

3.2 Locally Checkable Labeling Problems
A graph problem is locally checkable if the correctness of a solution
can be verified within all local neighborhoods. Locally checkable
labeling (LCL) problems are typically node-centric and defined for
graphs with bounded maximum degree [2, 3, 5, 8, 9]. However, we
relax this restriction to accommodate graphs with arbitrary degrees.

Formally, an LCL problem is a tuple (Σin, Σout, 𝑟 , C), where Σin
and Σout are finite input and output label sets to make the graph
attributed, 𝑟 is a constant radius, and C is a set of allowed 𝑟 -hop
neighborhoods. A solution is correct if every 𝑟 -hop neighborhood
matches a graph in C under isomorphism. For edge-centric tasks,
labels and neighborhoods are defined around edges rather than
nodes. A verifier algorithm checks the local neighborhood and
outputs Yes if a neighborhood matches an element of C, and No
otherwise. To accept a proposed solution, all neighborhoods have
to output Yes. Common LCL problems include finding maximal
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Figure 2: The proposed architecture consists of encoding
MLPs, a convolution block, and decoding MLPs. Inside the
convolution block, the cell values are first merged with ex-
tracted input embedding. Then a single node convolution
layer performs neighborhood exchanges to propagate infor-
mation without violating locality constraints. Before node
and edge embeddings can be decoded to logits, the two end-
points’ processed node state representations are aggregated
across each edge.

independent sets, vertex or edge colorings, and maximal matchings.
An example of such a verifier is depicted in Figure 1.

4 PROBLEM FORMULATION
We follow the framework introduced by GraphFSA [13]. We focus
on problems defined on a graph structure 𝐺 = (𝑉 , 𝐸) that can be
solved using a finite set of states𝑄 and 𝑞𝑣 denotes the state of node
𝑣 . Further, we will concentrate on tasks that belong to the class of
locally checkable labeling problems.

In contrast to the original formulation of GraphFSA, we relax
the condition for the transition function. Namely, the aggregation
function, which determines how T behaves, no longer has to be
explicitly discretized to a finite domain. Instead, T directly maps
a node’s current state, and its neighbors’ states to the node’s next
state. That is, the state gets updated according to

𝑞𝑣 ← T (𝑞𝑣, {{𝑞𝑢 | 𝑢 ∈ 𝑁 (𝑣)}})
This formulation does not explicitly define the aggregation func-

tion, such as thresholded counting, and therefore allows for greater
generality. In particular, it enables the incorporation of additional
continuous inputs, such as random bits, into the computation of
T , which can facilitate tie-breaking. This flexibility is critical for
handling input graphs that admit multiple valid solutions or require
symmetry-breaking to resolve ambiguities, as illustrated in Figure
3. We maintain the concept of terminal states—states from which
no further transitions are possible. Once all nodes reach terminal
states, the algorithm halts, ensuring a well-defined termination
condition.

4.1 Training Procedure
One major specification of our state-based approach significantly
shapes the proposed procedure of this work: all nodes follow the
same state transition recipe. In other words, two nodes in the same



Figure 3: The solution for problems we consider does not need to be unique. For example, for MIS, the same input graph gives
rise to two different solutions displayed above. Moreover, while for the two graphs on the left, one could choose one solution
over the other based on the graph topology, the two examples on the right are completely symmetrical and, as such, require
additional means of symmetry breaking to assign different output labels to nodes in the same orbit. This problem remains
even when the GNN is fully expressive under 1-WL.

state, both having the same distribution of states in their immediate
neighborhood must transition to the same state. The transition
function 𝑇 was therefore defined to be shared among nodes. The
formulation of the multi-agent learning task — an agent is placed on
each node, and the transition function is derived from the agent’s
policy — implies that if we want the invariance across nodes to hold,
𝜋𝑖 should be equal to 𝜋 𝑗 for every pair of trained agents 𝑖, 𝑗 . Luckily,
this can be enforced through parameter sharing. Namely, for two
agent 𝑖, 𝑗 with their policies modeled by 𝜋𝑖 (·|·, 𝜃𝑖 ) and 𝜋 𝑗 (·|·, 𝜃 𝑗 )
respectively parameter sharing implies 𝜃𝑖 = 𝜃 𝑗 . Our proposed inde-
pendent learning MARL training procedure with shared policies
will use policy-gradient learning algorithms.

A trained policy needs to properly address that a node is not
allowed to switch away from a final state. Putting it into reinforce-
ment learning terms, we want to restrict a trained agent’s actions if
certain conditions are met. We implement this as follows: We mask
logits associated with unwanted actions. Let ®𝑙 = (𝑙1, 𝑙2, . . . , 𝑙 |A | ) be
the output of the shared policy network of some agent whose node
is in state 𝑞𝑖 . The corresponding masked logits ®𝑙 ′ = (𝑙 ′1, 𝑙

′
2, . . . , 𝑙

′
|A | )

are defined as:

𝑙 ′𝑗 =

{
𝑙 𝑗 , if 𝑞𝑖 ∉ 𝑄𝐹 or 𝑖 = 𝑗

−𝜂, if 𝑞𝑖 ∈ 𝑄𝐹 and 𝑖 ≠ 𝑗

Choosing 𝜂 to be sufficiently large and defining the policy as the
softmax over masked logits:

𝜋 (𝑎 𝑗 |𝑜, 𝜃 ) =
𝑒𝑥𝑝 (𝑙 ′

𝑗
)∑

𝑎𝑘 ∈A 𝑒𝑥𝑝 (𝑙 ′
𝑘
)

means that transition probabilities attain close-to-extreme values if
𝑞𝑖 is a final state:

𝜋 (𝑎 𝑗 |𝑜, 𝜃 ) ≈
{
0, if 𝑖 ≠ 𝑗

1, if 𝑖 = 𝑗

With this, masking does not only disallow the transition function
defined over the argmax of the policy to switch away from a final
state but also makes it effectively impossible to sample such illegal
transitions while sampling from 𝜋 during training. Preliminary ex-
periments showed that explicit masking leads to better results than
implicitly discouraging unwanted outbound transition by penaliza-
tion through the reward. The choice is further supported by [16]’s
work about invalid action masking, which tells a similar story, and
provides a theoretical justification for action masking in general.

4.2 Reinforcement Learning Formulation
Throughout the execution of an algorithm in our state-based frame-
work, 𝑣 will transition from state to state. Say the execution takes
𝑡 steps, and 𝑣 encounters states 𝑞0, 𝑞1, . . . , 𝑞𝑡 in that order. In each
state 𝑞𝑖 , node 𝑣 applies 𝑇 to get 𝑞𝑖+1. This iterative application of a
transition function parallels an agent’s trajectory in a MARL setting
if the action it can take corresponds to algorithm-state transitions:
the node’s agent started in state 𝑞0, it took the action corresponding
to transitioning to state 𝑞1, then the action to go to 𝑞2, and so on.
Zooming out on the whole graph, placing an agent on each node,
and allowing it only to observe its neighbors’ states, results in an
intuitively analogous MARL formulation.

To combat possible confusion during the merging of the two
concepts with similar terminology, the congruence is shown here
more formally. The following deterministic multi-agent MDP corre-
sponds to an environment for an algorithm solving some problem
P using states 𝑄,𝑄0, 𝑄𝐹 as previously introduced: an MDP state 𝑠
from state space S = 𝑄 ×𝑄 × · · · ×𝑄 = 𝑄𝑛 at time step 𝑡 includes
all the 𝑛 nodes’ algorithm states, i.e. 𝑠 = (𝑞𝑣1 , 𝑞𝑣2 , . . . , 𝑞𝑣𝑛 ). All 𝑛
agents share the same action spaceA = {𝑎0, 𝑎1, . . . , 𝑎 |𝑄 |−1}, where
𝑎𝑖 implies the agent’s node swapping to state 𝑞𝑖 . Therefore:

T(𝑠, ®𝑎, 𝑠′ ) = T
(
(𝑞𝑣1 , . . . , 𝑞𝑣𝑛 ), (𝑎𝑣1 , . . . , 𝑎𝑣𝑛 ), (𝑞′𝑣1 , . . . , 𝑞′𝑣𝑛 )

)
=


1, if ∀𝑣 ∃𝑖 s.t. 𝑎𝑣 = 𝑎𝑖 ∧ 𝑞′𝑣 = 𝑞𝑖

∧ (𝑞𝑣 ∈ 𝑄𝐹 ⇒ 𝑞𝑣 = 𝑞𝑖 ),
0, otherwise.

Note that the number of environment states grows exponentially
in 𝑛, which is exacerbated by higher numbers of node states. We
have that |S| = |𝑄 |𝑛 . However, the restriction through final states
can limit the number of valid environment transitions.

The only thing missing from the MARL formulation is the re-
ward function. We have neither access to a ground-truth transition
function nor any hints that can be computed through it. Yet, a veri-
fier is available. For a node-based verifierV we define the reward
for an action of agent 𝑖 located on node 𝑣𝑖 in the environment state
𝑠𝑡 :

R𝑖 (𝑠𝑡 , 𝑎) =

1, if episode end = 𝑡 + 1 and V(𝑣𝑖 ) = Yes
−1, if episode end = 𝑡 + 1 and V(𝑣𝑖 ) = No
0, otherwise



Or analogously, the reward of agent 𝑗 associated with edge 𝑒 𝑗 if P
is an edge-centric problem:

R 𝑗 (𝑠𝑡 , 𝑎) =

1, if episode end = 𝑡 + 1 and V(𝑒 𝑗 ) = Yes
−1, if episode end = 𝑡 + 1 and V(𝑒 𝑗 ) = No
0, otherwise

An episode of a node-centric task is considered finished if all nodes
reach a final state or the horizon is reached. For an edge-based task,
we consider the final edge states for the termination condition.

The environment state in this MARL setting with node and edge
agents contains all their respective node or edge states, which if they
are final, encode matching output labels. In the last environment
state 𝑠𝑡+1 of the episode, the verifier is executed, and based on its
output, a non-zero reward is paid. If the episode is preempted due to
reaching the horizon, some node or edge state may be non-final. In
that case, the corresponding agent just receives −1 reward and its
state is interpreted as an additional label for its neighbor verification
computation.

5 MODEL ARCHITECTURE
We introduce Verifier-based Algorithmic Reasoning using Rein-
forcement Learning (VARL) approach that uses a Graph Neural
Network (GNN) to learn the actor policies that follows an encode-
process-decode paradigm. At each timestep 𝑡 , we are given the
graph 𝐺 = (𝑉 , 𝐸), cell values, all node and edge states. For each
node 𝑤 ∈ 𝑉 and each edge {𝑢, 𝑣} ∈ 𝐸 our network outputs ac-
tion logits to be taken to transition to timestep 𝑡 + 1. A schematic
representation of the architecture can be seen in Figure 2.

First, two Multi-Layer Perceptrons (MLP) encode the one-hot en-
coding of the node states ®𝑞𝑤 and edge states ®𝑝𝑢,𝑣 into a𝑑-dimensional
embedding ℎ.

ℎ𝑤 = MLP𝜃1 ( ®𝑞𝑤) ℎ𝑢,𝑣 = MLP𝜓1 ( ®𝑝𝑢,𝑣)

The processing is done with a convolution block that first combines
node and edge embedding together with their respective cell values
into ℎ′′.

ℎ′′𝑤 = LIN𝜃2 (ℎ𝑤 | |𝑐
𝑤) ℎ′′𝑢,𝑣 = LIN𝜓2 (ℎ𝑢,𝑣 | |𝑐

𝑢,𝑣)

Afterwards, it locally propagates the information among node and
edge neighborhoods using a message-passing layer to derive the
updated node and edge embedding ℎ′. Any node convolution layer
fits here. But as a default setting, we use a slightly modified Graph
Isomorphism Network (GIN) [41] layer, including edge features to
construct the node update. Furthermore, we use max aggregation,
which was shown to be beneficial in algorithmic settings [38]:

ℎ′𝑤 = MLP𝜃4

(
(1 + 𝜖 ) · ℎ′′𝑤 + max

𝑤′∈𝑁 (𝑤)
MLP𝜃3

(
ℎ′′𝑤 | |ℎ′′𝑤′ | |ℎ

′′
𝑤,𝑤′

))
To update the state of an edge, we incorporate its current state
along with the updated states of the two nodes it connects.

ℎ′𝑢,𝑣 = MLP𝜓3

(
ℎ′′𝑢,𝑣 | |ℎ′𝑢 | |ℎ′𝑣

)
To ensure that the edge remains agnostic to the edge direction
and preserve symmetry in undirected edge problems an additional
aggregation step is performed:

ℎ′𝑢,𝑣 = max
{
MLP𝜓3

(
ℎ′′𝑢,𝑣 | |ℎ′𝑢 | |ℎ′𝑣

)
,MLP𝜓3

(
ℎ′′𝑣,𝑢 | |ℎ′𝑣 | |ℎ′𝑢

)}

Finally, the decoder consists of two MLPs that transform the
𝑑-dimensional embeddings into |𝑄 | node logits, and |𝑃 |-sized edge
logits from which the next states can be sampled:

𝑙𝑤 = MLP𝜃5
(
ℎ′𝑤

)
𝑙𝑢,𝑣 = MLP𝜓4

(
ℎ′𝑢,𝑣

)
We use the same architecture for all LCL problems that we consider
in the following.

6 EXPERIMENTS
To test our proposed approach across four well-known LCL prob-
lems: Maximal Independent Set (MIS), Minimal Vertex Cover (MVC),
Maximal Matching (MM), and Minimal Edge Cover (MEC). Both
MIS and MVC are node tasks, whereas MM and MEC are edge-
centric. For all of them there exists a local verifier that accepts or
rejects a proposed solution.

6.1 Experimental Setup
The policies were trained with the REINFORCE [39] algorithm
using a batch size of 16, discount factor 𝛾 = 0.95 and an entropy co-
efficient of 10−6. The Horizon 𝐻 was chosen to be roughly 4 log2 𝑛.
Throughout the experiment, we use the Adam optimizer [19] with
a learning rate of 0.0003. The supervised baselines perform 160
epochs during training, with a batch size of 16 and the train set
containing 10, 000 graphs equivalent to 100, 000 optimization steps.
We fix the number of recurrent updates, to be 4 · (log𝑛 + 1), which
limits the supervised baselines to use the same upper bound for the
number of communication rounds as the RL agents. Model selec-
tion is based on the best parameters found during training on the
validation set.

6.2 Supervised Baselines
To critically assess our VARL approach, we compare it to supervised
learning baselines. RL is better suited for problems with multiple
valid solutions verified by a local checker. Supervised learning, typi-
cally requieres a unique label for each instance but can be adapted to
handle non-unique cases. We utilize a supervised approach inspired
by Luby’s algorithm [20], which constructs solutions iteratively by
selecting nodes or edges based on local properties. At each timestep,
the algorithm is given access to a set of random bits. We adapt the
selection and invalidation mechanisms for our tasks to match their
specific constraints. We consider two different selection strategies:
• Guided Strategy: The solution is constructed by selecting
locally maximal elements from the given random bits. The
constructed solution uses the exact same set of random bits
that is given during training.
• Unguided Strategy: The solution is again constructed by se-
lecting locally maximal elements from random bits. However,
the specific random bits are hidden from the model during
training. The model still has access to different random bits
during training for tie breaking, however, they are indepen-
dent of the solution. This setup is closer to what we desire to
achieve with RL and should encourage independence from
specific solving strategies, allowing the model to learn to
solve the problem rather than imitating a given algorithm.

The invalidation step ensures solution constraints are satisfied.
Using the described strategies, we generate labeled instances for



MIS MVC MAT MEC

GIN 100.0 (±0.1) 100.0 (±0.1) 63.2 (±29.6) 74.1 (±10.9)
GAT 1.7 (±1.1) 3.1 (±3.1) 11.6 (±10.0) 0.5 (±0.4)

guided SAGE 8.0 (±1.4) 8.7 (±2.0) 0.0 (±0.1) 0.1 (±0.1)
PGN 100.0 (±0.0) 100.0 (±0.0) 0.0 (±0.1) 0.0 (±0.1)
gGCN 96.1 (±1.1) 97.4 (±0.8) 38.9 (±35.2) 27.6 (±5.7)
GIN 28.3 (±1.4) 25.4 (±4.3) 0.0 (±0.0) 0.0 (±0.1)
GAT 1.4 (±0.7) 1.1 (±0.1) 0.0 (±0.0) 0.0 (±0.1)

unguided SAGE 0.9 (±0.2) 1.0 (±0.4) 0.0 (±0.0) 0.0 (±0.1)
PGN 25.1 (±4.0) 26.1 (±2.9) 0.0 (±0.1) 0.0 (±0.1)
gGCN 22.9 (±2.6) 20.7 (±4.8) 0.1 (±0.1) 0.1 (±0.1)
large 100.0 (±0.0) 100.0 (±0.0) 99.0 (±0.4) 98.4 (±0.9)
small 100.0 (±0.0) 100.0 (±0.0) 99.4 (±0.3) 99.2 (±0.5)VARL (ours)

MIS MVC MAT MEC

GIN 100.0 (±0.0) 100.0 (±0.0) 95.6 (±5.0) 98.0 (±1.0)
GAT 42.8 (±5.7) 59.9 (±14.6) 83.0 (±10.0) 64.6 (±2.5)

guided SAGE 76.6 (±1.4) 77.3 (±0.1) 66.2 (±1.0) 55.2 (±1.9)
PGN 100.0 (±0.0) 100.0 (±0.0) 62.1 (±1.0) 46.7 (±1.9)
gGCN 99.4 (±0.2) 99.6 (±0.1) 91.2 (±6.5) 90.1 (±2.2)
GIN 86.8 (±0.6) 85.8 (±1.8) 63.3 (±2.2) 46.2 (±1.7)
GAT 41.0 (±2.8) 42.2 (±4.7) 58.1 (±2.7) 46.2 (±3.4)

unguided SAGE 64.2 (±1.0) 63.8 (±1.1) 57.0 (±0.4) 46.1 (±2.4)
PGN 85.2 (±1.2) 86.1 (±1.1) 61.5 (±2.4) 46.6 (±1.3)
gGCN 83.6 (±1.6) 83.2 (±1.9) 66.0 (±1.8) 53.7 (±1.4)
large 100.0 (±0.0) 100.0 (±0.0) 99.9 (±0.0) 99.9 (±0.0)
small 100.0 (±0.0) 100.0 (±0.0) 100.0 (±0.0) 100.0 (±0.0)VARL (ours)

Table 1: Our RL-based approach outperforms alternative su-
pervised baselines. We show graph accuracy on top in per-
centages, and agent accuracy on the bottom. The shown num-
bers represent mean and sample standard deviation in paren-
thesis. Rows indicate differentmethods: supervised baselines
have access to labels computed through guided (guided) or
unguided (unguided) selection strategy. The reinforcement
learning approach is denoted with RL, and we show results
from agents with only access to a few states (small), five cen-
tral and one non-central state, or ones with ten central and
five non-central states (large).

supervised learning datasets formulating the problem as a classifi-
cation task. Note that there are no specific input features for the
nodes as the problems are defined on the graph topology. How-
ever, during the execution, the models are given access to random
bits. We use different common GNN architectures such as GIN [41],
GAT [37], SAGE [14], PGN [36] and Gated GCN [6]. In order to run
them on graphs of variable sizes we set the number of convolutions
proportional to the graph size. Furthermore, we also incorporate a
memory cell to feed in the random bits and we make the architec-
tures recurrent so that the different convolution layers share the
same set of weights.

6.3 Results
We evaluate the discussed baselinemodels on the four LCL problems
and train them on graphs of size 16. In Table 1 we report the agent
level accuracy, which indicates the percentage of nodes which the
verifier outputs Yes and the graph level accuracy, the number of
correctly solved instances.

We can observe large differences between the baselines. Using la-
bels computed using the unguided strategy, the approach designed
to learn to solve the problem rather, is more challenging than the
maximum selection, which corresponds to learning a specific al-
gorithm. This indicates that a supervised approach struggles to
learn the more general underlying concepts that define solutions
from the more general dataset. The used graph convolution layer
is also of importance: GAT and SAGE are poor choices, and so is
PGN when edge states are central to the problem at hand. SAGE
does not consider edge features and uses mean aggregation during
message passing, which we found to perform worse when trying
different designs for the default modified GIN version. PGN’s stark
difference between node and edge task is somewhat surprising as
edge features are propagated together with node features during
message passing. The main difference to our modified GIN concern-
ing message construction is that node and edge features are added
together. GIN performs the best across the board. Architectures
using gGCN show partial success on edge tasks but perform worse
than PGN on node-centric problems.

We test two different versions of our proposed method that is
trained using RL. The first variant uses only a few states — if it
is used on a node task, |𝑄 | = 5 and |𝑃 | = 1, and on edge tasks
|𝑄 | = 1 and |𝑃 | = 5. The second variant, uses 10 and 5 states
instead respectively. Both variants are able to achieve very good
performance across all tasks with only marginal difference between
them, although going with fewer states seems to be slightly better.
However, the difference with respect to the supervised baselines is
much more significant, especially when considering the number of
correctly solved instances. Our proposed method using RL clearly
outperforms both supervised strategies, even though it only access
to a verifier and has no access to labels.

7 CONCLUSIONS
Learning correct algorithms purely from data driven feedback is
very challenging, especially when no intermediate trajectories by
a ground truth mechanism are given or the solution to a given
problem instance is not unique. We propose to address these gaps
by teaching machines algorithmic thinking through reinforcement
learning (RL) for graph problems. We extend the state-based for-
mulation of Graph-FSA to fit within a multi-agent RL framework,
where agents on graph nodes observe local states and perform tran-
sitions. This has the advantage of generalizing the state updates and
also incorporating random bits for necessary tie-breaking. Policies
trained via policy-gradient methods are translated into transition
functions, modeling the learned algorithm’s behavior.

Experiments demonstrate the applicability of our approach to lo-
cally checkable problems (LCLs) like maximal independent sets and
matchings. Unlike supervised methods that require input-output
pairs and struggle to effectively learn these tasks, our verifier-based
RL approach learns the underlying problem dynamics and can
handles non-unique solutions effectively. We thus validate the fea-
sibility of the proposed RL approaches for learning solvers for
algorithmic problems, laying a foundation for further research in
algorithmic learning on graphs.
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