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Abstract

Pretrained large language models (LLMs) have emerged as a cornerstone in modern1

natural language processing, with their utility expanding to various applications2

and languages. However, the fine-tuning of multilingual LLMs, particularly for3

low-resource languages, is fraught with challenges steming from data-sharing4

restrictions (the physical border) and from the inherent linguistic differences (the5

linguistic border). These barriers hinder users of various languages, especially6

those in low-resource regions, from fully benefiting from the advantages of LLMs.7

To address these challenges, we propose the Federated Prompt Tuning Paradigm8

for multilingual scenarios, which utilizes parameter-efficient fine-tuning while9

adhering to privacy restrictions. We have designed a comprehensive set of experi-10

ments and analyzed them using a novel notion of language distance to underscore11

the strengths of this paradigm: Even under computational constraints, our method12

not only bolsters data efficiency but also facilitates mutual enhancements across13

languages, particularly benefiting low-resource ones. Compared to traditional local14

cross-lingual transfer tuning methods, our approach achieves 6.9% higher accuracy,15

reduces the training parameters by over 99%, and demonstrates stronger cross-16

lingual generalization. Such findings underscore the potential of our approach to17

promote social equality, ensure user privacy, and champion linguistic diversity.18

1 Introduction19

Pretrained large language models (LLMs) have been driving the recent progress in natural language20

processing [11, 14, 3, 56, 57]. These large models, built on extensive corpora, offer valuable insights21

and impressive results across a range of applications. At the meantime, in order to provide universally22

accessible knowledge with LLMs, extending them to multiple languages has become a particularly23

relevant research target [17, 16, 5, 45].24

However, finetuning and deploying multilingual LLMs in practical downstream tasks are not as easy25

as its monolingual counterpart. First of all, sharing data across different regions can be difficult26

or even impossible. Regulations like the General Data Protection Regulation (GDPR) [32] limit27

cross-region data-sharing. Moreover, languages in various regions can be radically different, e.g.28

Sino-Tibetan and Indo-European, posing a Non-Independent and Identically Distributed (non-IID)29

challenge when learning a global multilingual model. This situation accentuates privacy concerns,30

and highlights the need for effective privacy-preserving techniques when using multilingual LLMs.31

To this end, recent works attempt to address privacy-constrained fine-tuning for multilingual tasks32

and explore how different languages impact the federated process [60]. However, they primarily33

target high-resources languages; research on low-resource languages remains largely unexplored.34

Addressing low-resource languages is essential to promoting technological fairness and protecting the35

linguistic diversity. Unlike their high-resource counterparts, low-resources languages pose intriguing36
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(a) Monolingual Tuning.

(b) Centralized Tuning.
(c) Federated Prompt Tuning.

Figure 1: Comparison of three different fine-tuning paradigms for multilingual tasks.

research challenges: i) Limited computational resources. Regions of low-resources languages are37

often economically developing areas, with little access to huge computational resources required to38

either train language models from scratch or fully fine-tune pre-trained large language models [38, 1].39

ii) Limited data in the target language. Due to a small speaking population or the spoken nature40

of the language, data is often scarce [2, 43, 20]. As depicted in Figure 4, the pretraining data for41

LLMs is predominantly in English, with little coverage of low-resource languages. Under such42

circumstances, the performance of low-resources languages is often unsatisfactory during fine-tuning43

because of their under-representation. iii) Memorization risk. Recent studies find that as pre-trained44

models scale up, their ability to memorize training data increases [55]. This implies that, when45

fine-tuning these models with limited data, the risk of overfitting and potential privacy issues arises.46

To counteract the above challenges, we turn to federated learning (FL), where the model training is47

done across multiple decentralized devices or servers while the data is always kept localized [42,48

29, 65]. In a multilingual setting, FL becomes particularly natural, as data from diverse linguistic49

backgrounds can be sourced without compromising user privacy, and due to the geographical spread50

and inherent linguistic diversity of devices, data on each node is likely to exhibit non-IID distribution.51

In this paper, in order to mitigate the physical border and the linguistic border of multilinguality,52

we propose a new paradigm grounded in FL, Multilingual Federated Prompt Tuning, focusing on53

parameter-efficient fine-tuning for multilingual tasks across various regions or devices. Specifically,54

our global encoder can discern language patterns and cluster languages via federated prompt av-55

eraging, which allows each client to benefit from others’ data without direct access. This strategy56

requires minimal computational resources and significantly improves performance, particularly for57

low-resource languages. We demonstrate the effectiveness of our method on standard NLP tasks58

including New Classification and XNLI. The performance of our paradigm achieves 6.9% accuracy59

improvement while protecting the privacy of mulitlingual source data. Compared with other Fed-60

erated Learning approches, our paradigm reduces computational cost and communication cost by61

more than 99%. Our approach paves the way for fine-tuning multilingual large language models on62

resource-constraint devices in a privacy-preserving way, and holds the potential to promote social63

equality, privacy, and linguistic diversity in the research community.64

2 A New Paradigm for Multilinguality: Federated Prompt Tuning65

2.1 Notation and Preliminaries66

In our federated learning setup, we have K clients. Each client k has a private dataset, either67

monolingual or multilingual, defined as:68

Dk = {(xk,i, yk,i) | i = 1, . . . , nk}

where xk,i denotes the textual content, and yk,i is its corresponding label. The server sets up and69

maintains a global prompt encoder hg. Conversely, each client k has its version, hk, adjusted based70

on its dataset. Each prompt encoder, whether global or local, is composed of a series of trainable71

prompts: h0, h1, h2, . . .. These prompts are adjusted during training to better aid the model.72
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2.2 Virtual Prompt Encoder73

Prompt Learning is a parameter-efficient alternative to fine-tuning pretrained language models (PLM).74

Instead of selecting discrete text prompts in a manual or automated fashion, prompt tuning utilize75

virtual prompt embeddings that can be optimized via gradient descent.76

Given the utilization of a prompt encoder, for instance the version hk for client k, a textual prompt pk77

tailored for a specific task can be generated. This prompt is subsequently concatenated or combined78

in another manner with the original input x, resulting in a modified input x′:79

x′
k = pk ⊕ x (1)

Here, pk represents the prompt generated by hk.80

The modified input x′
k is then processed by the encoder E of the pre-trained language model:81

h′
k = E(x′

k) (2)

The primary objective of each prompt encoder is to generate an effective prompt, such as pk for client82

k, to guide the pre-trained model in producing the desired outputs. During the fine-tuning phase,83

based on a task-specific loss, the parameters of the prompt encoder hk are often adjusted:84

L(x, y;hk) = Loss(D(E(pk ⊕ x)), y) (3)

Where D is a decoder that maps the internal representation to task outputs, and Loss is an appropriate85

loss function, like cross-entropy loss. Throughout the fine-tuning, both the model’s parameters and86

the prompt encoder hk’s parameters are updated in accordance with this loss function.87

2.3 Federated Prompt Averaging88

Derived from FedAvg [42] mentioned in Appendix B, we propose the following federated prompt89

averaging algorithm (also shown in Algorithm 1):90

Initialization: The server initializes the global prompt encoder with its prompts h0, h1, . . .. Each91

client sets its local version tailored to its dataset.92

Client Selection: Every communication round selects a fraction C of the total K clients for training.93

This subset is m = max(C ×K, 1). A subset S of m clients is chosen.94

Local Model Training and Tuning: Each client k in S goes through: The client fetches the current95

global prompt encoder. It assembles a model using its local prompt encoder with prompts h0, h1, . . .96

and PLM parameters. Training on Dk fine-tunes the local prompt encoder and its prompts, while97

most of the PLM remains unchanged. After training, each client computes model updates, especially98

the refined local prompt encoder and its prompts.99

Aggregation: The server aggregates updates from all clients. The global prompt encoder and its100

prompts h0, h1, . . . are updated using:101

hg =
1

m

m∑
k=1

hk

102

3 Evaluation: How Federated Prompt Tuning helps Multilinguality103

3.1 Experimental Setup104

Tasks and Datasets We evaluate our model using the popular XGLUE benchmark [31], a cross-105

lingual evaluation benchmark for our multilingual evaluation. We conduct our experiments on two106

classification tasks: News Classification (NC) and XNLI [18], covering both high-resource languages107

and low-resource languages, with details provided in Appendix D. Accuracy (ACC) of the multi-108

class classification is used as the metric for both of the tasks. Our base model for both tasks is the109

XLM-RoBERTa base-sized model (270M parameters) [16].110
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Method en es fr de ru Avg
Monolingual 92.4 84.7 79.5 88.3 89.0 86.8
Centralized 93.9 86.7 82.9 89.5 88.6 88.3
FL (IID) 94.1 86.9 82.7 89.4 88.8 88.4
FL (Non-IID) 92.4 86.3 81.2 88.9 84.7 86.7

PE_Monolingual 82.9 59.7 47.3 71.4 60.0 64.3
PE_Centralized 89.1 76.2 67.4 78.8 75.9 77.5
PE_FL (IID) (Ours) 91.2 82.2 76.5 86.4 81.6 83.6
PE_FL (Non-IID) (Ours) 87.8 79.2 73.7 83.1 79.5 80.7

Table 1: Results for FL experiments on the NC task.
Bold scores indicate the best in the column.
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Figure 2: Performance comparison on NC
with decreasing dataset size.

Table 2: Results for FL experiments on the XNLI task. Bold scores indicate the best in the column.
The PE_FL is evaluated under the Non-IID setting.

Method en fr es de el bg ru tr ar vi th zh hi sw ur Avg
Monolingual 39.1 35.1 36.6 35.7 35.3 35.9 35.5 26.2 32.1 31.7 31.5 33.7 31.6 26.0 28.1 32.94
Centralized 35.3 36.9 33.3 35.3 30.5 36.5 33.7 35.7 33.3 40.1 36.1 30.5 37.3 38.6 29.3 34.86
PE_FL (Ours) 43.2 40.6 42.9 40.2 39.7 40.8 41.1 37.6 39.1 39.9 39.4 39.8 38.2 37.1 37.8 39.83

Baselines 1) Monolingual Fine-tuning (No FL): Traditional local fine-tuning where a separate111

model is finetuned using the corresponding dataset for each single language; 2) Centralized Fine-112

tuning (No FL): Standard Fine-tuning using a combined dataset of all languages centralized in one113

location; 3) Full Fine-tuning with FL: Directly fine-tuning the whole pre-trained language model in a114

federated manner, with a full pre-trained model on each client; 4) Prompt Fine-tuning with FL: Only115

training the prompt encoder in a federated manner, with a prompt encoder on each client.116

For FL experiments, we adjust the parameter α that controls the mixture of languages in the dataset.117

An α value of 1.0 signifies a uniform mixture of all languages, while values closer to 0 indicate a118

dominant representation of individual languages or a more separated mixture.119

3.2 Main Results120

Table 1 presents the outcomes of experiments focused on news classification. When employing121

Prompt Tuning in comparison to Full Finetuning, there is an acceptable decline in accuracy. Despite122

this decrease, the overall performance remains consistent and stable. A significant gain in accuracy is123

observed when adopting the FL approach. It is worth noting that the fine-tuning time is considerably124

reduced when employing the Prompt Tuning method as opposed to without it. For a comprehensive125

analysis of this, refer to the section 3.5.126

Table 2 summarises the results of our FL experiments on the XNLI task. To accentuate the potency127

of our Federated Prompt Tuning approach, a juxtaposition was made with traditional monolingual128

training. As the data portrays, our Federated Prompt Tuning, particularly on Non-IID dataset,129

consistently outperformed the monolingual method across all languages. Remarkably, this superior130

performance was maintained even for languages with limited available data. The average score131

further substantiates the prowess of Federated Prompt Tuning, marking a noticeable improvement132

from 32.94% in the monolingual approach to 39.83% with Non-IID Federated Prompt Tuning.133

From our results in section 3.2, we observe that some languages demonstrate superior accuracy with134

the FL method compared to the centralized approach. This enhanced performance might be attributed135

to the Federated Prompt Averaging in FL, which could introduce similar implicit regularization136

effects. Additionally, the prompt encoder serves as a parameter-efficient alternative. By freezing the137

core language model parameters, we prevent the model from altering its foundational understanding138

of language. As a result, the model’s propensity to overfit to a dataset is reduced, minimizing the risk139

of memorizing specific lexical cues and spurious correlations.140

3.3 Ablation Study I: Data Efficiency141

As previous sections mentioned, one characteristic of low-resource languages is their limited available142

data. Hence, enhancing data sample efficiency is crucial when fine-tuning pre-trained models for143
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downstream tasks. To better validate and simulate the advantages of our approach in real-world144

scenarios, we reduced the data volume for one language and observed the performance under145

traditional local fine-tuning as well as our Federated prompt fine-tuning method. We conducted146

experiments on German News Classification. German was chosen because it represents the language147

with the fewest resources among the five languages included in this task.148

As shown in the Figure 2, our Federated Prompt Tuning method consistently outperforms the149

traditional monolingual approach. As we reduce the dataset size from 8,000 to near-zero, the accuracy150

of the traditional method drops significantly. On the other hand, the Federated Prompt Tuning method151

retains its performance, demonstrating its robustness even with limited data. This clearly indicates152

that our Federated Prompt Tuning approach is better suited for scenarios with limited data availability.153

3.4 Ablation Study II: Language Distance154

As previously mentioned, another characteristic of low-resource languages is that their linguistic155

features differ from those of high-resource languages, particularly in aspects including syntax,156

phonology, and inventory. Consequently, direct fine-tuning on models pre-trained with highly157

dissimilar languages often yields unsatisfying results. Therefore, we conducted an ablation study158

to examine the impact of language similarity on performance, comparing our Federated Prompt159

fine-tuning method to the traditional local fine-tuning approach.160

We define the pretrained language as a representative composite language formed by blending each161

language in the multilingual corpus used for pre-training, in proportion to their amount. This serves as162

a formal representation for the mixed dataset composition. We define distance for a specific language163

in the downstream tasks, in terms of the negative logarithm of its cosine similarity to the pre-trained164

language. More details are shown in Appendix F. Leveraging the distance metric, we compared model165

performance of languages with varying degrees of distance to the pre-trained language. We present166

our results from two key experiments on the NC and XNLI tasks. From Figure 3, a conspicuous trend167

is observed: As the language similarity to the pre-trained language decreases, the model’s accuracy168

tends to drop. However, when we apply our Federated Prompt method, this decline is notably less169

steep. This means that even when we are dealing with languages that are quite different from the170

pre-trained one, our method manages to retain a decent level of accuracy. The difference between our171

method and the traditional local finetuning becomes even more obvious for languages with less data,172

indicating that our Federated Prompt Tuning method offers significant advantages, particularly in173

low-resource scenarios.174

3.5 Ablation Study III: Parameter Efficiency175

Computational Cost From the perspective of trainable parameters, this significant reduction in176

parameters demonstrates exceptional parameter efficiency. In both of the tasks, despite the total177

number of parameters exceeding 278 million, the trainable parameters are only around 1.2 million,178

accounting for less than 0.5% of the total. Such a design can substantially reduce training time and179

computational resources, while also mitigating the risk of overfitting. In the context of LLMs, this high180

parameter efficiency offers potential for model deployment in resource-constrained environments.181

Table 3: Comparison of parameter efficiency and communication overhead in NC task.
Federated Full Finetuning Federated Prompt Tuning (Ours) Optimization Scale

Trainable Params 278,655,764 1,202,708 231.69Communication Cost 108GB 478.93MB

Communication Cost XLM-Roberta-Base’s data transmission in Federated Learning with 5 clients182

and 10 communication rounds was 108 GB. After our optimization, using a prompt encoder with a183

2x768 structure, the transmission size reduced to 478.93 MB, a 99% reduction shown in Table 3.184

This optimization enhances efficiency in federated prompt tuning and expands its applicability to185

bandwidth-constrained environments like edge devices and mobile networks.186
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(a) Finetuning accuracy across different lanugages on
the NC task.

(b) Finetuning accuracy across languages with varying
similarity to the pre-trained language on the NC task.

(c) Finetuning accuracy across different lanugages on
the XNLI task.

(d) Finetuning accuracy across languages with varying
similarity to the pre-trained language on the XNLI task.

Figure 3: Comparative performance of traditional local finetuning and our Federated Prompt Tuning
method across languages with varying similarity to the pre-trained language for XNLI and NC.

4 Conclusion187

Future work Privacy attacks have been discussed in (author?) [21] on how gradient inversion188

can be used to attack language models and break the privacy protection that FL naturally adds.189

Future work may include privacy experiments and additional privacy protection with various secure190

aggregation (SA) [10, 7, 49] and differential privacy (DP) techniques [59, 50]. Future work will also191

explore the impact on the Multilingual Federated Prompt Tuning method as models scale up.192

Social Impacts Addressing the physical and linguistic challenges of multilingual LLMs, especially193

for low-resource languages, requires innovative approaches that can balance efficiency, privacy194

concerns, and performance. Our Multilingual Federated Prompt Tuning paradigm provides a solution195

to these challenges. By aggregating lightweight multilingual prompts, this approach offers enhanced196

fine-tuning capabilities with minimal computational demand. The robustness of our method is197

especially pronounced for low-resource languages with sparse data and rare linguistic features. Its198

potential to democratize access to technology, preserve linguistic diversity, and ensure user privacy199

can have profound implications for the future of technology and society.200
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Figure 4: Linguistic coverage of different large language models.

B Related Work442

443

Federated Learning. Federated Learning has garnered significant attention in the academic realm.444

A notable contribution from (author?) [26] underscores the potential of this methodology. One of its445

primary benefits is the execution of deep learning algorithms while maintaining an emphasis on user446

privacy, a premise originally posited by (author?) [54]. The overarching objective is to amalgamate447

insights from diverse data repositories without compromising sensitive particulars. In this spectrum,448

the FedAvg algorithm [42] stands out. This algorithm operates by independently training models on449

distinct client devices and subsequently aggregating their updates centrally for an averaged outcome.450

However, it’s imperative to acknowledge that FedAvg, while powerful, is principally structured for451

identically and independently distributed (IID) data, while its application on Non-IID datasets may452

lead to potential discrepancies in results or even model instability [42, 26]. Despite abundant research453

made on problems at hospitals, legal firms, and financial institutions, extending language models454

for multilingual usages effectively and efficiently, especially for low-resource languages remains455

under-explored.456

In the general NLP domain, FL has been instrumental in tasks such as language modeling, sentiment457

analysis, and machine translation, showcasing its potential to revolutionize the way models are458

trained and deployed [6]. FedNLP introduces a benchmarking framework for evaluating various FL459

methods across NLP tasks, providing a universal interface between Transformer-based models and FL460

methods [33]. FedKC [58]is a federated approach designed for multilingual Natural Language Un-461

derstanding (NLU) that integrates knowledge from multiple data sources through federated learning462

techniques to enhance the efficacy and accuracy of multilingual text processing. However, considera-463

tions regarding computational and communication efficiency in resource-constrained environments464

have not been adequately addressed.465

Multilingual Language Models. Multilingual Pretrained Language Models such as mBERT [46],466

XLM-R [16], and SeamlessM4T [52] have emerged as a viable option for bringing the power of467

pretraining to a large number of languages [19]. Many studies analyzed mBERT’s and XLM-R’s468

capabilities and limitations, finding that the multilingual models work surprisingly well for cross-469

lingual tasks, despite the fact that they do not rely on direct cross-lingual supervision (e.g., parallel or470

comparable data, translation dictionaries [47, 62, 5, 64].471

However, these multilingual LMs are not without limitations. Particularly, (author?) [16] observed472

the curse of multilinguality phenomenon: given a fixed model capacity, adding more languages473

does not necessarily improve the multilingual performance but can deteriorate the performance474

after a certain point, especially for underrepresented languages [63, 24, 27] Prior work tried to475

address this issue by increasing the model capacity [5, 45, 12] or through additional training for476

particular language pairs [45, 48] or by clustering and merging the vocabularies of similar languages,477

before defining a joint vocabulary across all languages [15]. Despite these efforts, the multilingual478

LMs still struggle with balancing their capacity across many languages in an sample-efficient and479

parameter-efficient way [4, 41, 13].480
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Prompt Learning and Parameter-Efficient Fine-Tuning. The size of pre-trained language models481

has been increasing significantly [11], presenting challenges to traditional task transfer based on482

full-parameter finetuning. Recent research has shifted its attention to Parameter-Efficient Fine-Tuning483

techniques, such as prompt tuning [28, 30, 36], adapters [22], and combined approaches [23, 8].484

These methods utilize a minimal number of tuning parameters, yet they offer transfer performance485

that is comparable with traditional finetuning.486

Prompt learning is a burgeoning area in machine learning where models are steered towards desired487

outputs using prompts, typically without exposure to explicit label information [35]. This paradigm488

shows promise in effectively leveraging large pre-trained models in a data-efficient manner by489

reducing the need for extensive labeled datasets [51]. Additionally, prompt learning has exhibited a490

remarkable ability to generalize across a variety of tasks, suggesting a step towards more flexible and491

adaptable machine learning systems [53].492

C Federated Prompt Averaging Algorithm493

Algorithm 1: Federated Prompt Averaging

1: Initialization:
2: Server initializes global prompt encoder hg

3: Each client initializes local prompt encoder hk

1: Server executes:
2: for each round t do
3: Select subset S of m clients
4: for each client k in S do
5: Send hg to client k
6: end for
7: Aggregate client updates:
8: hg = 1

m

∑m
k=1 hk

9: end for

1: Client k executes:
2: Retrieve current hg

3: Assemble full model using hk and PLM parameters
4: Train model on Dk

5: Update local prompt encoder hk

6: Send updated hk to server

494

D Dataset495

News Classification (NC) is a classification problem with 10 classes across 5 languages: English,496

Spanish, French, German, and Russian. This task aims to predict the category given a news article.497

Since only 10k annotated examples are available for each language (excluding the official test set),498

we sample 8k instances for training and 1k for evaluation sets.499

Cross-lingual Natural Language Inference (XNLI) is a cross-lingual sentence understanding500

problem which covers 15 languages, including high-resource languages (English, French, Spanish,501

German, Russian and Chinese), medium-resource languages (Arabic, Turkish, Vietnamese and502

Bulgarian), and low-resource languages (Greek, Thai, Hindi, Swahili and Urdu). The task involves503

determining the relationship between a premise and a hypothesis sentence, and this relationship can504

be categorized into one of three classes: entailment, contradiction, or neutral. We sample 2k instances505

for training and 250 for evaluation sets for each language. NLI serves as an effective benchmark for506

assessing cross-lingual sentence representations, and better approaches for XNLI will lead to better507

general Cross-Lingual Understanding (XLU) techniques.508
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E Implementation509

We use Hugging Face’s transformers library [61] and PEFT library [40] for loading pre-trained510

models and prompt tuning configurations. For our federated training and evaluation, we use the511

Flower framework [9] and PyTorch as the underlying auto-differentiation framework [44]. We use the512

AdamW optimizer [37, 25] for all experiments. All experiments are conducted using NVIDIA A40.513

F Multilingual Distance Measurement514

We leverage the database from (author?) [34, 39] to extract feature vectors for each language. These515

vectors are then weighted according to the token count of each language in the pre-trained corpus516

to calculate the feature vector of the pretrained language. Given the feature vector Vi for the i-th517

language, token count Ti, and total tokens Ttotal, the weight wi is given by wi =
Ti

Ttotal
and the feature518

vector Vp for the pre-trained model is computed as Vp =
∑n

i=1 wi · Vi.519

We define distance for a specific language in the downstream tasks, in terms of the negative logarithm520

of its cosine similarity to the pre-trained language. Let v represent the feature vector of a specific521

language in the downstream task. The diversity measure ϕ between this language and the average522

language of the pre-trained model is defined as ϕ(vi) = − log(cos(vi, Vp)).523
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