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ABSTRACT

World-model (WM) is a highly promising approach for training AI agents. How-
ever, in complex learning systems such as autonomous driving, AI agents interact
with others in a dynamic environment and face significant challenges such as
partial observability and non-stationarity. Inspired by how humans naturally solve
complex tasks hierarchically and how human drivers share their intentions (e.g.,
using turn signals), we introduce HANSOME, a WM-based hierarchical planning
with semantic communications framework. In HANSOME, semantic information,
particularly text and compressed visual data, is generated and shared to improve
two-level planning. HANSOME incorporates two important designs: 1) A hi-
erarchical planning strategy, where the higher-level policy generates semantic
intentions, and semantic alignment is devised to ensure that the lower-level policy
determines specific controls to execute these intentions. 2) A cross-modal encoder-
decoder to fuse and utilize shared semantic information and enhance planning
through multi-modal understanding. A key advantage of HANSOME is that the
generated intentions not only enhance the lower-level policy but also can be shared
and understood by both humans and other AVs to improve their planning. Further-
more, we devise AdaSMO, an entropy-controlled adaptive scalarization method, to
tackle multi-objective optimization problem in hierarchical learning. Extensive ex-
periments show that HANSOME outperforms state-of-the-art WM-based methods
in challenging driving tasks, enhancing overall traffic safety and efficiency.

1 INTRODUCTION

An ambitious goal of embodied AI is to develop cognitive agents capable of dynamically and
adaptively planning to perform tasks in complex, high-dimensional environments. World-model
(WM)-based reinforcement learning (RL), an end-to-end learning approach, has demonstrated signifi-
cant potential. In WM, a latent dynamics model of the environment is first learned and then leveraged
to train policies. However, applying WM to real-world applications, such as autonomous driving in
traffic networks, presents numerous challenges. These environments involve heterogeneous agents
interacting in environments with intertwined system dynamics. A key obstacle in such complex set-
tings is insufficient information available to the ego agent, which operates under partial observability
and must plan in non-stationary environments.

A promising solution to the above challenge is to enable agents to share information (Zhu et al.,
2022) . Recent research has explored sharing different types of information, such as (encoded)
partial observations (Jiang & Lu, 2018), hidden states (Sukhbaatar et al., 2016), policy and value
networks (Peng et al., 2017), and (encoded) action intentions (Kim et al., 2020; Qi & Zhu, 2018).
Intention sharing between vehicles has been demonstrated to be a practical and promising approach
to improving safety and efficiency in real-world vehicle-to-vehicle (V2V) applications (Wang et al.,
2023a; 2024; 2023b; Xie et al., 2021; Zhu et al., 2022).

However, it is nontrivial to ensure that the shared information can be understood and utilized by agents
of interest, which is challenging in real-world applications, such as in mixed traffic where human
drivers and different types of autonomous vehicles (AVs) co-exist. AVs may share sensor data (Yu
et al., 2024; Xu et al., 2022a) or detection results (Xu et al., 2021), whereas human drivers tend to
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share and interpret turn signals, text messages, or voice prompts from navigation apps. Moreover,
human information sharing often takes place at the intention level, improving the communication
efficiency. This also aligns well with the hierarchical nature of human thought processes. If AVs
can understand and generate intentions like turn signals, texts, or voices, human drivers and AVs
can communicate with ease. The end-to-end “black-box” approach, which maps observation inputs
directly to actions such as steering and acceleration, impedes the sharing of interpretable intentions.
In this work, we attempt to address this issue and answer the following question for WM-based RL
for autonomous driving: “How to generate interpretable information for semantic communications
and utilize such information to improve planning among heterogeneous agents?”

To address this question, we develop HANSOME, based on the key insight that humans can naturally
solve complex tasks quickly by leveraging hierarchical thinking and decision-making (Wang et al.,
2023c), an essential component of human intelligence. Specifically, the human brain possesses a
structured architecture capable of not only controlling specific muscular patterns but also of planning
more abstract goals (Turella et al., 2020). This approach further provides an avenue for efficient
information sharing as discussed earlier.
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Figure 1: Illustration of AdaSMO for training hi-
erarchical planning: The training of the two-level
policies is essentially a two-objective optimiza-
tion problem. Our AdaSMO method uses entropy-
controlled adaptive scalarization to smooth out the
oscillation between the two levels and accelerate
the convergence to the desired policy.

With this insight, HANSOME features two im-
portant designs. The first is a hierarchical plan-
ning strategy that generates and shares text-
based semantic intentions such as “right turn”
and “left lane change”, understandable by het-
erogeneous agents. The higher-level policy gen-
erates these intentions, and the lower-level pol-
icy determines concrete vehicle controls (e.g.,
acceleration and steering) to achieve the in-
tentions. The second design is a cross-modal
encoder-decoder, which fuses shared text-based
intentions and visual information in the form of
bird-eye-views (BEVs), into a latent representa-
tion for multi-modal understanding. The latent
representation encapsulates rich information
about the environment, surrounding vehicles,
and historical context, driving HANSOME’s
end-to-end decision-making across both levels.
Notably, HANSOME does not mandate shared
semantics as inputs, as it can independently pre-
dict and plan based on its own observations. However, semantic communication significantly enhances
traffic safety and efficiency. By leveraging universally understandable semantics, HANSOME is
well-suited for heterogeneous agents with different underlying policies, seamlessly functioning in
both standalone and cooperative modes. Further details are provided in Section 3.

Note that HANSOME’s higher-level policy is not a replacement for route planning in Google Maps
but an enhancement that leverages real-time perception to address immediate and complex decisions,
given the rough route planned by map topology. While Google Maps can help avoid long-term routes
with traffic jams by collecting user data (Mishra et al., 2018), this data is often delayed and does
not account for real-time situations around the ego vehicle, such as sudden accidents or obstacles.
Consequently, such route planning cannot make timely decisions, like determining whether to change
lanes immediately or bypass an accident ahead. HANSOME bridges this gap by complementing map
applications with a higher-level policy that integrates real-time perception for more dynamic and
responsive decision-making.

A key challenge in training hierarchical planners is non-stationarity, as both policies evolve simul-
taneously. For example, the higher-level policy observes different transitions and rewards because
the lower-level policy constantly changes, even in the same state with the same higher-level goal.
This is a known challenge in hierarchical RL (Pateria et al., 2021; Hutsebaut-Buysse et al., 2022).
Prior works usually mitigate the issue by updating transition data through relabelling and hindsight
replay (Nachum et al., 2018; Levy et al., 2017; Jiang et al., 2019). Instead of relying on additional
relabelling processes, we devise AdaSMO, an entropy-controlled adaptive scalarization technique, to
train hierarchical planners. We view two-level training as a multi-objective optimization problem,
which in general has a set of Pareto optimal points forming a Pareto frontier (as illustrated in Fig-
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ure 1). A naive scalarization of the two objectives may yield poor results since the learned policy may
oscillate across Pareto optimal points. With this insight, AdaSMO dynamically adapts the relative
weights between the two policies, balancing their co-evolution by adjusting action entropy to control
policy exploration, ultimately guiding them to converge on the desired policy.

Our main contributions are as follows:

• HANSOME Design. We introduce HANSOME, a WM-based hierarchical planning with seman-
tic communications framework, to enable interpretable information sharing among heterogeneous
agents. HANSOME has a hierarchical planning strategy where the higher-level policy generates
and shares semantic intentions in the form of text to guide the lower-level policy which in turn
decides specific controls. A cross-modal encoder-decoder is devised to fuse and understand the
shared semantic information. Since information such as vehicle location or speed is not accessible
in the WM’s latent representation, we propose translating intentions into waypoints to enforce
semantic alignment between higher-level intentions and lower-level controls. The reward function
is meticulously designed to balance the objectives of intention generation and waypoint following.

• Adaptive Scalarization in Multi-objective Optimization (AdaSMO) for HANSOME. We
view hierarchical training as multi-objective optimization and devise AdaSMO to dynamically
balance learning of two-level policies to address non-stationarity. As the lower-level policy
becomes more skilled, the higher-level policy progressively reduces its exploration by controlling
action entropy, while gradually increasing the complexity of the lower-level subtasks.

• Extensive Experiments on Complex Urban Driving Tasks. We present extensive empirical
results in Section 4 to demonstrate the capability of HANSOME on a variety of challenging
urban driving tasks involving communications with other agents. Ablation studies are used to
demonstrate the necessity of HANSOME’s semantic communications and hierarchical planning
in solving tasks where current state-of-the-art WM-based RL methods may fail, and show
AdaSMO’s effectiveness in training a good hierarchical planning strategy. Unlike prior WM-
based RL works, HANSOME enables semantic communications across agents, and learns to
generate and understand messages within WMs’ imagination.

2 RELATED WORK

World Models for Autonomous Driving. WM studies in the field of autonomous driving can be
grouped into two categories (Guan et al., 2024; Zhu et al., 2024). The first category leverages WMs as
neural driving simulators to synthesize realistic driving videos (Yang et al., 2024; Li et al., 2023; Kim
et al., 2021). For instance, GAIA-1 (Hu et al., 2023) generates driving scenarios from videos, texts,
and actions. DriveDreamer (Wang et al., 2023d) and DriveDreamer-2 (Zhao et al., 2024) enhance
scenario generation with high-definition maps and 3D bounding boxes, and integrate large language
models for user-friendly interaction, respectively. ADriver-1 (Jia et al., 2023) advances this approach
by eliminating the need for extensive prior information and achieving sustained driving through
continuous scenario and action prediction. The second category utilizes WMs to train and evaluate
agent policies within simulated environments. MILE (Hu et al., 2022) employs a Dreamer-style WM
for imitation learning, utilizing road map and camera inputs to predict transitions in future BEVs.
Prior works also explored Dreamer-style models for online RL. SEM2 (Gao et al., 2022) utilizes
DreamerV2 and decodes camera and LiDAR data into semantic BEVs. Think2Drive (Li et al., 2024)
trains DreamerV3 with BEV inputs on CARLA Leaderboard scenarios. Notably, MILE, SEM2,
and Think2Drive use pre-determined routes provided by CARLA map topology to guide the ego
agent. While HANSOME agents can determine their own routes using intentions generated by the
higher-level policy; moreover, HANSOME utilizes semantic communications to improve planning.

Hierarchical Reinforcement Learning (HRL). HRL decomposes long-horizon tasks into simpler
subtasks (Parr & Russell, 1997; Dayan & Hinton, 1992; Sutton et al., 1999), by learning a higher-level
policy that operates on larger time scales, which provides subtasks to a lower-level policy that selects
primitive actions to achieve them. Many prior works determine subgoal spaces through subtask
discovery (Pateria et al., 2021; Hamed et al., 2024; Yang et al., 2019). For instance, Director (Hafner
et al., 2022) learns sub-goal spaces directly from high-dimensional image space. HIRO (Nachum et al.,
2018) and HAC (Levy et al., 2017) mitigate non-stationarity in hierarchical training by employing
relabelling techniques and hindsight replay. However, the discovered higher-level goals are often
not interpretable by heterogeneous agents, limiting their applicability in real-world multi-agent
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Figure 2: An example workflow of HANSOME: At time t0, the higher-level policy of the background
agent is to change to the left lane. Once this intention is shared with the ego agent, the ego agent
predicts background agent’s future trajectory through a cross-modal encoder-decoder in WM. In the
next time step t1, the ego agent slows down to avoid collisions upon detection of a trajectory crossing.
environments. HRL without subtask discovery generally requires domain knowledge to decompose
tasks, using manually specified subtasks or semantic goal spaces, such as global XY coordinates
for navigation (Andrychowicz et al., 2017; Nachum et al., 2018) or robot poses (Gehring et al.,
2021). HAL (Jiang et al., 2019) uses language instructions as subgoals but is limited to single-agent
object manipulation tasks and depends on relabelling. In contrast, our work advances hierarchical
planning in mixed traffic environments, where agents communicate with others using understandable
intentions generated by the planner. HANSOME does not require extra data relabelling to mitigate
non-stationarity, instead employing AdaSMO to dynamically the adjust two-level learning.

Information Sharing in Autonomous Driving. Vehicle-to-vehicle (V2V) communications can
significantly improve perception and, consequently, vehicle decision-making (Wang et al., 2018). The
conventional approach focuses on sharing sensing information (Yurtsever et al., 2020) or trajectory
sequences (Zhao et al., 2020; Han et al., 2019) with other agents, which can cause significant
communication and computation overhead in complex real-world environments. Recent works have
demonstrated the potential of intentional sharing to enhance traffic safety and efficiency in V2V
applications (Wang et al., 2024; Xie et al., 2021). However, existing appraoches typically define
intentions using GPS and vehicle heading. HANSOME takes a fundamentally different approach by
introducing simple, interpretable text-based intention messages that are agnostic to specific sensor
types or coordinate systems. In the related field of cooperative perception (CP), researchers have
explored sharing raw sensor data (Yu et al., 2024; Xu et al., 2022a), intermediate features (Xu et al.,
2022b), or detection results (Xu et al., 2021). While CP studies primarily focus on the perception
module within modular pipelines and evaluate open-loop performance using metrics like segmentation
and detection (Xu et al., 2022a), HANSOME distinguishes itself by implementing a closed-loop
planner that directly interacts with realistic simulation environments, enabling more comprehensive
evaluation of real-world performance. We provide further discussion for information sharing in
multi-agent RL in Appendix A.

3 HIERARCHICAL PLANNING WITH SEMANTIC COMMUNICATIONS

To get a more concrete sense of HANSOME, we use an example to illustrate HANSOME’s workflow.

Example: As illustrated in Figure 2, we consider two agents, where each agent has a hierarchical
planning strategy that is capable of generating higher-level intentions in the form of texts and lower-
level controls (e.g., acceleration, steering). Now, the background agent intends to change to the
left lane, and this higher-level intention is shared with the ego agent. The cross-modal encoder-
decoder of the ego agent, in turn, predicts the background agent’s future trajectory using this shared
intention. The generated low-dimensional latent representation is then used for next step planning.
Consequently, the ego agent will slow down to avoid collisions.

Now, we proceed to provide a brief description of the world model design of HANSOME.
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Figure 3: The structure of HANSOME. HANSOME consists of four key components: 1) Hierarchical
Planning, 2) Semantic Alignment, 3) Reward Design, 4) Cross-Modal Encoder-Decoder.

World Model. We adopt the Dreamer-style WM paradigm to learn environment representations and
dynamics through interaction (Hafner et al., 2023). The hierarchical policy is trained from scratch
within the WM’s imagination. The WM maintains an internal state ht using a Recurrent State Space
Model (RSSM) (Hafner et al., 2020; 2023), which compresses the observations and actions from
the past t− 1 steps. Let ϕ denote the combined parameter vector of the WM. At each time step t,
given the hidden state ht, an encoder processes the observation ot ( (e.g., BEVs, destination, shared
intentions) into a latent representation zt, such that zt ∼ pϕ(zt|ht, ot). Additionally, a dynamics
predictor estimates zt without relying on ot, i.e., ẑt ∼ pϕ(ẑt|ht). The model state is then defined
as xt = [ht, zt]. From xt, the WM decodes an observation o′t ∼ pϕ(o

′
t|xt), predicts a reward

rt ∼ pϕ(rt|xt), and estimates a discount factor γt ∼ pϕ(γt|xt), which represents the terminal
probability. An actor is trained to generate actions at conditioned on xt. The RSSM then updates
the internal state for the next time step as ht+1 = fϕ(xt, at). HANSOME employs the Dreamer
paradigm in its experiments; however, its design is not restricted to this specific structure and can
easily incorporate future advancements in WMs.

We will present the details of four key components in HANSOME as illustrated in Figure 3, and then
introduce AdaSMO to train the hierarchical policy in HANSOME.

3.1 KEY DESIGN COMPONENTS IN HANSOME

Hierarchical Planning Aided by Semantics. Human drivers naturally decompose driving maneuvers
into subgoals. Thus inspired, HANSOME breaks down complex driving tasks into a series of
semantic intentions that can be described using texts understandable by human drivers. The semantic
information not only improves traffic safety and efficiency by informing other agents, but also guides
the lower-level policy to achieve long horizon planning.

For the higher-level policy, we define a set of semantic intentions that align with human driving
behaviors. This set, denoted as the intention space I , includes texts such as “Lane Follow”, “Right
Lane Change”, and “Left Lane Change”. We also denote the learned higher-level policy to be πH

θ .
Every T time steps, a new intention it ∼ πH

θ (·|xt) ∈ I is selected by the policy, conditioned on the
current model state xt. In this way, the complex task is decomposed into a sequence of subgoals in
the form of semantic intentions.

Given a higher-level intention it, the lower-level policy πL
θ maps the current model state xt to a

control command ct (acceleration and steering), conditioned on it, i.e., ct ∼ πL
θ (·|xt, it). Then the

joint action can be represented as at = [it, ct], which is fed into the sequence model of the WM to
predict the next frame. Theoretically, the dynamics of the environment depend only on ct, but we
include it in the action to enforce semantic alignment for the lower-level policy, as elaborated below.
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Semantic Alignment for Hierarchical Planning. Learning a lower-level policy that can effectively
“understand” text-based intentions and align with their semantics is highly non-trivial, particularly
in WM settings. This challenge arises because information such as vehicle location or speed is
inaccessible in the WM’s latent representation, making it impossible to directly evaluate alignment
from the latent space. Since only the WM understands its own latent representations and can predict
future rewards based on them, alignment can be reinforced through reward signals. Rewarding
engineering has been the main challenge in RL, especially for complex task domains like autonomous
driving (Kiran et al., 2021; Zhang et al., 2021). Designing a separate reward for each intention is
cumbersome and impractical, as it does not scale with new intentions.

Therefore, we propose to visualize intentions to waypoints for semantic alignment. The semantics of
the higher-level intention it is “translated” into a sequence of waypoints wt = {wt,i}ni=1 that can be
rendered on the BEV. The lower-level policy’s objective is now to follow these waypoints on BEVs
which implicitly aligns with the semantics. Since the translated waypoints exist in the observation
space, the higher-level intentions must be included in the action space for the WM to accurately
predict these waypoints. We emphasize in HANSOME, waypoints are planned by HANSOME itself,
instead of being pre-determined by simulator as in Gao et al. (2022); Li et al. (2024).

Reward Design for Hierarchical Planning. Designing reward functions is known to be challenging
in general. In HANSOME, reward design needs to take into account the signals at both levels, namely
(1) generating intentions and (2) following waypoints. Our extensive experiments reveal that directly
using a weighted sum of the two yields poor results. If the weight for (1) is too small, the higher-level
policy may fail to learn the desired behavior. Conversely, a larger weight for (1) may overwhelm
and disrupt the reward signal for learning the lower-level policy, thus significantly slowing down the
training process. To overcome this challenge, we propose combining these components by dividing
the waypoint-following reward by a factor proportional to the deviation extent of the intention from
the overall destination. In this way, we can effectively amplify the impact of (1), while still providing
a proportionate reward for the lower-level policy to follow the waypoints. Specifically, the reward for
following the waypoints is given by

rwpt = αn+ βv∥ − γv⊥ − κIcollision, (1)

where the first term represents the reward for reaching a waypoint and n is the number of newly
reached waypoints. The second term rewards the speed parallel to the route (v∥) and the third term
penalizes the perpendicular speed (v⊥), which can effectively lead to a smoother trajectory. The
last term is the penalty for collision. α, β, γ and κ are scaling factors. Then, the complete reward
function can be written as

r = rwpt/(1 +A · ddeviation)−B · Iinvalid intention + C · Ireach destination (2)

where ddeviation represents the distance from the route planned by the higher-level policy to the overall
destination. The last two terms penalize invalid planned routes and reward for reaching the destination,
respectively. A, B and C are again scaling factors.

Cross-Modal Encoder-Decoder. The decoder in conventional WMs learns to reconstruct the input
of the encoder by minimizing the MSE loss 1

2 (pϕ(o
′
t|xt) − ot)

2. In contrast, HANSOME adopts
a cross-modal method to help WM fuse and “understand” the multi-modal semantic information.
The cross-modal encoder-decoder takes BEVs and intentions shared by neighboring vehicles as
inputs. Here, we assume that visual information is shared among neighboring vehicles, allowing
the input BEV to combine this data and enhance observability. Intention information, rendered as
waypoints alongside the destination directions, is incorporated into the BEV. The WM predicts the
future trajectories of neighboring vehicles based on their shared intentions. As illustrated in Figure 3,
the decoder output o′t includes bold orange lines representing the possible trajectories of background
vehicles. Consequently, the new decoder loss is defined as:

Ldecoder
.
= 1

2 (pϕ(o
′
t|xt)− omt )2, omt

.
= ot

⋃
j∈neighbors w

j
t , wj

t
.
= {locationjt+i}Ki=1. (3)

Here, wj
t is the future trajectory of vehicle j, defined as the set of K future locations. The input BEV,

omt , includes these trajectories rendered onto it. The decoder loss is the MSE between the decoder’s
output and omt . By training the cross-modal encoder-decoder in this manner, trajectory information is
effectively encoded into a unified latent representation, enabling its use for hierarchical planning.

Note that shared intentions are not obligatory inputs to HANSOME. When intentions form neighbor-
ing vehicles are absent, the encoder-decoder is trained to predict their trajectories based on history
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movements. This makes HANSOME practical in real-world traffic systems, where heterogeneous
agents coexist and some are unable to generate or communicate such information.

3.2 LEARNING HIERARCHICAL PLANNING IN HANSOME: A MULTI-OBJECTIVE
OPTIMIZATION VIEW

Learning multiple levels of policies simultaneously is highly non-trivial due to the challenge of
non-stationarity (Pateria et al., 2021). This is because the lower-level policy is non-stationary during
training—even when given the same subgoal—so the trajectory it produces varies over time. This
complicates the higher-level policy’s learning process, as it observes inconsistent trajectories for the
same subgoals. A classic approach to address non-stationarity is subgoal relabeling and hindsight
replay (Andrychowicz et al., 2017; Levy et al., 2017; Jiang et al., 2019), where achieved states are
used to relabel subgoals in transition data. Instead of relabeling transition data, we propose AdaSMO
to dynamically adjust the higher-level policy exploration, thus balancing two-level learning, and
mitigating non-stationarity without the need for data relabeling.

We view hierarchical policy learning as a multi-objective optimization problem with the two objectives
of maximizing the reward of the higher-level and lower-level policy. For multi-objective optimization
problems, there are a set of Pareto optimal points forming a frontier, as illustrated in Figure 1. The
desired point on this frontier would enable the higher-level policy to plan a suitable route and the
lower-level policy to execute it successfully. However, a naive scalarization of the two objectives
may yield poor returns. Since there is no universal global optimum, the learned policy may oscillate
between extreme points or converge to an undesired one. In our empirical studies, we observe that the
higher-level policy converges much faster than the lower-level policy. When the lower-level policy
is inadequate, the higher-level policy attempts to maximize rewards by generating overly simplistic
plans, such as straight lines. As a result, the lower-level policy becomes fixated on these basic tasks
and is unable to handle more complex ones.

Entropy-Controlled Adaptive Scalarization. To resolve these issues, we propose an entropy-
controlled adaptive scalarization technique for multi-objective optimization (AdaSMO) to balance the
training of higher-level and lower-level policies. The entropy of the higher-level policy is dynamically
adjusted to embody different weights in the scalarization of the two objectives. A large entropy
generates a nearly uniform distribution over the output intentions, in which case the primary goal is
to enable the lower-level policy to learn to follow each individual intention. As the entropy decays,
the higher-level policy reduces its exploration and begins to converge at a controllable rate toward
the desired Pareto optimal. AdaSMO, therefore, echoes the human learning process, which begins
with mastering basic skills before progressively integrating them into more complex tasks. Naturally,
reward signals are used as a measure of policy quality to guide this adaptation. In practice, the entropy
is adjusted by dividing the output of the higher-level policy’s MLP head by a scaling factor S before
applying the softmax layer, i.e.,

pϕ(it|xt) = softmax (MLP(xt)/S) . (4)

Let {a1, · · · , an} be the output of MLP. The entropy of the higher-level policy will be

H(pϕ(it|xt)) = ln
(∑n

i=1 e
ai/S

)
−
(∑n

i=1
ai

S eai/S
) /(∑n

i=1 e
ai/S

)
, (5)

which increases with S. Since the adjustment of S depends on policy quality and is inherently task-
specific, it is adjusted heuristically based on the average reward over the most recent P episodes. As
policies improve and rewards surpass certain thresholds, S gradually diminishes to 1. Consequently,
the algorithm initially prioritizes training a reasonably good lower-level policy, and then learning
the higher-level policy by leveraging the enhanced lower-level policy. The relative performance
trade-off can be controlled by the decreasing rate of S. In addition to S, we adjust other parameters,
such as traffic density and the intention horizon T , to increase task difficulty along training process.
For example, we start with a larger time window (T = 128 time steps) to allow the lower-level
policy sufficient exploration, and then gradually reduce to T = 1 as the lower-level policy becomes
more skilled and is allowed to change its intentions actively every time step. Notably, unlike prior
hierarchical WM that uses a constant time horizon for high-level goals (Hafner et al., 2022), AdaSMO
allows HANSOME to adjust the goal horizon dynamically based on the agent’s skill level. More
explanations and implementation details of AdaSMO are shown in Appendix D.1.
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Table 1: Comparison between HANSOME and baseline algorithms in DenseTraffic. (Sum of
success rate and collision rate is not equal to one since there are other cases such as time out.)

Algorithms Success Rate Norm. Speed Collision Rate

DreamerV2-C 48.89 % ± 4.44% 0.80 ± 0.05 51.11 % ± 4.43 %
Director-C 66.67 % ± 6.67 % 0.56 ± 0.01 33.33% ± 5.69 %
DreamerV3-C 40.66% ± 2.78 % 0.69 ± 0.02 51.65% ± 5.40 %
HANSOME 88.17% ± 1.08 % 0.86 ± 0.15 3.03% ± 3.03%

4 EXPERIMENTS

In this section, we present extensive experiments to demonstrate the capabilities of HANSOME. In
Section 4.1, we highlight the performance gains offered by the hierarchical planning and semantic
communications in HANSOME compared with state-of-the-art WM-based approaches. In Section 4.2,
we study the impact of semantic communications on improving the traffic efficiency and safety.
Section 4.3 details the advantages of HANSOME’s hierarchical planning for complex tasks. In
Section 4.4, we highlight the benefits of using AdaSMO in HANSOME by comparing it with non-
adaptive training.

Benchmark Settings. Dreamer-style and online RL works typically evaluate models in a highly
realistic simulator, CARLA, with customized scenarios (Gao et al., 2022; Pan et al., 2022; Xie et al.,
2021) or Leaderboard (Li et al., 2024), given the interactions with environments needed by online
RL and its closed-loop nature. See Appendix A for how prior works customize tasks to their needs.
Therefore, to examine the benefits of semantic communications in HANSOME and the baselines,
as well as the advantages of the hierarchical planner, we develop four challenging tasks to evaluate
various model capabilities, including 1) DenseTraffic, a task featuring dense traffic with 300
randomly spawned vehicles in CARLA Town04. The ego agent needs to navigate through traffic
flows, change lanes, and avoid collisions to reach destinations. 2) LeftTurn and 3) RightTurn
are tasks performed at intersections, where the agent has to merge into dense traffic at the proper time
when other vehicles randomly divert from the flow. Notably, the background vehicles are set to be
aggressive such that they do not actively avoid collisions, mimicking irrational human drivers. 4)
ObstacleBypass, where the agent is asked to go straight on a lane but with an obstacle ahead. It
tests the agent’s flexibility to deviate from the pre-determined route destination and return later.

Baseline Settings. Our baselines include state-of-the-art WMs, DreamerV2 (Hafner et al., 2020),
Director (Hafner et al., 2022), and DreamerV3 (Hafner et al., 2023). Director generates images
as higher-level goals but does not present actionable text semantics; DreamerV2 and DreamerV3
are single-level planning frameworks. Prior applications of WM-based agents in CARLA (Gao
et al., 2022; Hu et al., 2022; Li et al., 2024) typically adopt Dreamer-style single-level planning.
For example, Think2Drive (Li et al., 2024) uses DreamerV3 with BEV inputs; SEM2 (Gao et al.,
2022) modifies DreamerV2 decoder to output BEV masks. Both models are Dreamer-based and not
open-sourced; therefore, we use DreamerV2 and DreamerV3 to represent them. These baselines
do not take into account multi-agent interactions. There is not yet a hierarchical or communicative
WM-based RL algorithm as our baselines, nor closed-loop autonomous driving benchmark with
communications as benchmarks. For fair comparison, we assume enhanced observability via semantic
communications across all baselines. To highlight this, we denote baselines with a “-C” suffix (see
Table 1) meaning semantic communications are enabled for these baselines.

4.1 OVERALL PERFORMANCE OF HANSOME

Firstly, we compare HANSOME and three baselines on DenseTraffic. All agents receive BEVs
with enhanced observability via online interactions with other agents. Baseline agents determine
their controls by looking at pre-determined routes rendered on BEVs, a common practice in the
community (Li et al., 2024; Hu et al., 2022). An episode terminates upon collision, going out of
lane, and time out. For HANSOME, the task is even more challenging in that the agent only takes
in a destination point and has to plan its own routes towards the destination, and the termination is
additionally triggered by invalid higher-level plans.

We use success rate, collision rate, and normalized speed with respect to the desired speed to measure
the ego agent’s safety and efficiency. The comparison in Table 1 corroborates that HANSOME
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Table 2: Comparison between the BEVs imagined by WM and the ground truth. The background
vehicle’s future trajectory (the bold orange lines in BEVs) is not available in inputs to the WM; WM
predicts them using cross-modal encoder-decoder to fuse shared text-based intentions into BEVs.

Time 1 7 22 29 33 36 46 51

Imagined
BEVs

Ground Truth

Table 3: Comparison of different communication settings for LeftTurn and RightTurn.

LeftTurn RightTurn

Collision
Rate

Norm.
Speed

Success
Rate

Collision
Rate

Norm.
Speed

Success
Rate

w/ visual only 16.94%
± 4.67%

0.50 ±
0.01

82.21%
± 6.94%

8.38% ±
3.04%

0.64 ±
0.04

91.62%
± 3.04%

w/ visual + intention
(HANSOME) 13.89%

± 3.21%
0.60 ±

0.01
85.19%
± 4.14%

5.52%±
0.45%

0.72±
0.07

94.27%
± 0.63%

achieves significantly better performance in all three metrics. Previous baseline algorithms are trained
to follow fixed routes. They have to change lane if given that guidance at a fixed position regardless
of whether there are other vehicles in that lane. Slowing down can avoid collisions but make it less
efficient. HANSOME has the ability to actively re-plan to follow the current lane and change lane at
the proper time, thanks to its hierarchical planning. The demos are shown in Figure 8 in the appendix.

4.2 ABLATION OF SEMANTIC COMMUNICATIONS

A key advantage of our approach is that HANSOME can predict and render the future trajectories
of neighboring vehicles through the cross-modal encoder-decoder. Table 2 compares the WM’s
imagination of 64 future steps with the ground truth. In the first three columns, the WM accurately
predicts the locations and future trajectories (bold orange lines in the figure) of neighboring vehicles.
In the remaining columns, deviations occur in two BEVs, primarily involving vehicles that have not
been previously observed. This behavior is reasonable, as the WM can only infer the presence of
vehicles beyond the BEV’s visible range. These deviations highlight the WM’s generalization ability
in imagining new and unseen scenarios for training policies.

To justify whether the ego agent can effectively leverage the enhanced predictions to achieve safer
and more efficient maneuvering in complex traffic tasks, we evaluate HANSOME on LeftTurn
and RightTurn. The tasks evaluate the ego agent’s ability to predict the future trajectories of other
vehicles in a dense traffic flow and find the proper time to merge into the flow. The background
vehicles follow aggressive policies, simulating irrational drivers, which increases the task’s difficulty
and necessitates accurate predictions of other vehicles’ future movements. We compare HANSOME

(a) HANSOME agent adapts its plan with hierarchical planning. (b) DreamerV3 gets stuck.

Figure 4: Performance comparison between HANSOME and DreamerV3 when facing an obstacle.
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against HANSOME without intention sharing. The metrics in Table 3 showcase that HANSOME
significantly reduces collision rates by 18%− 34% via intention sharing and improves efficiency by
11%− 20% indicating more confident policies.

4.3 ABLATION OF HIERARCHICAL PLANNING

The hierarchical planning capability of HANSOME allows it to re-plan and navigate flexibly and
efficiently through complex traffic scenarios. This is partly demonstrated in Section 4.1. Here,
we evaluate HANSOME on ObstacleBypass to further highlight its advantages. Figure 4a
showcases how the agent smartly re-plans to deviate from its destination lane and swiftly merges
back. For comparison, we trained a DreamerV3 agent to follow the planned route on BEVs, similar
to SEM2 (Gao et al., 2022) and Think2Drive (Li et al., 2024). Since such agents are trained to follow
routes given by static CARLA map topology instead of planning their own routes, they find it hard to
initiate temporary deviation from the original route and return later, as demonstrated by the agent
standing still in front of the obstacle in Figure 4b. See Figure 8 in the appendix for another example
where HANSOME actively re-plans to avoid collisions.

4.4 ABLATION OF ADASMO

50K 100K 150K 200K 250K 300K 350K 400K
Step

250
0

250
500
750

1000
1250
1500

Re
wa

rd

Adaptive
Non-adaptive

Figure 5: Entropy-controlled adaptive scalarization
vs. vanilla scalarization (non-adaptive)

We propose AdaSMO to address the chal-
lenges introduced by multi-objective optimiza-
tion, specifically the oscillation between Pareto-
optimal points during hierarchical policy train-
ing. In this ablation study, we compare the train-
ing performance of AdaSMO with the vanilla
multi-objective approach. As shown in Figure 5,
the vanilla approach converges prematurely to
a local optimum at approximately 100K train-
ing steps, while AdaSMO continues to learn and
achieves a significantly higher reward. This im-
provement is attributed to AdaSMO’s strategy of prioritizing lower-level policy learning while
enabling extensive exploration of the higher-level policy during initial training. Exploration gradually
decays as the lower-level policy stabilizes. Sharp increases in reward at around 70K and 150K steps
highlight AdaSMO’s effectiveness in adjusting the action entropy to optimize learning dynamics.

5 DISCUSSION

We propose HANSOME, a WM-based hierarchical planning framework that mirrors the human
approach of decomposing driving behaviors into different levels of abstraction and using turn signals
to inform other drivers. HANSOME seamlessly integrates hierarchical planning with semantic
communication using visual and textual information. The higher-level policy generates text-based
intentions to guide the lower-level policy and to communicate with other agents. HANSOME
employs a novel adaptive approach, AdaSMO, to tackle the challenging multi-objective optimization
in hierarchical planning. Through WM-based RL, HANSOME learns both higher-level and lower-
level policies from scratch within the WM’s imagination, mastering complex driving tasks and
effectively navigating dense traffic. Extensive experiments demonstrate that HANSOME outperforms
state-of-the-art WM-based RL algorithms and enhances traffic safety and efficiency through its
hierarchical planning and semantic communication capabilities.

We further discuss our ego-centric training algorithm in Appendix B. Multi-agent RL is notoriously
difficult to train due to intertwined dynamics (e.g., when poor initial policies send inconsistent
messages that misaligned with the agents’ behaviors), making it difficult for others to learn effec-
tively from them. However, by utilizing ego-centric learning with semantic communications, our
experiments show that HANSOME successfully learns during training and generalizes to multi-agent
execution to some extent. We observe that multiple HANSOME agents interact and negotiate with
other HANSOME agents or rule-based agents through semantic communications in mixed-agent
high-dimensional environments. While HANSOME demonstrates promising potential in multi-agent
tasks, future studies are needed to investigate the multi-agent RL training.
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Ethics Statement Our research presents HANSOME, a world-model-based hierarchical planning
framework that integrates semantic communication to enhance autonomous driving in mixed traffic
environments. In line with the ICLR Code of Ethics, we have considered the ethical implications
of our work. Our research does not involve human subjects or sensitive personal data; all models
are trained from scratch using in CARLA simulation. By adhering to ethical principles, we aim to
contribute positively to autonomous driving, fostering advancements that are socially responsible and
beneficial to society.

Reproducibility Statement We ensure reproducibility by submitting the source code of
HANSOME as supplementary materials. The source code provides the model implementation,
the CARLA benchmark implementation, and all the model hyperparameters and task configurations
needed to reproduce the results shown in the paper. Instructions for running training and evaluation
are also included in our code’s documentation. The model settings and hyperparameters are presented
in Appendix F; AdaSMO training and evaluation processes are discussed in Appendix D; the task
configurations for CARLA simulation and all task benchmarks are showcased in Appendix E.
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Appendix

A FURTHER DISCUSSIONS

Customized CARLA Benchmarks. It is a common practice for WM-based online RL to customize
CARLA scenarios to test their algorithms. SEM2 (Gao et al., 2022) and Iso-Dream (Pan et al., 2022)
uses a task in Town03 to let the agent maximize rewards within 1000 steps and avoid collisions along
the way. SEM2 uses 100 vehicles, and Iso-Dream uses 20 vehicles for training and 10 vehicles for
testing. LILI (Xie et al., 2021) customizes a task where ego vehicle has to avoid an aggressive vehicle
when moving forward to verify its opponent modelling.

Comparison with Multi-Agent RL. Multi-agent RL (MARL) with communication has been
extensively studied (Zhu et al., 2022), enabling RL agents to share past observations (Sukhbaatar
et al., 2016), actions (Peng et al., 2017), or intentions (Kim et al., 2020). However, MARL often
struggles with tasks such as autonomous driving, which take place in high-dimensional environments
with complex dynamics. Additionally, MARL faces challenges due to the co-evolution of policies,
which causes non-stationarity and hinders effective learning when agents interact with one another.
To avoid these problems, we adopt ego-centric learning to enable policy learning with lightweight
communication in multi-agent systems. We discuss details of ego-centric learning in Appendix B.
Furthermore, our experiments demonstrate that, although HANSOME learns in an ego-centric manner,
it generalizes to multi-agent scenarios that include a mix of HANSOME agents and rule-based agents
to some extend.

Comparison with Large Language Models (LLMs) for Autonomous Driving. Recent studies
have explored the application of LLMs in autonomous driving (Yang et al., 2023), such as Driv-
eLM (Sima et al., 2023), DriveVLM (Tian et al., 2024), Dilu (Wen et al., 2023), GPT-Driver (Mao
et al., 2023), and DriveGPT4 (Xu et al., 2024). For instance, DriveLM and DriveVLM optimize
natural language processing metrics by comparing scene descriptions and analyses with ground-truth
annotations, such as driving captions or visual question answering, utilizing GPT-based models. Their
“hierarchical planning” involves generating action descriptions from text prompts and converting
these descriptions into waypoint tokens. However, this waypoint tokenization relies on trajectory
statistics from training data, and there is no actual control to execute the plan in closed-loop settings.
In contrast, LMDrive (Shao et al., 2024) is a closed-loop approach, where the higher-level instruc-
tions are provided as inputs for the vehicle to follow. PlanAgent (Zheng et al., 2024) introduces
a chain-of-thought module to understand scenes and plan routes with text prompts. HANSOME’s
models are significantly more lightweight, comprising approximately 30 million parameters, en-
hancing its practicality for real-time inference. HANSOME learns both higher-level and lower-level
policies from scratch within the WM’s imagination, and evaluate policies in a closed-loop manner.
Its higher-level policy generates semantic intentions without depending on prior knowledge from
LLMs or trajectory statistics in datasets. Furthermore, LLM-based approaches typically focus on
processing and understanding natural language inputs to reason and inform driving decisions, which
may not encompass the full spectrum of data required for autonomous driving. HANSOME, however,
integrates image inputs directly into its learning and decision-making process without intermediate
text prompts and outputs, enabling a more holistic understanding of the driving environment and
enhancing its ability to make informed decisions.

End-to-End (E2E) Autonomous Driving and Benchmarks. Autonomous driving has witnessed
rapid growth recently thanks to the advacement of E2E approaches (Chen et al., 2023). Unlike
conventional approaches that employ a modular design and separate perception, prediction, planning
modules, E2E approaches aim at producing driving plans or actions directly from raw sensor data
inputs. Prior studies can be roughly categorized into two folds: imitation learning (IL) (Chen et al.,
2020; Prakash et al., 2020; Zhang & Cho, 2017; Shao et al., 2023; Chitta et al., 2022; Hu et al., 2018),
and reinforcement learning (RL) (Li et al., 2024; Gao et al., 2022; Zhang et al., 2021; Chekroun et al.,
2023; Toromanoff et al., 2020; Zhang et al., 2022) methods. Several open-loop benchmarks were
developed to test E2E approaches, including CARLA (Dosovitskiy et al., 2017), nuScenes (Caesar
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et al., 2020), Argoverse (Chang et al., 2019), Waymo (Schwall et al., 2020), and nuPlan (Caesar
et al., 2021). Recently, closed-loop benchmarks like CARLA have become more recommended for
research (Chen et al., 2023), as there is no strong evidence to suggest that good open-loop results
correlate with good closed-loop performance. Dreamer-style works (Gao et al., 2024; Li et al.,
2024; Pan et al., 2022), due to their interactive demands for online RL, often use CARLA as a
closed-loop benchmark. CARLA allows flexible control over environments and background traffic,
which is essential for evaluating HANSOME, as it requires multi-agent interactions and semantic
communications in complex, dense traffic scenarios.

Comparison with Hierarchical Planner in Embodied AI. Our related work discussion on hierar-
chical planning focuses on reinforcement learning, as it aligns with our approach. We want to further
discuss the advancements in embodied AI community that enables the agent to plan over language
abstractions, typically through Large Language Models (LLMs). HiP (Ajay et al., 2024) uses LLMs
to construct symbolic plans, and trains a visual model, an action model, jointly to solve long-horizon
tasks. VLP (Du et al., 2023) uses vision-language models as both policies and value functions; a
text-to-video model is trained to generate video plans that illustrate how to complete the final task.
Unlike these embodied AI works, HANSOME considers environments where heterogeneous agents
communicate for better planning. Moreover, HANSOME is a lightweight online RL framework that
does not rely on offline data or expert demonstrations. It has 30 million parameters, significantly
fewer than large vision or language models in embodied AI research, which can be critical to fulfill
low-latency demands of AVs.

An Example of Multi-Objective Optimization View for HRL In principle, the training of
hierarchical planning can be viewed as a multi-objective optimization problem, with two objectives
being to maximize the reward of the higher-level policy and the lower-level policy, and there are trade-
offs between the two objectives in general. For instance, the higher-level policy may plan sophisticated
routes involving frequent lane changes and overtaking maneuvers to reach the destination faster,
without considering whether the lower-level policy can realistically execute such complex maneuvers,
leading to poor lower-level performance. On the other extreme, a poor higher-level policy may adhere
to simplistic plans like a straight-line path, so that the lower-level policy can achieve nearly perfect
performance in following just a straight line.

B EGO-CENTRIC LEARNING

A challenge to address for HANSOME is the source of shared intentions during training. A straight-
forward approach is to spawn multiple agents in the environment, each independently controlled by
the hierarchical policy, and allow them to communicate with each other. However, the main drawback
of this approach is that these agents will initially not follow their generated intentions due to the
lack of a good lower-level policy. Since the WM needs to predict the trajectories of background
vehicles based on their shared intentions, any misalignment between the agents’ behavior and their
intentions will mislead the WM in understanding these intentions. Only when the lower-level policy
is sufficiently good at following intentions can the WM begin to learn the correct interpretation of
each intention, enabling the agent to use this information for better planning.

To mitigate this issue and accelerate the training process, we use a distributed learning method to train
HANSOME. In particular, the background vehicles that the agent interacts with are controlled by
CARLA’s autopilot (Dosovitskiy et al., 2017), a rule-based autonomous driving algorithm. Although
not perfect, the autopilot can primarily follow a randomly generated route. Their intentions and
planned routes can be extracted from CARLA’s traffic manager and shared with our agents. In this
way, the agent can simultaneously learn to follow the higher-level intentions it generates and utilize
the shared intentions from other vehicles for better planning. Despite being trained in a distributed
manner, our experiments demonstrate that the agents generalize well in multi-agent environments
(see Figure 6).

Generalization to Multi-agent Learning Previous E2E autonomous driving works in CARLA (Li
et al., 2024; Gao et al., 2021) train and evaluate the ego agent in environments where the background
vehicles are controlled by rule-based CARLA autopilots that have privileged information to CARLA
environments.
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In this section, we are showing that through ego-centric learning and semantic communications,
HANSOME agents can generalize to multi-agent environments where multiple HANSOME agents
interact and share information to negotiate with others.

As shown in Figure 6 and Figure 7, we test the behaviors of two HANSOME agents, which are
both trained in an ego-centric learning manner, but not in the multi-agent environment, when they
meet and want to change to each other’s lane. They illustrate interesting bargaining process for the
priority of performing lane change. Specifically, they are spawned at the leftmost and rightmost
lane respectively, and are required to change to each other’s lane. When they meet at the middles
lanes where their planned routes cross, the higher-level planners of both agents keep re-planning new
trajectory to avoid possible collision and jam. Eventually, one agent slows down to make room for
another and they successfully complete the task.

(a) Perspective of agent 1.

(b) Perspective of agent 2.

Figure 6: Two HANSOME agents interact with each other and background vehicles in the
DenseTraffic task. They are both trained in an ego-centric learning manner, but not trained in
the multi-agent environment. They are spawned at the leftmost and rightmost lane respectively, and
are required to change to each other’s lane. When they meet at the middles lanes where their planned
routes cross, he higher-level planner of both agents keeps re-planning new trajectory to avoid possible
collision and jam. Finally, they successfully complete the task.

(a) Perspective of agent 1.

(b) Perspective of agent 2.

Figure 7: Another example of ego-centric learning agents interaction in DenseTraffic task.
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C DRIVING DEMOS

DenseTraffic Figure 8 shows a case where HANSOME re-plans to avoid the collision. In the first
frame, it intends to change to the right lane. In the second frame, however, it detects a vehicle behind,
so it cancels the plan and keeps going straight until the vehicle passes, allowing it to safely change the
lane in the last two frames. Figure 9 shows some cases where agents without hierarchical planning
fail.

Figure 8: Hierarchical planning enables vehicle re-plan and avoid obstacles adaptively.

(a) Vehicle without hierarchical planning is out of
lane when avoiding collision.

(b) Vehicle without hierarchical planning collides
with background vehicle.

(c) Vehicle without hierarchical planning is not sure and keeps waiting for a long time when changing lane.

Figure 9: Examples of vehicle without hierarchical planning fails to deal with lane change.

LeftTurn and RightTurn Figure 10 and Figure 11 show how semantic communications help the
agent succeed in penetrating the car flows to make turns at the crossing. Taking Figure 10a as an
example, the car flow is too dense for the ego agent to cut in. However, when the next vehicle shows
the intention to turn right, making room for the ego agent, it successfully cuts into the flow without
collision. In the case as Figure 10b when the intentions are not shared, the ego agent learns to predict
the intentions of background traffic based on their behavior. Without explicit information about
the intentions of background traffic, the ego agent learns a conservative policy, resulting in reduced
safety and efficiency. Nonetheless, the ego agent can still cut into the flow and navigate through the
intersection. This demonstrates that HANSOME is a robust framework that does not entirely depend
on intention sharing, making it dependable in realistic environments.
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(a) Right turn with semantic communication.

(b) Right turn without semantic communication.

Figure 10: The HANSOME agent with semantic communication can find the proper timing to cut
into the traffic flow when leading vehicle turns right and will not interfere with it, whereas the agent
without semantic communication learns a conservative policy with a relative lower success rate to
complete the task.

(a) Left turn with semantic communication.

(b) Left turn without semantic communication.

Figure 11: The HANSOME agent with semantic communication can find the proper timing to cut into
the traffic flow based on shared intentions. In contrast, the agent without semantic communication
has lower success rate and leads to collision occasionally.

D TRAINING & EVALUATION

Our baseline and HANSOME agents were trained on NVIDIA A100 GPUs. Each agent requires
around 20 GB memory, including 3-4 GB for CARLA. Due to CARLA’s GPU resource consumption,
it takes around 15 GPU hours to reach 150k steps for our most challenging DenseTraffic task
with 300 vehicles, and 15 GPU hours to reach 400k steps for other tasks with less traffic. For each
task, we use the same training step budget for all HANSOME and all the baseline models.

The model is trained through an online manner where the agent has to learn from scratch without any
expert demonstrations. The communication generation and understanding is also learned online.

To ensure fair comparison, we enable semantic communications of all baseline models, identical
RSSM settings in WMs as shown in Appendix F, CARLA simulation and task configurations as
shown in Appendix E.

For evaluation, we collected ego vehicle rollouts in the online environments for 300 episodes with 3
different random seeds to compute the performance metrics, and confidence intervals.
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D.1 ADASMO LEARNING

There are two parameters, unimix, and entropy scaling factor, that can be used to control entropy of
the higher-level policy. We initially apply a unimix of 1.0 (equivalent to an infinite S) to allow the
higher-level policy to conduct fully random exploration, enabling the lower-level to explore each
possible intention sufficiently. Heuristically, when the overall rewards increase, S becomes smaller
and gradually reduces to 1.

Adaptive Learning Processes. AdaSMO adjusts higher-level policy exploration by accounting for
the proficiency of the lower-level policy. This approach is inspired by the human learning process,
which begins with mastering basic skills before progressively integrating them into more complex
tasks. Naturally, reward signals are used as a measure of policy quality to guide this adaptation. We
evaluate the lower-level policy’s skill level through the average reward R̄ over the recent P episodes.
Let B1, B2, ..., Bn be the thresholds for certain R̄. The entropy scaling factor S is adjusted based on
thresholds defined as follows:

S(R̄) =



S∞, if R̄ ≤ B1

S1, if B1 < R̄ ≤ B2

S2, if B2 < R̄ ≤ B3

...
Sn, if R̄ > Bn

(6)

Reward signals in reinforcement learning are inherently task-specific. AdaSMO can be viewed as
an adaptive exploration adjustment mechanism, with its parameters determined by the nature of
the task domain and the current policy quality. This concept is analogous to adaptive learning rate
adjustment Liu et al. (2019), where learning rates are tailored to the datasets on which neural networks
are trained, and current performance.

We present an example set of thresholds and parameter adjustments for each stage in Appendix D.1.
It is important to note that AdaSMO is robust to variations in these parameters—just as different
learning rate adjustment strategies can still yield optimal policies, albeit with varying convergence
speeds. We will discuss this effect further in the context of the Warm-Up concept below.

AdaSMO Warm-Up We introduce the concept of warm-up, through which the lower-level policy
is prioritized during training while the higher-level policy remains random exploration. It is critical
to specify a proper timing to terminate the warm-up. We heuristically use the extrinsic reward to
threshold the warm-up.

Specifically, we experimented with thresholds 80 and 100 to terminate the warm-up at 30K (red
curve) and 70K (blue curve) steps, respectively. We notice that adjusting the warm-up termination
timing has a significant influence on AdaSMO training speed. During warm-up, the higher-level
policy keeps a high degree of exploration. This enables lower-level policy being trained to follow
instructions from higher-level. If the warm-up is terminated too early, the lower-level policy has not
been well trained for lane-following. Thus, the higher-level policy, whose training largely depends on
lower-level policy performance, cannot improve immediately. The significant delay after warm-up
termination and before reward curve rises up can be observed on red curve in Figure 12. The warm-up
terminates at 30K steps while the reward grows only after 150K steps. In the contrast, a proper
warm-up termination timing results in well trained lower-level policy. The higher-level policy can be
trained based on a stable lower-level lane-following policy and improved rapidly, as the rapid growth
at 70K steps shown on the blue curve. However, in both situations, the reward converges to the same
level, which means our method is robust to the hyper-parameters, while a good set of parameters can
significantly speed up training.
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Figure 12: The effect of warm-up termination timing on AdaSMO training.

Threshold Adjusted Parameters
Warm-up (Initial Parameters)

0

Unimix = 1.0
Horizon = 128
Entropy Scale = 1.0
Allow Replanning = False
Vehicles = 50

After 100 Reward

> 100

Unimix = 0.0
Horizon = 16
Entropy Scale = 3.0
Allow Replanning = True
Vehicles = 300

After 120 Reward
> 120 Entropy Scale = 1.5

After 250 Reward
> 250 Vehicles = 300, Allow Replanning = True

After 450 Reward
> 450 Entropy Scale = 1.0

Table 4: Adaptive parameter adjustment based on average rewards.

D.2 ACTION SPACE

We include the action space settings in Table 6. Here is a detailed explanation of the action space
design.

Intentions. In CARLA map topology, there are six driving commands: three for movement on lanes
(follow lanes, change to left lane, or change to right lane) and three for movements at intersections
(go straight, turn left, or turn right). HANSOME uses a set of driving primitives in three directions as
the higher-level intention space I = Straight, Left,Right. These intentions cover possible driving
behaviors on both lanes and intersections. This intuitive setting also aligns with how human drivers
use turn signals with three states (left . It is also a common practice in the AV community; for example,
VAD (Jiang et al., 2023) uses going straight, left, or right as the 3-dimensional high-level action
space. The high-level action of VAD is obtained through pre-determined routes, while HANSOME
can generate intentions on its own.

Vehicle Controls. The vehicle controls given by the lower-level policy use a 5× 3 dimensional
one-hot encoding, where there are 5 discrete steering values and 3 acceleration values. This effectively
reduces the search space while allowing the agent to perform various tasks.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 5: Comparison of success rates across different scenarios and methods.

HANSOME DreamerV3-C DreamerV2-C Director-C

DenseTraffic 88.17% ± 1.08% 40.66% ± 2.78% 48.89% ± 4.44% 66.67% ± 6.67%
Roundabout 89.46% ± 3.10% 84.52% ± 2.38% 88.89% ± 3.14% N/A
LeftTurn 85.19% ± 4.14% 80.16% ± 3.46% 64.52% ± 3.65% N/A
RightTurn 94.27% ± 0.63% 90.42% ± 0.61% 72.49% ± 3.85% N/A

Action Space. The higher-level one-hot intention and the lower-level one-hot control are then
concatenated to form a two-hot action. We use two-hot action instead of one-hot action for the
two-level policy to mitigate the sparsity of the action space.

D.3 COMMUNICATION SETTINGS

Given our action space discussed in Appendix D.2, the intention messages are formatted in one-
hot encoding for each sender. When multiple agents send messages, the message space can grow
exponentially with the number of agents communicating with the ego vehicle. Therefore, it is
crucial to introduce a strategy to communicate with the most relevant agents. Determining ”whom to
communicate with” in multi-agent environments is a highly non-trivial problem (Zhu et al., 2022). A
common approach is to select nearby agents (Yun et al., 2021). In our work, we adopt this strategy by
selecting the three nearest vehicles for all tasks. This approach is intuitive in human driving scenarios
and performs reasonably well in our experiments. Investigating more complex communication
protocols can be explored in future research. For different higher-level intentions, the ego agent may
be interested in agents from different directions. For example, when the intention is to change lanes,
the ego vehicle primarily focuses on the vehicle ahead or the nearest vehicles in neighboring lanes.

D.4 OVERALL PERFORMANCE

In addition to Section 4, we present a comprehensive performance comparison between HANSOME
and baseline models across all tasks in Table 5. This includes an additional challenging Roundabout
scenario, which features aggressive and dense traffic. We also report baseline performance on
LeftTurn and RightTurn, complementing the ablation study of HANSOME on these tasks.

We follow the same task and model configurations, as well as hyper-parameters, detailed in Ap-
pendix E and Appendix F. Baseline models adhere to their original implementations, sharing hyper-
parameters for common components, and no additional hyper-parameter tuning was performed for
any models on these tasks. Director does not actively explore during training and fails to complete
the task within the same 600k training step budget, during which other models have already acquired
the necessary skills. Due to its lower sample efficiency and the significantly longer time it requires to
converge on these tasks, we mark its results as N/A.

E TASK CONFIGURATIONS

We use the same CARLA simulation and task settings across all the baselines.

Table 6 shows the configurations of CARLA simulation and our designed tasks, including a generic
reward function that applies to all the tasks, and task-specific configurations such as traffic flow
density. Note that the route following rewards are used across different baselines and HANSOME,
while HANSOME reward is degraded when the lower-level is deviating from the higher-level policy’s
planned intentions.

In LeftTurn and RightTurn, all the background vehicles are aggressive autopilots in CARLA;
the ego agent is at the crossing and must turn left or right, the higher-level policy does not take effect
in this case since the turn route is enforced; the ego agent has to identify the optimal timing to merge
in the traffic flow. In DenseTraffic, we use the CARLA map Town04, spawn and manage 300
background vehicles using TrafficManager.
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Name Value
Simulation

FPS 0.1s
BEV size 128× 128

Desired speed 4 m/s
Maximum episode length 1000

Action Spaces
Distribution Two-hot encoding

Acceleration space 0,±2
Steering space 0,±0.2,±0.6
Intention Space go straight, left, right

Reward Scales
Reaching waypoint 2.0

Parallel speed 0.5
Perpendicular speed −1.0

Collision −30
Deviation from waypoints −3.0
Deviation from intentions 2.0

Invalid intention −5.0
Reaching destination 50.0

DenseTraffic
Background vehicle number 300

LeftTurn
Distance between cars in traffic flows 6m to 8m
RightTurn
Distance between cars in traffic flows 6m to 8m
ObstacleBypass

Ego’s distance to obstacle 40m

Table 6: Task configurations.

F MODEL CONFIGURATION

We use the same MLP and CNN sizes for HANSOME and all baseline models. To ensure fair
comparison over baselines, we use “small” size DreamerV3 with original hyper-parameters from
their paper (Hafner et al., 2023). The difference in network architecture lies in actor-critic - Dreamers
are single actor-critic; Director uses two actor-critics and each contains two MLPs for actor and critic;
HANSOME is a dual-head actor with a critic. The dual-head actor produces two-hot actions for each
level to mitigate the sparsity of joint actions and allow WMs to imagine using both levels of actions.

Director’s lower-level policy is driven by intrinsic rewards based on the cosine similarity of and the
current observation image, and goal image planned by the higher-level every 16 steps. However,
measuring goal completion through image similarity is not applicable to many of the tasks. Even
though images can visualize a goal, they do not imply executable actions in a straightforward way,
unlike HANSOME’s intentions that enforce text semantics.
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Name Value
General

Batch size 16
Batch length 64

Replay buffer size 106

Activation SiLU
CNN layer 32
MLP layer 2

MLP hidden units 512
World Model

Number of latents 32
Classes per latent 32

Memory units of RSSM 512
Reconstruction loss scale 1.0

Dynamics loss scale 0.5
Representation loss scale 0.1

Learning rate 10−4

Adam epsilon 10−8

Actor Critic
Imagination horizon 15

Return lambda 0.95
Return normalization limit 1
Return normalization decay 0.99

Actor entropy scale 3× 10−4

Learning rate 3× 10−5

Adam epsilon 10−5

Gradient clipping 100

Table 7: Parameters for HANSOME and Dreamers.

G MORE ABSTRACT OVERVIEW OF HANSOME

We provide another high-level illustration in Figure 13 to showcase the HANSOME agents’ inter-
actions through seamless integration of semantic communication and hierarchical planning. Visual
information is shared to provide enriched BEVs in complex traffic scenarios. Agents fuse and
leverage enriched BEVs and shared intentions (text instructions) from other agents to predict back-
ground agents’ trajectories and thereby enhance safety. Aside from aiding other agents’ planning, the
intention can also aid lower-level policy by providing guidance towards the given destination.

World model 
encoder

Latent 
representation

World model 
encoder

Latent 
representation

Visual 
information

Agent 2

Agent 1

Lower-level 
control

Lower-level 
control

Text instruction

Text instruction

Visual 
information

Higher-level 
intention

Higher-level 
intentionSemantic 

communication

Semantic 
communication

Figure 13: Agents communicate through two common “languages”: high-level text instruction for
sharing intention information and lower-level BEV semantics for sharing visual information.
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