
Synthesizing Video Trajectory Queries

Stephen Mell
University of Pennsylvania
sm1@cis.upenn.edu

Favyen Bastani
Massachusetts Institute of Technology

favyen@csail.mit.edu

Steve Zdancewic
University of Pennsylvania
stevez@cis.upenn.edu

Osbert Bastani
University of Pennsylvania

obastani@seas.upenn.edu

Abstract

We propose a novel framework called QUIVR for example-based synthesis of
queries to identify events of interest in video data; these queries are essentially
regular expressions that operate over object trajectories predicted by a deep ob-
ject tracking model. For instance, QUIVR can be used to identify instances of
human driving behaviors such as lane changes, which are important for designing
planning algorithms for autonomous cars. To make the synthesis efficient, we use
overapproximations to prune invalid branches of the query search space, including
using a quantitative variant of our query semantics to efficiently prune the search
space over parameter values. We also propose two optimizations for speeding up
the execution of our queries. Finally, we leverage active learning to disambiguate
between multiple consistent candidate queries by collecting additional labels from
the user. We evaluate QUIVR on a benchmark of 11 tasks, and demonstrate that it
can synthesize accurate queries for each task given just a few examples, and that
our pruning strategy and optimizations substantially reduce synthesis time.

1 Introduction

An important application of deep learning is to try and classify behaviors in trajectory data. For
instance, understanding behaviors of human drivers and pedestrians is critical for designing controllers
for autonomous cars that interact with humans [1, 2, 3]. Thus, engineers must identify examples
of driving patterns in the data to design and debug algorithms that can plan for various scenarios;
furthermore, the autonomous car must detect patterns to react to them. There is also interest in
querying traffic video data to quantify the frequency of potentially dangerous situations such as cars
driving too close together [4] or stopping in the middle of the road [5]. Trajectory classification can
also be applied to understanding animal behaviors [6, 7, 8] and to sports analytics [9, 8].

We consider the problem of classifying trajectories that have been extracted from video data. In
particular, there has been a great deal of interest in designing systems for executing queries over
trajectory data to identify behaviors of interest [10, 11, 12, 13, 14, 15, 16, 17]. However, writing these
queries can be challenging for end users, especially since they often contain real-valued parameters
that must be tuned based on the structure of the underlying data.

To address this challenge, we propose QUIVR, which consists of a novel language for querying object
trajectories in video data, together with an algorithm for synthesizing queries in this language from
just a few input-output examples. To enable efficient synthesis, QUIVR leverages strategies to identify
and prune inconsistent branches of the search space; importantly, it uses quantitative semantics to help
prune the search space over real-valued parameters of the query. It also uses sparse matrix semantics
to further improve scalability. Finally, given only a few examples, there are often multiple consistent

35th Conference on Neural Information Processing Systems (aiplans 2021), Sydney, Australia.

(a) (b)

〈True〉∗ ; 〈InLane1〉 ; 〈True〉∗ ; 〈InLane2〉 ; 〈True〉∗

Figure 1: (a) A video frame from the traffic camera, along with the object trajectories (red) and the
manually annotated lanes (black). (b) The trajectories selected by the query at the bottom. The query
at the bottom is designed to select cars turning at the intersection.

queries; thus, QUIVR leverages active learning to disambiguate among these queries. Finally, we
evaluate QUIVR on a benchmark of 11 tasks, demonstrating that it can synthesize accurate queries
given just a few examples, that our pruning strategy and sparse matrix semantics substantially reduce
synthesis time, and that our active learning strategy quickly reduces ambiguity.

2 Overview

For the sake of concreteness, we consider a problem in autonomous driving, where an engineer
is designing a control algorithm for an autonomous car and would like to identify certain driving
patterns in video data. However, the techniques outlined here are applicable to sequential data more
broadly.

Video data. For simplicity, we focus on video data gathered from fixed-position traffic cameras.
Such data has recently been identified as a rich source of driving behaviors [18, 19, 17]. For instance,
in our evaluation, we use the YTStreams dataset [14], which includes 60 hours of video from several
traffic cameras collected from live YouTube feeds. The engineer may want to write queries to identify
driving patterns specific to the lanes visible in a particular video. For example, a single frame from
such a video is shown in Figure 1 (a); as can be seen, we have already used an off-the-shelf object
tracker to identify all object trajectories of cars in the data [20], shown in red.

Query language. We propose a novel language for expressing queries over such patterns. A query
takes as input a representation of a trajectory as a sequence of object states (e.g., position, velocity,
and acceleration) in successive frames of the video, and outputs whether the trajectory matches
its semantics. Our language is based on regular expressions—in particular, Kleene algebras with
tests [21]. Thus, a query is a composition of a user-extensible set of predicates using the conjunction,
disjunction, sequencing, and iteration (Kleene star) operators

Q ::= ϕ | Q ∧Q | Q ∨Q | Q ; Q | Q∗ | (Qk := Q ; . . . ; Q).

A key feature of our language is that it includes predicates that operate over multiple frames. Figure 1
shows a query for identifying cars changing lanes. We provide additional details on our query
language in Section A.

Predicates. Along with providing video data, the engineer uses QUIVR to develop a set of predicates
that select trajectories satisfying relevant semantic constraints. QUIVR will compose these predicates
to synthesize queries, and the predicates can be reused to synthesize multiple queries. In Figure 1 (a),
the engineer has manually annotated the lanes of interest in this video (black), to specify four InLaneK
predicates that select trajectories of cars driving in each lane K visible in the video. Predicates may
be configured by real-valued parameters. For example, the query

〈InLane1〉10 ∧ 〈MinAvgAccelθ〉

searches for trajectories where the car stays in lane 1 for 10 frames, and due to the predicate
MinAvgAccelθ, that the car has an average acceleration of at least θ across those same 10 frames.

2

Algorithm 1 Compute all queries Qθ ∈ Q̄ consistent with input-output examples W ⊆ W .
1: procedure SYNTHESIZE(W)
2: `0 ← {??}
3: `∗ ← ∅
4: while `0 6= ∅ do
5: Q← Pop(`0)

6: if ¬ψ#
W (Q) then

7: continue
8: else if Q ∈ Qsketch then
9: `∗ ← `∗ ∪

{
Qθ | θh ∈ Θh ∩Θ#

h (Q,W)
}

10: else
11: `0 ← `0 ∪ Children(Q)
12: end if
13: end while
14: return {Qθ ∈ `∗ | ψW (Qθ)}
15: end procedure

While QUIVR includes a wide range of built-in operations that can be reused to specify video-specific
predicates, a key feature of our framework is that the set of available predicates is highly extensible.
In particular, the user can provide their own predicates as long as they provide their semantics;
otherwise, there are no constraints on them.

Multi-object queries. So far, we have focused on queries that identify trajectories by processing
each trajectory in isolation. A key feature of our framework is that users can express queries over
multiple trajectories—for example,(

〈InLane1(B)〉∗ ∧ 〈ChangeLane2To1(A)〉
)

; 〈InFront(A,B)〉.

This query says that car B is in lane 1 while car A changes from lane 2 to lane 1, and car A ends up
in front of car B. Note that the predicates now include variables indicating which object they refer to;
in addition, it also includes the predicate InFront(A,B) that refers to multiple trajectories.

Synthesis. To specify a driving pattern, the engineer provides a small number of initial input-output
examples, including both positive examples (i.e., trajectories they want to select) and negative
examples (i.e., trajectories they want to omit). Then, QUIVR synthesizes a query that correctly labels
these examples. In Figure 1 (b), we show the result of executing the query shown at the bottom,
which is synthesized to identify left turns in the data.

The initial synthesis is done via top-down search over a syntax of partial queries

Q ::= ?? | ϕ?? | ϕ | Q ∧Q | Q ∨Q | Q ; Q | Q∗.

Note that holes (denoted ??) can be over either expressions or predicate parameters.

Optimizations. Our synthesis algorithm uses standard techniques to prune the search space over
expressions, and we introduce a novel quantitative semantics for queries that allow us to efficiently
select parameter values. At a high level, for each positive example of a trajectory, it evaluates the
partial query on this trajectory while making optimistic assumptions about the value of each hole; if
the query still evaluates to false, then there can be no way of completing the partial query that results
in a valid concrete query. A similar strategy can be used for negative examples, using pessimistic
assumptions instead of optimistic ones. See Algorithm 1 and Section B for details.

Active learning. Typically, there are many queries consistent with the initial input-output examples.
To disambiguate among these queries, our algorithm actively asks the engineer to label additional
trajectories as positive or negative. While it may be hard for users to identify positive examples in the
video data, it is usually easy for them to determine whether a given trajectory is positive or negative.
Our algorithm uses an active learning strategy that greedily selects the next trajectory to label to be
the one that most reduces uncertainty in expectation [22, 23, 24]; see Section B for details.

3

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Ours

Random

Step Count

F
 1
 S

c
o
r
e

Figure 2: F1 score as a function of the number of user labels for query A from the Warsaw 1-object
dataset. The line is the median F1 score over all queries consistent with examples so far; the shaded
region is the 25th to 75th percentile of F1 scores.

Scenario Boolean Quantitative Sparse GPU

Shibuya, 1-object 287 46 38 22
Warsaw, 1-object 184 31 33 20
Warsaw, 2-object 5277 836 538 –

Table 1: Running time of synthesis, in seconds, for the Boolean, quantitative, and sparse semantics,
with 0 steps of active learning. For the GPU results, we use the quantitative semantics. Missing
results indicate an out-of-memory error. Results are each averaged over 3 random seeds.

3 Evaluation

To evaluate our synthesis procedure, we wrote 11 different queries across two different videos
(“Shibuya” and “Warsaw”). Five of the Warsaw queries were over pairs of objects and the others
were over a single object. For each query, all of the tracks in the dataset were given ground-truth
labels according to whether they matched the query or not. Tracks from the first half of each video
were used for training while those from the second half were used for testing. From these labeled
training examples, 2 positive and 10 negative examples were chosen at random. We then applied our
synthesis algorithm, followed by active learning. We provide detailed results in Section D.

Accuracy. With few initial examples (2 positive and 10 negative) and just 5 to 10 steps of active
learning, we are able to achieve near perfect accuracy on a held-out test set. Figure 2 shows the F1

score on this test set as the number of active learning steps increases, both for our active labeling
strategy and a random selection baseline.

Runtime. As shown in Table 1, our optimizations significantly speed up synthesis. In particular, the
quantitative semantics speeds up synthesis by almost an order of magnitude. The use of GPUs yields
further improvements, but occassionally lead to out-of-memory errors; when memory constraints do
not allow for GPUs, our sparse semantics provides the best performance.

4 Conclusion

We have proposed a novel framework for synthesizing queries over video trajectory data. Our language
is based on regular expressions, extended to include operators such as conjunction as well as predicates
over subsequences. Given only a few IO examples, our framework can efficiently synthesize queries
in our language consistent with those examples. When multiple consistent candidate queries are

4

found, our algorithm can also actively label additional examples to disambiguate between them. In
our evaluation, we demonstrate the effectiveness of our synthesis approach on a number of queries
that identify interesting driving behaviors.

Acknowledgments and Disclosure of Funding

We gratefully acknowledge support from DARPA HR001120C0015, NSF CCF-1917852, NSF
CCF1910769, and ARO W911NF-20-1-0080. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense, the Army Research Office, or
the U.S. Government. We thank the anonymous reviewers for their insightful and helpful comments.

References
[1] Dorsa Sadigh, S Shankar Sastry, Sanjit A Seshia, and Anca Dragan. Information gathering

actions over human internal state. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 66–73. IEEE, 2016.

[2] Dorsa Sadigh, Shankar Sastry, Sanjit A Seshia, and Anca D Dragan. Planning for autonomous
cars that leverage effects on human actions. In Robotics: Science and Systems, volume 2. Ann
Arbor, MI, USA, 2016.

[3] Edward Schmerling, Karen Leung, Wolf Vollprecht, and Marco Pavone. Multimodal probabilis-
tic model-based planning for human-robot interaction. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 1–9. IEEE, 2018.

[4] Jeffrey Wishart, Steven Como, Maria Elli, Brendan Russo, Jack Weast, Niraj Altekar, Emmanuel
James, and Yan Chen. Driving safety performance assessment metrics for ads-equipped vehicles.
SAE Technical Paper, 2(2020-01-1206), 2020.

[5] Favyen Bastani, Osbert Bastani, Arjun Balasingam, Songtao He, Ziwen Jiang, Radhika Mittal,
Mohammad Alizadeh, Hari Balakrishnan, Tim Kraska, and Sam Madden. Skyquery: Optimizing
video queries over uavs. In Onward!, 2021.

[6] David Tweed and Andrew Calway. Tracking multiple animals in wildlife footage. In Object
recognition supported by user interaction for service robots, volume 2, pages 24–27. IEEE,
2002.

[7] Margrit Betke, Diane E Hirsh, Angshuman Bagchi, Nickolay I Hristov, Nicholas C Makris,
and Thomas H Kunz. Tracking large variable numbers of objects in clutter. In 2007 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

[8] Ameesh Shah, Eric Zhan, Jennifer Sun, Abhinav Verma, Yisong Yue, and Swarat Chaud-
huri. Learning differentiable programs with admissible neural heuristics. Advances in Neural
Information Processing Systems, 33, 2020.

[9] Eric Zhan, Albert Tseng, Yisong Yue, Adith Swaminathan, and Matthew Hausknecht. Learning
calibratable policies using programmatic style-consistency. In ICML, 2020.

[10] Daniel Kang, Peter Bailis, and Matei Zaharia. Blazeit: optimizing declarative aggregation and
limit queries for neural network-based video analytics. Proceedings of the VLDB Endowment,
13(4):533–546, 2019.

[11] Daniel Y Fu, Will Crichton, James Hong, Xinwei Yao, Haotian Zhang, Anh Truong, Avanika
Narayan, Maneesh Agrawala, Christopher Ré, and Kayvon Fatahalian. Rekall: Specifying video
events using compositions of spatiotemporal labels. arXiv preprint arXiv:1910.02993, 2019.

[12] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, and Matei Zaharia. Jointly
optimizing preprocessing and inference for dnn-based visual analytics. arXiv preprint
arXiv:2007.13005, 2020.

[13] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. Model assertions for monitoring
and improving ml model. arXiv preprint arXiv:2003.01668, 2020.

5

[14] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mohammad Alizadeh,
Hari Balakrishnan, Michael Cafarella, Tim Kraska, and Sam Madden. Miris: Fast object track
queries in video. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 1907–1921, 2020.

[15] Favyen Bastani, Oscar Moll, and Sam Madden. Vaas: video analytics at scale. Proceedings of
the VLDB Endowment, 13(12):2877–2880, 2020.

[16] Oscar Moll, Favyen Bastani, Sam Madden, Mike Stonebraker, Vijay Gadepally, and Tim Kraska.
Exsample: Efficient searches on video repositories through adaptive sampling. arXiv preprint
arXiv:2005.09141, 2020.

[17] Favyen Bastani, Osbert Bastani, Arjun Balasingam, Songtao He, Ziwen Jiang, Radhika Mittal,
Mohammad Alizadeh, Hari Balakrishnan, Tim Kraska, and Sam Madden. Skyquery: Optimizing
video queries over uavs. 2019.

[18] A Robicquet, A Sadeghian, A Alahi, and S Savarese. Learning social etiquette: Human
trajectory prediction in crowded scenes. In European Conference on Computer Vision (ECCV),
2016.

[19] Julian Bock, Robert Krajewski, Tobias Moers, Steffen Runde, Lennart Vater, and Lutz Eckstein.
The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections.
arXiv preprint arXiv:1911.07602, 2019.

[20] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with a
deep association metric. In 2017 IEEE international conference on image processing (ICIP),
pages 3645–3649. IEEE, 2017.

[21] Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and
Systems (TOPLAS), 19(3):427–443, 1997.

[22] N Roy and A McCallum. Toward optimal active learning through sampling estimation of error
reduction. int. conf. on machine learning, 2001.

[23] Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Advances in neural
information processing systems, pages 337–344, 2005.

[24] Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu. Question selection for
interactive program synthesis. In PLDI, pages 1143–1158, 2020.

[25] Leslie G Valiant. General context-free recognition in less than cubic time. Journal of computer
and system sciences, 10(2):308–315, 1975.

[26] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. IEEE, 2013.

[27] Armando Solar-Lezama and Rastislav Bodik. Program synthesis by sketching. Citeseer, 2008.

[28] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[29] Favyen Bastani, Songtao He, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan, Sanjay
Chawla, Sam Madden, and David DeWitt. Roadtracer: Automatic extraction of road networks
from aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4720–4728, 2018.

[30] Songtao He, Favyen Bastani, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan, Sanjay
Chawla, and Sam Madden. Roadrunner: improving the precision of road network inference
from gps trajectories. In Proceedings of the 26th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages 3–12, 2018.

[31] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online and
realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP), pages
3464–3468, 2016.

6

[32] Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Eric Medvet, and Enrico Sorio. Auto-
matic synthesis of regular expressions from examples. Computer, 47(12):72–80, 2014.

[33] Mina Lee, Sunbeom So, and Hakjoo Oh. Synthesizing regular expressions from examples for
introductory automata assignments. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences, pages 70–80, 2016.

[34] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. Multi-modal synthesis of
regular expressions. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 487–502, 2020.

[35] Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni. Automatic repair of regular
expressions. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–29, 2019.

[36] Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Unsupervised learning by program
synthesis. In Advances in neural information processing systems, pages 973–981, 2015.

[37] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer
graphics programs from hand-drawn images. In Advances in neural information processing
systems, pages 6059–6068, 2018.

[38] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T Freeman, Joshua B
Tenenbaum, and Jiajun Wu. Learning to infer and execute 3d shape programs. arXiv preprint
arXiv:1901.02875, 2019.

[39] Halley Young, Osbert Bastani, and Mayur Naik. Learning neurosymbolic generative models via
program synthesis. In ICML, 2019.

[40] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a repl. In Advances in Neural Information
Processing Systems, pages 9169–9178, 2019.

[41] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In ICML, 2018.

[42] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via
policy extraction. In Advances in neural information processing systems, pages 2494–2504,
2018.

[43] Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
programmatic policies that inductively generalize. In International Conference on Learning
Representations, 2019.

[44] Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected program-
matic reinforcement learning. In Advances in Neural Information Processing Systems, pages
15752–15763, 2019.

[45] Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri.
Houdini: Lifelong learning as program synthesis. In Advances in Neural Information Processing
Systems, pages 8687–8698, 2018.

[46] Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani, and Isil Dillig.
Web question answering with neurosymbolic program synthesis. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementa-
tion, pages 328–343, 2021.

[47] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. ACM SIGARCH
Computer Architecture News, 41(1):305–316, 2013.

[48] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati.
Scaling up superoptimization. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 297–310,
2016.

7

[49] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, and Alex Aiken.
Optimizing dnn computation with relaxed graph substitutions. In Proceedings of the 2nd
Conference on Systems and Machine Learning (SysML’19), 2019.

[50] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard. Chisel:
Reliability-and accuracy-aware optimization of approximate computational kernels. ACM
Sigplan Notices, 49(10):309–328, 2014.

[51] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Optimizing synthesis with
metasketches. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 775–788, 2016.

[52] Aditya V Nori, Sherjil Ozair, Sriram K Rajamani, and Deepak Vijaykeerthy. Efficient synthesis
of probabilistic programs. ACM SIGPLAN Notices, 50(6):208–217, 2015.

[53] Swarat Chaudhuri, Martin Clochard, and Armando Solar-Lezama. Bridging boolean and
quantitative synthesis using smoothed proof search. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 207–220, 2014.

[54] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
ACM Sigplan Notices, 46(1):317–330, 2011.

[55] Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program
synthesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 107–126, 2015.

[56] John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations
from input-output examples. ACM SIGPLAN Notices, 50(6):229–239, 2015.

[57] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. In ICLR, 2016.

[58] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng. Program synthesis
using deduction-guided reinforcement learning. In International Conference on Computer
Aided Verification, pages 587–610. Springer, 2020.

[59] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis.
ACM SIGPLAN Notices, 50(6):619–630, 2015.

[60] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from polymor-
phic refinement types. ACM SIGPLAN Notices, 51(6):522–538, 2016.

[61] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using conflict-driven
learning. ACM SIGPLAN Notices, 53(4):420–435, 2018.

[62] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. Component-
based synthesis of table consolidation and transformation tasks from examples. ACM SIGPLAN
Notices, 52(6):422–436, 2017.

[63] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive sql
queries from input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 452–466, 2017.

[64] Georgios E Fainekos and George J Pappas. Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

[65] Paulo Tabuada and Daniel Neider. Robust linear temporal logic. Computer Science Logic 2016,
2016.

[66] Jyotirmoy V Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit Juniwal,
and Sanjit A Seshia. Robust online monitoring of signal temporal logic. Formal Methods in
System Design, 51(1):5–30, 2017.

8

[67] Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language
for reinforcement learning tasks. In Advances in Neural Information Processing Systems, pages
13041–13051, 2019.

[68] Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. Synthesizing datalog programs
using numerical relaxation. In IJCAI, 2019.

[69] Jamin Naghmouchi, Daniele Paolo Scarpazza, and Mladen Berekovic. Small-ruleset regular
expression matching on gpgpus: quantitative performance analysis and optimization. In
Proceedings of the 24th ACM International Conference on Supercomputing, pages 337–348,
2010.

[70] Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Abhishek Udupa, and Sumit
Gulwani. Interactive program synthesis. arXiv preprint arXiv:1703.03539, 2017.

[71] Rishabh Singh and Sumit Gulwani. Predicting a correct program in programming by example.
In International Conference on Computer Aided Verification, pages 398–414. Springer, 2015.

[72] Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Optimal neural program synthesis from
multimodal specifications. arXiv preprint arXiv:2010.01678, 2020.

[73] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In ICML, 2017.

[74] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program
synthesis using learned probabilistic models. ACM SIGPLAN Notices, 53(4):436–449, 2018.

A Query Language

We describe our query language for matching object trajectories in videos. Our system first
preprocesses the video using an object tracker to obtain trajectories, which are sequences z =
(x0, x1, ..., xn−1) of object states xi ∈ X . Then, a query Q in our language maps each trajectory z to
a value B = {0, 1} indicating whether it matches z. Our language is based on regular expressions,
except where the “characters” are predicates. In particular, it is related to the Kleene algebra with
tests [21], but extends it in two key ways: (i) predicates can be over arbitrary subsequences of z rather
than a single object state x, and (ii) it includes the conjunction operator over expressions. Below, we
describe our language in more detail.

Trajectories. We begin by describing the input to a query in our language, which is a representation
of the trajectory of a single object in a video. We describe how these trajectories are constructed in
Section C. Consider a space of object states X , which corresponds to a single object detection in a
single video frame—e.g., x ∈ X ⊆ R6 might encode the 2D position, velocity, and acceleration of x
in image coordinates. Then, a trajectory z ∈ Z = X ∗ is a sequence z = (x0, x1, ..., xn−1) of object
states of length |z| = n. We use the notation zi:j = (zi, zi+1, ..., zj−1) to denote a subtrajectory of z.

Predicates. We assume a set of predicates Φ is given, where each predicate ϕ ∈ Φ matches
trajectories z ∈ Z; we use satϕ(z) ∈ B = {0, 1} to indicate that ϕ matches z. As discussed below,
queries in our language compose these predicates to match more complex patterns.

Next, predicates in our language may have real-valued parameters that must be specified. We denote
such a predicate ϕ with parameter θ ∈ R by ϕθ. To enable our synthesis algorithm to efficiently
synthesize these real-valued parameters, we leverage monotonic structure that is found in all such
predicates we have used in our queries. In particular, we assume that the semantics of these predicates
have the form

JϕθK(z) := 1(ιϕ(z) ≥ θ),

where ιϕ : Z → R is a scoring function. For example, for the predicate MinAvgAccelθ, we have

ιMinAvgAccel(z) =
1

n

n∑
i=0

ai,

9

JϕK(z) := satϕ(z)

JQ1 ∨Q2K(z) := JQ1K(z) ∨ JQ2K(z)
JQ1 ∧Q2K(z) := JQ1K(z) ∧ JQ2K(z)

JQ1 ; Q2K(z) :=

n∨
k=0

JQ1K(z0:k) ∧ JQ2K(zk:n)

JQ∗K(z) :=

n∨
k=0

JQkK(z)

Figure 3: Boolean semantics of our query language; z ∈ Z is a trajectory of length n and ϕ ∈ Φ are
predicates. We omit the semantics for Qk since it can be expressed in terms of sequencing.

where ai is the acceleration on frame i of trajectory z. That is, the scoring function is the average
acceleration for the trajectory z; thus, ιMinAvgAccel(z) ≥ θ says that the average acceleration is at least
θ. We describe the predicates included in our system in Section C; a user can easily extend them with
additional predicates.

Multi-frame predicates. A key feature of our language is that it includes predicates that operate
over multiple frames. In particular, whereas a predicate such as InLane1 matches exactly one video
frame (i.e., it checks whether the car is in lane 1 in that frame), a predicate such as MinAvgAccelθ
checks whether the car’s average acceleration is above some minimum value θ across some sequence
of frames. In particular, this predicate is evaluated across sequences of frames rather than individual
frames. For instance, the query

〈InLane1〉10 ∧ 〈MinAvgAccelθ〉

says that the car is in lane 1 for 10 frames and has an average acceleration of at least θ across those
same ten frames. In contrast, if MinAvgAccelθ was evaluated frame by frame, we could consider
writing the query

〈InLane1〉10 ∧ 〈MinAvgAccelθ〉
10.

However, 〈MinAvgAccelθ〉10 says that each of the ten frames has minimum average acceleration of
θ, which is equivalent to saying that the acceleration is at least θ in each frame individually. Due to
random noise in object positions predicted by the tracker, this likely would not yield expected results
when the video framerate is high relative to object speeds. Thus, our system supports predicates that
are evaluated over sequences instead of individual frames.

Syntax. The syntax of our language is

Q ::= ϕ | Q ; Q | Qk | Q∗ | Q ∨Q | Q ∧Q,

where Qk = Q;Q; ...;Q is sequencing iterated k times. The base case is a single predicate ϕ. These
predicates can be combined using the usual regular expression operators—i.e., sequencing (Q ; Q),
iteration (finite Qk and Kleene star Q∗), and disjunction (Q ∨ Q). It also includes conjunction
(Q ∧Q), which is needed to express queries that involve trajectories of multiple objects.

Semantics. The (Boolean) semantics of queries have type

J·K : Q → Z → B

where Q is the set of all queries in our language, Z is the set of trajectories, and B = {0, 1}. In
particular, JQK(z) ∈ B indicates whether the queryQmatches trajectory z. The semantics are defined
in Figure 3. The base case of a single predicate ϕ checks whether ϕ matches z; the logical operators
are straightforward; sequencing Q1 ; Q2 checks if z can be split into z = z0:kzk:n in a way that Q1

matches z0:k and Q2 matches zk:n; and Kleene star is a disjunction over finite iterations of Q. We
omit finite iteration, which is simply a disjunction over sequencing; for k = 0, Qk = ε is the empty
string, which we take to be the predicate ε ∈ Φ defined by satε(z) = 1(|z| = 0) (where 1 is the
indicator function mapping predicates ϕ to binary values 1(ϕ) ∈ B).

10

Computation. One way to evaluate queries in our language is using dynamic programming. In
this approach, for every pair of indices i, j ∈ {0, 1, ..., n} (where n = |z|) such that i ≤ j and
every subexpression Q′ of Q, we compute vQ′,i,j = JQ′K(zi:j). Then, we can compute vQ′,i,j as a
function of vQ′′,i′,j′ , where Q′′ is a subexpression of Q′ and i ≤ i′ ≤ j′ ≤ j. This algorithm has
time complexity O(m · n3), where m = |Q| is the number of subexpressions in Q, since there are
m · n2 values vQ′,i,j and computing each takes time O(n).

However, our implementation instead uses the matrix semantics in Section B, which allows us to
efficiently execute them using fast linear algebra libraries. These semantics implicitly implement the
dynamic programming algorithm described above. In particular, they equal the Boolean semantics
JQK if we use ιϕ = satϕ for all ϕ ∈ Φ. The time complexity of our implementation is alsoO(m ·n3),
though improvements may be possible using fast matrix multiplication [25].

B Synthesis Algorithm

We describe our algorithm for synthesizing queries consistent with a given set of examples. It
performs an enumerative search over the space of possible queries, represented as a grammar [26],
using overapproximations to prune parts of the search space (represented by partial queries—i.e.,
queries with holes). Also, it uses active learning to have the user provide additional labels to further
prune incorrect programs. A key challenge is managing the search space, especially over real-valued
parameters. Our algorithm assumes that the dependence on real-valued parameters is monotonic;
then, it computes upper and lower bounds on the parameter values using a quantitative variant of the
query semantics. We begin by formulating the synthesis problem (Section B.1), and then provide
an overview of our algorithm (Section B.2). Then, we describe our strategies for pruning partial
queries during enumeration (Section B.3), and for using quantitative semantics to prune the search
space of real-valued parameters (Sections B.4 & B.5). Next, we describe two strategies for speeding
up evaluation of our quantitative semantics (Sections B.6 & B.7); these also apply to our Boolean
semantics. Finally, we summarize our theoretical guarantees (Section B.8).

B.1 Problem Formulation

Partial queries. A partial query is an element of the grammar

Q ::= ?? | ϕ?? | ϕ | Q ; Q | Qk | Q∗ | Q ∨Q | Q ∧Q.
Note that there are two kinds of holes: (i) a predicate hole h = ?? that can be filled by a sub-query
Q, and (ii) a parameter hole h = ϕ?? that can be filled by a real value θh ∈ R. We denote the set of
occurrences of predicate holes of Q byHϕ(Q), the set of parameter holes byHθ(Q), and the set of
all holes byH(Q) = Hϕ(Q) ∪Hθ(Q). A partial query Q is a sketch (denoted Q ∈ Qsketch) [27] if
Hϕ(Q) = ∅, and is complete (denoted Q ∈ Q̄) ifH(Q) = ∅; note that Q̄ ⊆ Qsketch ⊆ Q.

For example, consider the query Q = ??1 ; ??2; here, we label each hole h = ??i with an identifier
i ∈ N so that we can distinguish them. This query has two predicate holes, soHϕ(Q) = {??1, ??2}
andHθ(Q) = ∅. Alternatively, consider the query

Q = 〈MinAvgAccel??1〉 ∧ 〈MinLength??2〉,
which says that the trajectory is at least ??2 frames and that the car has a minimum average acceleration
of ??1 across the frames in this trajectory. This query only has parameter holes, so it is a sketch. In
particular, we haveHϕ(Q) = ∅, andHθ(Q) = {??1, ??2}.
Refinements and completions. Given Q ∈ Q, predicate hole h ∈ Hϕ(Q), and production R =
Q → f(Q1, ..., Qk), where f is an operator (i.e., a predicate f() = ϕ?? or f() = ϕ, sequencing
f(Q1, Q2) = Q1 ; Q2, etc.), we can fill h with R (denoted Q′ = fill(Q, h,R)) by replacing h with
f(??1, ..., ??k), where each ??i is a new hole. Similarly, given a parameter hole h ∈ Hθ(Q), and a
value θh ∈ R, we can fill h with θh (denoted Q′ = fill(Q, h, θh)) by replacing h with θh. We say Q′
is a child of Q (denoted Q→ Q′) if Q′ = fill(Q, h, v) for some h ∈ H(Q) and v (a production or a
value, depending on h). We say Q′ is a refinement of Q (denoted Q ∗−→ Q′) if there exists a sequence
Q→ Q1 → ...→ Qk → Q′; if furthermore Q′ ∈ Q̄, then we say completion of Q. For example, we
have the following derivation:

??1→ ??2 ; ??3→ 〈InLane1〉 ; ??3→ ...→ 〈InLane1〉 ; 〈True〉∗ ; 〈InLane2〉

11

Then, 〈InLane1〉 ; ??3 is a child (and refinement) of ??2 ; ??3 obtained by filling the left-most hole
with production Q→ 〈InLane1〉—i.e.,

〈InLane1〉 ; ??3 = fill(??2 ; ??3, ??2, Q→ 〈InLane1〉).

Furthermore, 〈InLane1〉 ; ??4 ; ??5 is in turn a child of 〈InLane1〉 ; ??3 obtained by filling the hole
??3 with the production Q→ Q ; Q—i.e.,

〈InLane1〉 ; ??4 ; ??5 = fill(〈InLane1〉 ; ??3, ??3, Q→ Q ; Q).

Finally, 〈InLane1〉 ; 〈True〉∗ ; 〈InLane2〉 is obtained by three more steps: (i) filling ??4 with the
production Q→??6∗, (ii) filling ??6 with the production Q→ 〈true〉, and (iii) filling ??5 with the
production Q→ 〈InLane2〉. The final query 〈InLane1〉 ; 〈True〉∗ ; 〈InLane1〉 has no holes, so it is
complete, and is also a completion of all partial queries in the derivation (i.e., ??1, ??2 ; ??3, etc.).

Parameters. For any predicate ϕθ with a parameter θ ∈ R, we assume it has semantics

JϕθK(z) := 1(ιϕ(z) ≥ θ),

for some scoring function ιϕ : Z → R. In other words, the predicate ϕ becomes satisfied once the
score ιϕ(z) is sufficiently large. For example, if ϕθ = MinAvgAccelθ, then ιMinAvgAccel(z) is average
acceleration of the car in trajectory z. Predicates with multiple parameters can typically be expressed
as a conjunction of such expressions, in which case our algorithm can still handle them.

We let θ ∈ R|Hθ(Q)| denote a choice of parameters for all holes h ∈ Hθ(Q), and let θh ∈ Θh denote
the parameter corresponding to hole h, where Θh ⊆ R is a finite set of possible parameter values (we
assume it is finite so we can enumerate all possibilities). Given a query Q ∈ Q and θ ∈ R|Hθ(Q)|, we
let Qθ ∈ Q denote the query obtained by filling each parameter hole h ∈ Hθ(Q) with θh. Note that
if Q ∈ Qsketch, then Qθ ∈ Q̄ is complete. For example, consider the sketch

Q = 〈MinAvgAccel??1〉 ∧ 〈MinLength??2〉

shown above. This query has two holes, so its parameters have the form θ = (3.2, 5.0) ∈ R2, where
θ??1 = 3.2 is used to fill hole ??1 and θ??2 = 5.0 is used to fill ??2. In particular, we have

Qθ = 〈MinAvgAccel3.2〉 ∧ 〈MinLength5.0〉.

This query says that the average acceleration should be at least 3.2, and the length of the trajectory
should be at least 5.0.

Query synthesis problem. Given examples W ⊆ W = Z × B, where B = {0, 1}, our goal is to
compute a query Q ∈ Q̄ that correctly labels these examples—i.e., Q satisfies

ψW (Q) :=
∧

(z,y)∈W

(JQK(z) = y). (1)

Thus, ψW (Q) indicates whether Q is consistent with the labeled examples W . Then, we can
enumerate over the possibilities, though the search space is combinatorial in the number of parameter
holes. Our goal is to devise a synthesis algorithm that is sound and complete—i.e., it finds a query
that satisfies ψW (Q) = true if and only if one exists.

B.2 Synthesis Algorithm Overview

At a high level, our algorithm proceeds in two steps: (i) it computes a list `∗ of all queries Qθ that are
consistent with the current examples W (summarized in Algorithm 1), and (ii) it then uses active
learning to select among the queries in `∗ (summarized in Algorithm 2).

Syntax-guided search. First, Algorithm 1 enumerates partial queries until it finds all complete
queries Qθ ∈ Q̄ that are consistent with the given examples W . In particular, it keeps a worklist
`0 of current partial programs, initialized with Q = ??. Then, at each step until `0 is empty, it
processes a single program Q from `0. It uses overapproximations of the query semantics to check
whether Q is consistent with the examples W . If so, it considers two cases: (i) if Q is a sketch, it
computes all parameters θ for Q that are consistent with W and adds Qθ to the list of consistent
programs `∗, or (ii) otherwise, it adds all the children of Q to `0. In the latter case, the children of
Q (denoted Children(Q)) are obtained by taking each predicate hole in Q and filling it using each

12

Algorithm 2 Actively query the user O on unlabeled examples z ∈ Z to eliminate incorrect queries.
1: procedure ACTIVELEARNING(`∗, Z)
2: while true do
3: z∗ ← arg maxz∈Z J(z; `∗)
4: if J(z∗) = 0 then
5: return `∗
6: end if
7: y∗ ← O(z∗)
8: `∗ ← {Qθ ∈ `∗ | ψ(z∗,y∗)(Qθ)}
9: end while

10: end procedure

applicable production in our grammar. In the sections below, we describe how our algorithm uses
overapproximations to perform pruning, and how it computes the set of consistent parameters θ.

Active learning. Next, Algorithm 2 actively asks the user to label additional trajectories z ∈ Z
from a set of unlabeled trajectories Z ⊆ Z to disambiguate among the queries Qθ ∈ `∗ returned by
Algorithm 1. It does so using a standard algorithm [23]; we briefly describe this algorithm here. In
particular, at each step, it selects the trajectory z∗ that maximizes

J(z) :=
∑

y∈{0,1}

Jy(z)(1− Jy(z)), where Jy(z) :=
1

|`∗|
∑
Qθ∈`∗

1(ψ(z,y)(Qθ))

is the fraction of queries remaining in `∗ that are also consistent with (z, y). Intuitively, assuming the
true query is a uniformly random query in `∗, then Jy(z) is the probability that y is the correct label
for z. Then, J(z) is the expected fraction of the search space that is pruned—i.e., with probability
Jy(z), the label for z is y, in which case we can prune the 1 − Jy(z) fraction of queries that are
inconsistent with (z, y). Thus, our active learning algorithm selects the trajectory z∗ that prunes the
maximum number of queries in expectation over the label y. This algorithm has been proven to be
near-optimal in terms of sample complexity [23]. Finally, our algorithm queries the user O to obtain
the actual label y∗ = O(z∗), and prunes the queries that are inconsistent with (z∗, y∗). It continues
until all remaining queries have equal labels on Z, which is equivalent to J(z∗) = 0, since in this
case, for all z ∈ Z and y ∈ {0, 1}, we have either Jy(z) = 0 or 1− Jy(z) = 0.

B.3 Pruning Partial Queries

We use an overapproximation JQK# of the semantics for partial queries Q ∈ Q to prune our search
space. That is, it overapproximates the possible outputs of completions of Q on an input z ∈ Z—i.e.,
JQ̄K(z) ∈ JQK# for every completion Q̄ of Q. In particular, we define

JQK# := {JQ+K(z), JQ−K(z)}.

Here, Q+ is constructed by filling each predicate hole h ∈ Hϕ(Q) in Q with 〈true〉∗, and each
parameter hole h ∈ Hθ(Q) in Q with −∞. Similarly, Q− is constructed by filling each hole in Q
with 〈false〉, and each parameter hole h ∈ Hθ(Q) in Q with∞.

Lemma 1. For any completion Q̄ of Q, we have JQ̄K(z) ∈ JQK#(z).

We give a proof in Section F.1. We can use the our overapproximation of the semantics to prune the
search space—for a partial query Q ∈ Q and an example (z, y) ∈W , if we have y 6∈ JQK#(z), then
we can prune Q and all of its descendants from the search space. More precisely, defining

ψ#
W (Q) :=

∧
(z,y)∈W

y ∈ JQK#(z),

we prune Q if ψ#
W (Q) = false. For example, for Q = 〈InLane1〉 ;

〈
MinAvgAccel??

〉
; ??, we

have

Q+ = 〈InLane1〉 ;
〈

MinAvgAccel−∞
〉

; 〈true〉∗, Q− = 〈InLane1〉 ;
〈

MinAvgAccel∞
〉

; 〈false〉.

13

Consider any completion Q̄ = 〈InLane1〉 ;
〈

MinAvgAccelθh
〉

; Q′ of Q, where Q′ ∈ Q and

θh ∈ R. Now, it is easy to see that JQ+K(z) = 0⇒ JQ̄K(z) = 0—i.e.,
r
〈InLane1〉 ;

〈
MinAvgAccel−∞

〉
; 〈true〉∗

z
(z) = 0⇒

r
〈InLane1〉 ;

〈
MinAvgAccelθh

〉
; Q′

z
(z) = 0.

In other words, if even the optimistic choice θh = −∞ and Q′ = 〈true〉∗ evaluates to 0 on z, then
every completion Q̄ of Q also evaluates to 0 on z. Thus, if y = 1, every completion Q̄ of Q is
inconsistent with the example (z, y), so we can safely prune Q. In this example, JQ+K(z) = 0 if the
first element x0 of z does not match 〈InLane1〉, so we can prune Q if y = 1 and x0 does not match
〈InLane1〉. Alternatively, we also have JQ−K(z) = 1⇒ JQ̄K(z) = 1—i.e.,
r
〈InLane1〉 ;

〈
MinAvgAccel∞

〉
; 〈false〉

z
(z) = 1⇒

r
〈InLane1〉 ;

〈
MinAvgAccelθh

〉
; Q′

z
(z) = 1.

In other words, if even the pessimistic choice θh = ∞ and Q′ = 〈false〉 evaluates to 1 on z, then
every completion Q̄ of Q evaluates to 1. Thus, if y = 0, every completion Q̄ of Q is inconsistent
with the example (z, y), so we can safely prune Q. In this example, we can never have JQ−K(z) = 1
due to the 〈false〉 predicate, so there is no example (z, y) with y = 0 that would enable us to prune
Q. In general, pruning is possible if the hole occurs within a disjunction or Kleene star operator.

B.4 Pruning Parameter Values

Once our algorithm has identified a sketch Q ∈ Qsketch, it needs to fill the parameter holes in Q to
obtain a complete query Qθ ∈ Q̄. A naïve strategy would be to perform an enumerative search over
possible parameter values θh ∈ Θh to fill each parameter hole h ∈ Hθ(Q), where Θh ⊆ R is the
(finite) set of possible parameter values for hole h, using the above pruning strategy to prune the
search space over parameter values.

However, we can perform pruning much more efficiently by leveraging monotonicity of parameters. In
particular, letting ϕ?? be the hole h, recall that if we fill h with θh, then the semantics of the resulting
predicate ϕθh are JϕθhK(z) = 1(ιϕ(z) ≥ θh). Thus, given an example (z, y) where y = 1, suppose
that θh cannot be used to fill h even under optimistic assumptions about the remaining parameters—
i.e., letting Qθh = fill(Q, h, θh), then JQ+

θh
K(z) = 0. Then, we know that any parameters θ′h ≥ θh

also cannot be used to fill h, since increasing θh can only make ϕθh become false. Conversely, if z
is a negative example and JQ−θhK(z) = 1, then we know that θ′h ≤ θh cannot be used to fill h, since
decreasing θh can only make ϕθh become true. For example, consider the query

Q =
〈
Dist??(A,B)

〉∗,
which says that at every point in the trajectory, the negative distance between cars A and B is at least
θh (i.e., the cars are close together), where θh is used to fill h = ??; equivalently, their distance is at
most−θh. Here, the parameters θ = (θh) are one-dimensional. Suppose we are given an input-output
example (z, y), where z = (x0, x1, x2) = (1.2, 2.0, 0.8) and xi encodes the distance between A and
B on step i. Suppose that y = 1 and θh = −1.0; then, we have JQ−1.0K(z) = 0, so we can prune
Qθ for all θ such that θh ≥ −1.0. Conversely, suppose that θh = −3.0 and y = 0; then, we have
JQ−3.0K(z) = 1, so we can prune Qθ for all θ such that θh ≤ −3.0. In general, the parameter values
θh that are consistent in a given example (z, y) ∈W must be contained in the interval

Θ#
h (Q, z, y) :=

{
(−∞, θ+h] if y = 1

(θ−h ,∞) if y = 0,

where

θ+h := inf{θh ∈ Θh | J(Qθh)+K(z) = 1} and θ−h := sup{θh ∈ Θh | J(Qθh)−K(z) = 0},
and where (Qθh)+ (resp., (Qθh)−) is defined as above—i.e., by filling predicate holes with 〈true〉∗
(resp., 〈false〉) and parameter holes with −∞ (resp.,∞). In other words, θ+h is the largest possible
parameter value such that JQθ+h K(z) = 1, even under optimistic assumptions about how the remaining

holes are filled. Conversely, θ−h is the smallest possible parameter value for which JQθ−h K(z) = 0.
For our example Q =

〈
Dist??1(A,B)

〉∗ and z = (1.2, 2.0, 0.8), we have

Θ#
??1(Q, z, y) =

{
(−∞,−2.0] if y = 1

(−2.0,∞) if y = 0.

14

Jϕ??Kq(z) := ιϕ(z)

JϕKq(z) :=

{
∞ if satϕ(z) = 1

−∞ if satϕ(z) = 0.

JQ1 ∨Q2Kq(z) := max{JQ1Kq(z), JQ2Kq(z)}
JQ1 ∧Q2Kq(z) := min{JQ1Kq(z), JQ2Kq(z)}
JQ1 ; Q2Kq(z) := max

k∈{0,1,...,n}
min{JQ1Kq(z0:k), JQ2Kq(zk:n)}

JQ∗Kq(z) := max
k∈{0,1,...,n}

{JQkKq(z)}

Figure 4: Quantitative semantics of our language; ιϕ is a quantitative variant of satϕ, and n is the
length of z.

Note that in this case, we have θ+h = θ−h ; this equality holds when the only hole in Q is the single
parameter hole h we are trying to fill. In particular, θ0h = θ−h = θ+h is the value of θh where the query
transitions from JQθhK(z) = 1 (for θh ≤ θ0h) to JQθhK(z) = 0 (for θh ≥ θ0h). In the general case
where Q has multiple holes (discussed below), this equality may not hold.

Next, given multiple input-output examples W , the set of valid parameters for all of W is

Θ#
h (Q,W) :=

⋂
(z,y)∈W

Θ#
h (Q, z, y).

The remaining challenge is computing Θ#
h (Q,W). Our algorithm computes θ+h and θ−h composi-

tionally; we give details in Section B.5. Finally, our algorithm adds all completions Qθ of Q with
parameters θh ∈ Θh ∩Θ#

h (Q,W) to `∗.

Importantly, the interval Θ#
h (Q,W) is for a single parameter hole h ∈ Hθ(Q) in isolation. When

there are multiple parameter holes, there may be parameters θ ∈ R|Hθ(Q)| such that θh ∈ Θ#
h (Q,W)

for every hole h ∈ Hθ(Q), but θ is still inconsistent with W . For example, consider the query

Q = 〈Dist(A,B)??1〉∗ ; 〈Dist(B,C)??2〉∗,

along with the length one trajectory z = (x0), where x0 = (1.0, 1.0) ∈ R2 (here, the first
component encodes the distance from A to B and the second component encodes the distance
from B to C), and label y = 1. Then, suppose we fill ??2 with θ??2 = −∞ to obtain
Q′ = 〈Dist(A,B)??1〉∗ ; 〈Dist(B,C)−∞〉∗. Since J(Q′)θ??1K(z) = 1 for any θ??1 ∈ R, it follows
that

Θ#
??1(Q, z, y) = (−∞,∞),

i.e., θ??1 can take any value. Similarly, if we fill ??1 with θ??1 = −∞, then θ??2 could take any value.
Thus, we cannot prune the search space over θ??1 or θ??2 individually. However, not all parameter
choices are valid—e.g., if θ = (0.0, 0.0), then

Qθ = 〈Dist(A,B)0.0〉∗ ; 〈Dist(B,C)0.0〉∗.

In this case, JQθK(z) = 0, so Qθ is inconsistent with the given example. The issue is that the two
predicates in Q can each match z by themselves when filled with θh = −∞. However, in Qθ, neither
hole is filled with θh = −∞, so this guarantee no longer holds. As a consequence, our algorithm still
needs to enumerate over all possible queries Qθ ∈ `∗ to omit ones that are inconsistent with W . It
does so on the last step, returning only queries with parameter values that are consistent with W .

B.5 Quantitative Semantics for Pruning Parameter Values

In this section, we give details on our algorithm for using a quantitative semantics of our queries
to compute the pruned search space Θ#

h (Q, z, y) over parameters for hole h. In particular, given

15

a partial query Q ∈ Q, input-output example (z, y) ∈ W , and a hole h ∈ Hθ(Q), our algorithm
computes the space of parameter values Θ#

h (Q, z, y) ⊆ R that can be used to fill the hole h in a way
that is consistent with (z, y). Note that we can compute Θ#

h (Q,W) considering all possible θh ∈ R;
then, we can intersect it with Θh to obtain the set of valid parameter values θh.

Now, suppose that the hole h is on predicate ϕ??, and consider filling ?? with θh. The resulting
predicate ϕθh has Boolean semantics JϕθhK = 1(ιϕ(z) ≥ θh), which is then used by the remainder
of the query Q. First, suppose that Q ∈ Qsketch, and that Q has a single parameter hole h. Rather than
fill in h with a single value θh, we define an alternative, quantitative semantics J·Kq , that leaves h as a
hole, and lets Jϕ??Kq = ιϕ(z). Then, J·Kq propagates these values in the remainder of the query Q
by replacing disjunction (∨) with maximum (max), and conjunction (∧) with minimum (min). In
particular, these semantics have type

J·Kq : Q → Z → R,

and are defined in Figure 4. They satisfy the following key property:
Lemma 2. Assume that Q ∈ Qsketch has a single parameter hole h ∈ Hθ(Q). Then, we have

JQθhK(z) = 1(JQKq(z) ≥ θh).

We give a proof in Section F.2. In other words, JQKq computes the threshold θh at which the Boolean
semantics of Q changes from 1 to 0. Thus, we can take

Θ#
h (Q, z, y) :=

{
(−∞, JQKq(z)] if y = 1

(JQKq(z),∞) if y = 0.

For example, for the query Q =
〈
Dist??1(A,B)

〉∗ and the trajectory z = (1.2, 2.0, 0.8), where each
step x encodes the distance between A and B, we have

JQKq(z) = min
i∈{0,1,2,3}

{
J
〈
Dist??(A,B)

〉
Kq(zi:i+1)

}
= min
i∈{0,1,2,3}

{ιDist(A,B)(zi:i+1)}

= min{−1.2,−2.0,−0.8}
= −2.0,

since
〈
Dist??1(A,B)

〉
is only applicable at a single time step zi:i+1, so the maximum over k for the

semantics of the Kleene star happens at k = 3. Thus, the set of valid parameters is

Θ#
??1(Q, z, y) =

{
(−∞,−2.0] if y = 1

(−2.0,∞) if y = 0.

In general, Q may have additional parameter holes or predicate holes. In this case, we overapprox-
imate the holes h′ 6= h similar to before. In particular, we optimistically fill the parameter holes
h′ ∈ Hθ(Q) such that h′ 6= h with −∞ and the predicate holes with 〈true〉∗ to obtain Qh,+. In
addition, we pessimistically fill parameter holes h′ 6= h with∞ and predicate holes with 〈false〉 to
obtain Qh,−. Then, we have

Θ#
h (Q, z, y) :=

{
(−∞, JQh,+Kq(z)] if y = 1

(JQh,−Kq(z),∞) if y = 0.

B.6 Matrix Semantics

Next, we describe how we can efficiently compute J·Kq using matrix operations. A standard approach
is to use dynamic programming, but matrices allow us to use existing fast linear algebra packages to
compute J·Kq . In particular, our matrix semantics J·KM has type

J·KM : Q → Z →
⋃
n∈N

R(n+1)×(n+1).

In other words, JQKM (z) maps a trajectory z of length n to an (n+ 1)× (n+ 1) matrix with entries
in R. We use i, j ∈ In := {0, 1, ..., n} to index matrices M ∈ R(n+1)×(n+1); as discussed below,
these correspond to indices of z. The matrix semantics are defined in Figure 5. The base case is the

16

Jϕ??KM (z) :=

ιϕ(z0:0) ιϕ(z0:1) · · · ιϕ(z0:n)
−∞ ιϕ(z1:1) · · · ιϕ(z1:n)

...
...

. . .
...

−∞ −∞ · · · ιϕ(zn:n)

JQ1 ∨Q2KM (z) := max{JQ1KM (z), JQ2KM (z)}
JQ1 ∧Q2KM (z) := min{JQ1KM (z), JQ2KM (z)}
JQ1 ; Q2KM (z) := JQ1KM (z) · JQ2KM (z)

Figure 5: The matrix semantics of our language; z ∈ Z is a trajectory of length n, max and min are
taken elementwise, and · is the matrix product where addition is replaced with max and multiplication
with min. We omit the case JϕθKM (z), which is the same as Jϕ??KM (z), except ιϕ(zi:j) is replaced
with JϕKq(zi:j).

semantics of predicate ϕ?? with holes (and predicates ϕ without holes); in this case, it constructs
the matrix M = Jϕ??KM (z), where Mi,j = ιϕ(zi:j) for i ≤ j (i.e., how well ϕ matches zi:j), and
Mi,j = −∞ for i > j. We use −∞ in the bottom-left of JϕKM (z) since these values ensure the
semantics are consistent with sequencing. Next, disjunction is elementwise maximum—i.e.,

JQ1 ∨Q2KM (z)i,j = max{JQ1KM (z)i,j , JQ2KM (z)i,j}
for all i, j ∈ {0, 1, ..., n}. Similarly, conjunction is elementwise minimum—i.e.,

JQ1 ∧Q2KM (z)i,j = min{JQ1KM (z)i,j , JQ2KM (z)i,j}
for all i, j ∈ {0, 1, ..., n}. Finally, sequencing is matrix multiplication, except with addition replaced
by maximum and multiplication by minimum—i.e.,

JQ1 ; Q2KM (z)i,j = max
k∈{i,...,j}

min{JQ1KM (z)i,k, JQ2KM (z)k,j}.

Then, we have the following correspondence between J·KM and J·Kq:
Lemma 3. For any z ∈ Z of length n, and any i, j ∈ {0, 1, ..., n} such that i ≤ j, we have

JQKM (z)i,j = JQKq(zi:j),

where JQKM (z)i,j denotes the (i, j) entry of the matrix JQKM (z).

We give a proof in Section F.3. In other words, JQKM simultaneously computes the quantitative
semantics of Q for every subsequence zi:j of z. We have the following straightforward consequence:

Theorem 1. We have JQKq(z) = JQKM (z)0,n.

B.7 Sparse Matrix Semantics

Finally, we describe an optimization that allows us to reduce the size of the matrices involved
in computing JQKM (z) for a given trajectory z. One caveat is that this optimization involves an
expensive preprocessing step for each trajectory z. In our synthesis algorithm, this cost is amortized
across a many queries since we are evaluating many queries on each training example (z, y) ∈W .

Let z be a trajectory of length n, and ϕ?? be a predicate with a hole, so Jϕ??KM (z) ∈ R(n+1)×(n+1).
Consider two indices i, i′ ∈ {0, 1, ..., n}. Intuitively, suppose the rows i, i′ and columns i, i′ of
Jϕ??KM (z) are equal across all ϕ?? (and similarly for all ϕ); then, the operations performed on these
matrices in Figure 5 preserve this equality (this fact can straightforwardly be proven by structural
induction). Thus, for any Q, the rows i, i′ and columns i, i′ of JQKM (z) are equal. The interesting
case is Q = Q1 ; Q2, which corresponds to matrix multiplication. To illustrate, consider regular
matrix multiplication (i.e., with addition and multiplication instead of minimum and maximum):[

1 1 2
1 1 2
3 3 4

]
·

[
2 2 1
2 2 1
3 3 5

]
=

[
10 10 12
10 10 12
24 24 26

]
.

17

Jϕ??KRi,i′(z) :=

n∧
j=0

Jϕ??KMi,j(z) ≥ Jϕ??KMi′,j(z)

JQ1 ; Q2KR(z) := JQ1KR(z)

JQ1 ∨Q2KR(z) := JQ1KR(z) ∧ JQ2KR(z)

JQ1 ∧Q2KR(z) := JQ1KR(z) ∧ JQ2KR(z)

Jϕ??KCj,j′(z) :=

n∧
i=0

Jϕ??KMi,j(z) ≥ Jϕ??KMi,j′(z)

JQ1 ; Q2KC(z) := JQ2KC(z)

JQ1 ∨Q2KC(z) := JQ1KC(z) ∧ JQ2KC(z)

JQ1 ∧Q2KC(z) := JQ1KC(z) ∧ JQ2KC(z)

Figure 6: Semantics for computing row and column domination relationships. The ∧ operator is
applied elementwise. The semantics for ϕ are identical to those for ϕ??.

In this example, the condition holds for the input matrices for i = 1 and i′ = 2, and it also holds for
the output. While we have used regular matrix multiplication, it is easy to check that this property is
preserved by matrix multiplication with minimum and maximum as well.

More generally, we can obtain similar results if instead of being identical, the entries in row i are
larger than the corresponding entries in row i′, and similarly for columns i, i′.1

Definition 2. Given A ∈ R(n+1)×(n+1) and i, i′, j, j′ ∈ In = {0, 1, ..., n} such that i 6= i′, we say
that i A-row dominates i′ (denoted i �RA i′) if Ai,j ≥ Ai′,j for all j ∈ In :− {0, 1, ..., n}, and we
say j A-column dominates j′ (denoted j �CA j′) if Ai,j ≥ Ai,j′ for all i ∈ In.

The operators in our language preserve certain domination relationships; which ones are preserved
depends on the operator. In fact, we can compute a conservative underapproximation of the row and
column domination relationships satisfied by JQKM (z) as a function of the domination relationships
of Jϕ??KM (z) and JϕKM (z). In particular, we define the semantics

J·KR, J·KC : Q → Z → B(n+1)×(n+1)

where JQKR(z) ∈ B(n+1)×(n+1) is a binary matrix with the intent that(
JQKR(z)i,i′ = 1

)
⇒
(
i �RJQKM (z) i

′
)
,

i.e., JQKRi,i′(z) = 1 implies that row i dominates row i′ in JQKM (z), and similarly for JQKC(z).
These semantics are defined in Figure 6. For conjunctions and disjunctions, the row (resp., column)
relationships are the intersections of the row (resp., column) relationships of subexpressions. For
sequencing Q = Q1 ; Q2, the row domination relationships are those of Q1, and the column
relationships are those of Q2. For example, we might have[

1 1 2
1 1 2
3 3 4

]
︸ ︷︷ ︸
A=JQ1KM (z)

·

[
2 2 1
2 2 1
1 1 5

]
︸ ︷︷ ︸
B=JQ2KM (z)

=

[
1 1 2
1 1 2
1 1 4

]
︸ ︷︷ ︸

C=JQ1 ;Q2KM (z)

,

where now we have used our matrix semantics (i.e., max instead of addition and min instead of
multiplication). Note that in A and C (but not B), row 3 dominates rows 1 and 2, which is consistent
with our rules for row domination in sequencing. Also, note that column 3 dominates columns 1 and
2 in C, even though this relationship does not occur in B, which can happen since our computed
domination relationships underapproximate the true relationships.

Lemma 4. If JQKR(z)i,i′ , then i �RJQKM (z) i
′, and if JQKC(z)j,j′ , then j �CJQKM (z) j

′.

We give a proof in Section F.4. That is, J·KR and J·KC compute conservative underapproximations of
the row and column domination relationships, respectively.

Next, we describe how we can use JQKR(z) and JQKC(z) to reduce the dimensionality of the matrices
involved in computing JQKM (z). To this end, we define a sparse variant J·KS·,· of the matrix semantics

1We note that our more general sparsification strategy is specific to our quantitative semantics, and does not
work for regular matrix multiplication.

18

Jϕ??KSI,J(z) := Jϕ??KM (z)I,J

JQ1 ∧Q2KSI,J(z) := min{JQ1KSI,J(z), JQ2KSI,J(z)}
JQ1 ∨Q2KSI,J(z) := max{JQ1KSI,J(z), JQ2KSI,J(z)}
JQ1 ; Q2KSI,J(z) := JQ1KSI,K(z) · JQ2KSK,J(z) (K = maximal(JQ1KC(z) ∧ JQ2KR(z)))

Figure 7: The sparse matrix semantics. Here I, J ∈ L(In) are lists of indices. In the rule for
ϕ??, given A ∈ R(n+1)×(n+1), the matrix AI,J ∈ R|I|×|J| consists of the rows of A indexed
by I and columns of A indexed by J . The rule for ϕ is identical to that for ϕ??. Finally, given
A ∈ B(n+1)×(n+1), the list maximal(A) ∈ L(In) denotes the maximal elements of the partial order
defined by A. Matrix multiplication is defined as in Figure 5.

J·KM that only computes a given subset of rows and columns of the output matrix. These semantics
have type

J·KSI,J : Q → Z → R|I|×|J|,
where I, J ∈ L(In) are lists of integers, and are defined to satisfy

JQKSI,J(z) = JQKM (z)I,J ,

where given a matrix A ∈ R(n+1)×(n+1), we define AI,J ∈ R|I|×|J| to be the matrix consisting of
entries of A in the rows indexed by I and columns indexed by J . These semantics are shown in
Figure 7. For the case ϕ??, we evaluate Jϕ??KM (z) and return its rows I and columns J . Conjunction
and disjunction are straightforward. The main case of interest is sequencingQ = Q1 ; Q2, which uses
the row domination relationships of Q1 and column domination relationships of Q2. In particular,
note that a set of domination relationships form a partial order on In. Thus, the matrix A =
JQ1KC(z)∧JQ2KR(z) encodes the partial order obtained by the intersection of the column domination
relationships of JQ1KM and the row domination relationships of Q2. Then, the quantity

K = maximal(A) ∈ L(In)

is the list of indices that are maximal elements according to the partial order encoded by A—i.e.,
indices i ∈ K are not dominated by any other i′ ∈ In (the order of indices in K can be arbitrary).2

Lemma 5. For any I, J ∈ L(In), we have JQKSI,J(z) = JQKM (z)I,J .

We give a proof in Section F.5. That is, the sparse matrix semantics coincides with the regular matrix
semantics on the indices evaluated. Together with Theorem 1, we have the following:
Theorem 3. We have JQKq(z) = JQKS{0},{n}(z).

In other words, we can evaluate our quantitative semantics using our sparse matrix semantics.

B.8 Theoretical Guarantees

We have the following guarantees for our algorithm.
Theorem 4. Algorithm 1 computes the set of all Q̄ ∈ Q̄ such that ψW (Q̄) = 1.

This result follows directly from Lemma 1, which says that our pruning strategy does not prune any
programs that are consistent with W (i.e., ψ#

W (Q) = 0 implies that ψW (Q̄) = 0 for all completions
Q̄ of Q), and from Lemma 2, which says the same thing holds for our parameter pruning strategy (i.e.,
given candidate parameters θ, if θh 6∈ Θ#

h (Q,W) for any h, then ψW (Qθ) = 0). In addition, note
that all programs Q̄ ∈ `∗ returned by Algorithm 1 satisfy ψW (Q̄) = 1 due to the check performed at
the end. Thus, Algorithm 1 solves our synthesis problem.
Theorem 5. For any Q̄, Q̄′ ∈ `∗ returned by Algorithm 2, JQ̄K(z) = JQ̄′K(z) for all z ∈ Z.

In other words, our active learning algorithm returns queries that are indistinguishable on the given
unlabeled examples Z. This result follows due to the stopping condition of Algorithm 2.

2One detail is that there may be ties—i.e., i �A i′ and i′ �A i, where �A is the partial order encoded by A.
If i, i′ are otherwise maximal, we include exactly one of i, i′ in K. Multi-way ties are resolved similarly.

19

Predicate Description

InLaneK Each lane K is represented by (i) a differentiable 2D curve ζ : I → R2

in image coordinates, where I = [0, 1], (ii) a radius r ∈ R, and (iii) an
angle tolerance α ∈ [0, 2π). This predicate is false except for length-one
trajectories. It checks if the distance between p and the closest point p′ on
ζ is less than the radius, and if the direction of the velocity v is within the
angle tolerance of the direction of ζ at p′ (i.e., the gradient of ζ at p′).

MinLengthθ This predicate applies to trajectories of any length. It checks if duration in
seconds of the sequence is at least θ.

MinAvgVelθ This predicate applies to trajectories of nonzero length. It checks if the
average velocity over the trajectory is at least θ.

MinAvgAccelθ This predicate applies to trajectores of nonzero length. It checks if the
average acceleration over the trajectory is at least θ.

Distθ(A,B) This multi-object predicate applies to length-one trajectories. It checks if
the positions pA and pB of A and B, respectively, are within distance θ.

SpeedRatioθ(A,B) This multi-object applies to length-one trajectories. It checks if the ratio of
speeds ‖vA‖ and ‖vB‖ of A and B, respectively, is greater than θ.

Table 2: The predicates included in QUIVR. Note that predicates evaluate to false when they are not
applicable.

C Implementation

We describe the implementation of our system QUIVR, including the object tracking used to construct
trajectories z ∈ Z from a video, the predicates Φ included in our experiments, and additional
optimizations to our synthesis algorithm.

C.1 Object Tracking

We represent a video V as a sequence of video frames V = (I0, I1, ..., IT−1)—i.e., each It is a single
2D color image. We preprocess the video by running an object tracker on it, which outputs:

• Object detections: For each image It, a set of detections Dt = {d1, d2, ..., dk} ⊆ R4,
where a detection d = (x, y, w, h) encodes a bounding box centered at image coordinates
(x, y) with width w and height h.

• Object associations: For each image It, an edge e ∈ Et = Dt× (Dt+1∪{∅}) associating
detections d ∈ Dt in It with detections d′ ∈ Dt+1 in the successive frame, or ∅ if no
subsequent detection exists (e.g., the object exits the image, the object tracker misses a
detection, or t = T − 1 so It is the last frame in the video).

Based on the object detections and assocations, we construct object tracks s ∈ S = D∗, which are
sequences of detections of the same object—in particular, s = (d0, d1, ..., dn−1) is a sequence such
that (di, di+1) ∈ Et for all i < n− 1 (where di ∈ Dt), and (dn−1,∅) ∈ Et′ (where dn−1 ∈ Dt′).
Note that the relative index i of an object state in a trajectory z can be offset from the absolute
index t of the corresponding frame in the video. Finally, we compute the corresponding sequence
of object states z = (x0, x1, ..., xn−1) for each object track s. In our implementation, we include
the 2D position pi = (x, y) ∈ R2 of di = (x, y, w, h), as well as its velocity vi = pi − pi−1 and
acceleration ai = vi − vi−1, and form the state xi = (pi, vi, ai) ∈ (R ∪ {∅})6. Note that that these
values do not exist for all frames; when they do not exist, we use ∅. The object state can easily be
extended by the user if desired. Our implementation uses an object tracker called DeepSORT [20],
which is a simple object tracker that, given object detections, associates positions of the same object
based on a combination of spatial cues (bounding box overlap and motion prediction) and image
cues (similarity of the pixels corresponding to each detection). To obtain object detections, we use a
YOLOv3 model [28] that is pretrained on ImageNet and fine-tuned on approximately 500 images
hand-labeled with bounding boxes of cars and pedestrians.

20

C.2 Domain Specific Language

Predicates. Table 2 shows the predicates in our system. Note that the in-lane predicates rely on
curves of lanes ζ. Since we are focusing on the setting of a small number of videos with a large
number of trajectories each, we hand-annotated this information. In practice, there has been work on
automatically inferring this information by clustering the trajectory data [29, 30].

Multi-object queries. For queries that refer to multiple objects, our system automatically constructs
the product state space—i.e., X ⊆ (R ∪ {∅})6k, where k is the number of objects. Predicates can
either directly operate over the product state space (i.e., ϕ : X → B) or operate over a subset of
objects. In the latter case, the query must indicate which objects the predicate is referring to.

C.3 Synthesis Algorithm

Additional pruning. We can use our quantitative semantics to perform pruning not just after finding
a sketch, but also at the level of partial queries. In particular, note that if Θ#

h (Q,W) = ∅ for any
parameter hole h ∈ Hθ(Q), then no valid θh exists, which means that Q cannot be completed into a
valid query. Thus, we can prune Q in this case—i.e., we redefine ψ#

W to be

ψ#
W (Q) =

 ∧
(z,y)∈W

y ∈ JQK#(z)

 ∧
 ∧
h∈Hθ(Q)

Θ#
h (Q,W) 6= ∅

 .

In particular, we have added a second term which requires that the parameter holes h ∈ Hθ(Q) all
have a nonempty set of consistent parameter values. For example, consider Q =

〈
Dist??1(A,B)

〉∗
and examples W = {(z1, y1), (z2, y2)}, where z1 = (1.0, 1.0), y1 = 0, z2 = (2.0, 2.0), and y2 = 1.
Then, we have Θ#

??1(Q, z1, y1) = (−1.0,∞) and Θ#
??1(Q, z2, y2) = (−∞,−2.0]. As a consequence,

Θ#
??1(Q,W) = ∅, which implies that we can prune Q.

Evaluating the Boolean semantics. We note that the matrix semantics and sparsification optimiza-
tions described in Section B.5 can directly be applied to our Boolean semantics, since the Boolean
semantics is a special case of the quantitative semantics where we take

ιϕ(z) =

{
∞ if JϕK(z) = 1

−∞ otherwise.

Thus, we use these optimizations for both our Boolean semantics and our quantitative semantics.

Synthesis search space. To make search more tractable, we restrict the search space used in our
evaluation in several ways. First, we omit disjunctions from the search space, nested Kleene star
operators, as well as Kleene star around sequencing, since these constructs do not occur in any of our
queries. In addition, we remove semantically equivalent duplicates during enumeration, accounting
for associativity of sequencing and conjunction as well as commutativity of conjunction. Finally, we
bound the number of atomic predicates in our queries by 5, and their depth by 3; here, depth is counted
in terms of nesting different constructs—e.g., ϕ1 ; ϕ2 ; ϕ3 has depth 1, whereas ϕ1 ∧ (ϕ2 ; ϕ3) has
depth 2 and ϕ1 ∧ (ϕ2 ; ϕ∗3) has depth 3. This last restriction ensures that our search space is finite
(though large), which enables us to enumerate all consistent queries.

Sampling-based active learning. For some of our queries (in particular, multi-object queries),
evaluating our active learning objective exactly is computationally intractable, since it involves
evaluating all consistent examples Q ∈ `∗ on all unlabeled trajectories z ∈ Z. For these queries, we
use a sampling-based approximation. In particular, we subsample both the queries Q ∈ `∗ and the
unlabeled trajectories z ∈ Z, and select the best trajectory z∗ to label based on these samples. The
remainder of the algorithm continues without subsampling; in particular, we prune all queries Q ∈ `∗
that are inconsistent with (z∗, y∗), where y∗ = O(z∗) is the user-provided label.

Additional optimizations. We use two additional optimizations in our query evaluation. First, we
memoize the results of sub-queries across all queries encountered during synthesis. This strategy
significantly improves performance since sub-queries are often shared across many queries in the
search space. Second, evaluating our matrix semantics for Kleene star involves raising a matrix
to a power k—i.e., Mk. We use the standard technique where we compute the powers of two
I,M,M2,M4, ..., and then multiply the appropriate matrices to obtain Mk.

21

ID Query

1 〈True〉∗ ; 〈InLane1〉 ; 〈True〉∗ ; 〈InLane2〉 ; 〈True〉∗

This query selects cars that turn from lane 1 into lane 2.

2 〈True〉∗ ; 〈InLane1〉∗ ∧
〈

MinAvgAccel??
〉
∧
〈

MinLength5

〉
; 〈True〉∗

This query selects cars that are in lane 1 and accelerate rapidly.

3 〈True〉∗ ;
(〈

InLane1(A)
〉
; 〈True〉∗ ;

〈
InLane2(A)

〉)
∧
〈

InLane2(B)
〉
; 〈True〉∗

This query selects pairs where car A is turning into a lane while car B is in that lane.

4 〈True〉∗ ;
(〈

InLane1(A)
〉
∧
〈

InLane2(B)
〉)
∗ ∧
〈

SpeedRatio??(A,B)
〉
∧
〈

MinLength5

〉
; 〈True〉∗

This query selects pairs where the cars are going very different speeds and in adjacent lanes.

5 〈True〉∗ ;
(〈

InLane1(A)
〉
∧
〈

InLane2(B)
〉
∧
〈

Dist??(A,B)
〉)
∗ ∧
〈

MinLength5

〉
; 〈True〉∗

This query selects pairs where the cars are close and in adjacent lanes.

6 〈True〉∗ ;
(〈

InLane1(A)
〉
∧
〈

InLane1(B)
〉
∧
〈

Dist??(A,B)
〉)
∗ ∧
〈

MinLength5

〉
; 〈True〉∗

This query selects pairs where the cars are close and in the same lane.

Table 3: Six examples of queries in our language written for the YTStreams dataset. The first two are
single-object queries, and the last four are multi-object queries.

D Evaluation

We evaluate our approach by showing how it can be used to synthesize queries to solve interesting
tasks, achieving good performance given just a small number of initial training examples. In particular,
we address the following questions:

• Can our language capture interesting examples of human driving behaviors?

• Can our algorithm synthesize queries that achieve good performance on a held-out test set
given just a few initial training examples?

• Do our optimizations described in Section B.5 reduce the running time of our synthesizer?

We first describe our experimental setup, and address the first question by demonstrating several
examples of interesting queries that can be expressed in our language (Section D.1). Then, we provide
performance results for our synthesis algorithm, showing it is both data-efficient, requiring only a
handful of training examples to achieve high accuracy (Section D.2), and compute-efficient, executing
substantially faster with our performance optimizations (Section D.3).

D.1 Experimental Setup

Video data. Our evaluation leverages video data from the YTStreams dataset [14]. This dataset
includes 60 hours of video collected from live YouTube feeds of several fixed-position traffic cameras.
We use five hours of video from two of the available cameras—namely, one in Tokyo and one in
Warsaw. We extracted trajectories of cars and pedestrians from this video using a variant of the SORT
method for multi-object tracking [31] and a YOLOv3 object detection model [28] fine-tuned to this
dataset on approximately 500 images labeled with bounding boxes.

Ground truth queries. To evaluate QUIVR, we manually wrote 6 ground truth queries, including
both the sketch and the parameters; these queries are shown in Table 3. Several queries apply to
multiple configurations (e.g., different pairs of lanes), resulting in a total of 11 queries. The ground

22

Figure 8: Trajectories selected by multi-object queries. Each image shows two trajectories; the color
of each one changes from red to green to blue to denote the progression of time. Top: Unprotected
right turn into lane with oncoming traffic, as in Figure 1. Middle: The car on the bottom drives faster
than the one on top and passes it. Bottom: One car driving closely behind the other.

truth parameters were chosen by manually evaluating the query on the dataset and visually examining
whether they were selecting the desired trajectories. As can be seen, these queries cover a wide range
of behaviors. For instance, accounting for the behavior of nearby human drivers when making an
unprotected turn is an important challenge for autonomous cars [2], as is accounting for the behavior
of cars that are trying to pass [3]. Our language can be used to express queries capturing these kinds
of behaviors. Finally, we show examples of trajectories selected using three of our multi-object
queries in Figure 8.

Synthesis. To apply our approach on the video data, we initialize it with a randomly sampled set of
labeled examples, followed by up to 25 actively labeled examples using our active learning algorithm.
In particular, we first divide the set Z of all trajectories in the video into a train set Ztrain and a test
set Ztest; we do so temporally—i.e., trajectories occurring in the first half of the video are used for
training, those in the second half are used for testing. We then use the ground truth query Q∗ to
construct a small set of initial labeled examples W ⊆ Ztrain × B. Specifically, we construct W by
sampling 2 positive and 10 negative examples Zinit uniformly at random from Ztrain; then, we let

W = {(z, y) | z ∈ Zinit, y = JQ∗K(z)}.

The subsequent active learning steps choose among the remaining unlabeled examples in Ztrain—i.e.,
the available unlabeled examples are Z = Ztrain \ Zinit. Then, we simulate the human by evaluating
each trajectory z selected by our active learning algorithm under Q∗—i.e., O(z) = JQ∗K(z).

D.2 Accuracy of Synthesized Queries

First, we show QUIVR is able to synthesize queries with few labeled examples, by comparing our full
approach to a baseline that replaces the active learning component with uniform randomly sampling
examples z ∼ Uniform(Z) to label.

23

ID Query 0 Steps 5 Steps 10 Steps 25 Steps
Ours Random Ours Random Ours Random Ours Random

1 Shibuya, 1-object, A 0.06 0.06 1.00 0.06 1.00 1.00 1.00 1.00
1 Shibuya, 1-object, B 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 Shibuya, 1-object, C 0.39 0.39 1.00 0.39 1.00 0.39 1.00 0.42
1 Shibuya, 1-object, D 0.99 0.99 1.00 0.99 1.00 0.99 1.00 0.99
2 Warsaw, 1-object, A 0.27 0.28 0.38 0.22 1.00 0.22 1.00 0.33
2 Warsaw, 1-object, B 0.54 0.50 0.91 0.72 0.98 0.72 0.98 0.80
3 Warsaw, 2-object, A 0.24 0.55 0.50 0.46 0.67 0.46 0.91 0.50
4 Warsaw, 2-object, B 0.07 0.07 0.38 0.08 0.55 0.10 1.00 0.09
4 Warsaw, 2-object, C 0.13 0.13 0.32 0.14 0.63 0.14 0.78 0.27
5 Warsaw, 2-object, D 0.10 0.10 0.46 0.31 0.53 0.32 0.53 0.22
5 Warsaw, 2-object, E 0.08 0.07 0.40 0.13 0.60 0.12 0.71 0.12

Table 4: Median F1 score after steps of active learning, with our algorithm for selecting tracks to
label (“Ours”) and a baseline uniformly random choice (“Random”). “ID” shows the corresponding
query in Table 3 (recall that each query may have multiple instantiations), and “Query” describes the
query.

Metrics. We evaluate the F1 score of the query synthesized using our algorithm given the initial
examples W together with a varying number of actively labeled examples. One challenge is that our
algorithm returns a list `∗ containing all queries consistent with the current examples. Thus, we report
the median F1 score across queries in `∗ compared to the ground truth query Q∗ on the held-out test
set Ztest. Also for 2-object queries, the size of |Ztest| is significantly larger since it contains pairs of
object trajectories; thus, evaluating all queries in `∗ on all trajectories in Ztest is intractable. Thus,
in these cases, if there are more than 100 test examples (resp., 1000 candidate queries), we sample
100 examples (resp., 1000 candidate queries) uniformly at random, and report results based on these
subsets.

Baselines. We compare our algorithm against an ablation where we substitute the active learning
component with a simple sampling method that selects trajectories z uniformly at random from the
remaining unlabeled training examples Z to ask users to label.

Results. We show the F1 score of each of the 11 queries in Table 4 after 0, 5, 10, and 25 steps
of active learning. After just 10 steps, our approach provides F1 score of 1.0 on 5 of 11 queries.
Furthermore, after 25 steps, it yields an F1 score of 0.9 on average across all queries. Thus, by
selecting examples for the user to label that most reduce uncertainty in expectation, QUIVR is able to
rapidly synthesize queries with relatively little user input. In Figure 2, we show the learning curve of
an individual run, with both our approach and the uniform sampling baseline. While our approach
provides a similar accuracy to uniform sampling early on, accuracy with active learning rapidly
improves on this run after 7 active learning steps, showing that QUIVR effectively selects trajectories
that best disambiguate between the multiple consistent queries present on each step.

D.3 Synthesis Running Time

Next, we show QUIVR efficiently synthesizes queries, with its quantitative semantics and matrix
sparsification optimizations providing substantial speedups.

Metrics. We evaluate the running time, focusing on the enumerative search phase of our algorithm
(i.e., Algorithm 1). During active learning, we found that the speedups from sparsification remain
similar (though pruning may have a smaller advantage here).

Baselines. We compare the running time of our system with two ablations. First, we compare to
omitting the parameter space pruning based on quantitative semantics—i.e., we treat each parameter
value θh ∈ Θh as a separate query. Second, we compare to omitting our matrix sparsification
optimization. Finally, we also compare to a third approach where we run the query on a GPU. This
comparison demonstrates an additional advantage of our matrix semantics—when a GPU is available,
we can in some cases use it to further improve performance.

Results. In Figure 5, we report the running time of our algorithms on a CPU (an Intel Xeon 6148
CPU at 2.40GHz) and a GPU (an Nvidia GeForce RTX 2080 Ti). On the GPU, the sparse semantics

24

Query Boolean Quantitative Sparse GPU

Shibuya, 1-object, A 333± 4 51± 2 41± 1 23± 11
Shibuya, 1-object, B 235± 2 39± 1 33± 1 19± 10
Shibuya, 1-object, C 251± 2 40± 3 34± 2 20± 10
Shibuya, 1-object, D 329± 3 54± 1 44± 1 24± 13
Warsaw, 1-object, A 160± 4 27± 2 30± 1 21± 11
Warsaw, 1-object, B 209± 2 35± 2 36± 1 20± 11
Warsaw, 2-object, A 5830± 1 891± 59 604± 79 –
Warsaw, 2-object, B 5073± 28 814± 30 469± 10 –
Warsaw, 2-object, C 5436± 6 870± 9 552± 23 –
Warsaw, 2-object, D 5023± 6 797± 38 538± 11 –
Warsaw, 2-object, E 5021± 15 807± 26 528± 11 –

Table 5: Running time of synthesis (mean ± stddev, in seconds) for the Boolean, quantitative, and
sparse semantics, with 0 steps of active learning. For the GPU results, we use quantitative semantics.
Missing results indicate an out-of-memory error. These numbers are over 3 trials.

was slower than the quantitative semantics, and the Boolean semantics always ran out of memory, so
we use the quantitative semantics. On the CPU, the quantitative semantics provide a 6.2× speedup
on average, as well as a significant reduction in memory usage. The sparse semantics provide an
additional 1.3× speedup across all queries. As can be seen, the sparse semantics are especially useful
for slower, 2-object queries, where it rises to a 1.6× speedup. When available and when it does not
run out of memory, the GPU provides a 1.9× speedup on average.

E Related Work

Querying video data. There has been recent work on querying object detections and trajectories in
video data [10, 11, 12, 13, 14, 15, 16, 17]. While the primary focus of this line of work has been on
improving scalability, some of the approaches also touch on the language-design aspect [11, 14, 17].
However, these approaches focus on SQL-like operators such as select, inner-join, group-by, etc.
over predefined predicates. These operators cannot capture compositions such as the sequencing and
iteration operators in our language, which are necessary for identifying more complex behaviors.

Regular expression synthesis. There has been recent interest in synthesizing regular expressions
from examples—for instance, using genetic algorithms [32]. Most closely related is work on
syntax-guided synthesis of regular expressions [33]; our pruning strategy builds on their approach of
overapproximating holes using true and false. There has also been work on multimodal synthesis
of regular expressions (e.g., from both examples and natural language descriptions) [34], as well as
work on repairing regular expressions rather than synthesizing them from scratch [35]. In contrast to
this line of work, our synthesis problem is significantly more challenging due to the possibility of
real-valued holes in predicates in our queries. Our language also includes additional complexities,
particularly the use of atomic predicates that match subsequences rather than individual inputs.

Neurosymbolic models. There has been recent work on leveraging program synthesis in the context
of machine learning. For instance, there has been work on using programs to represent high-level
structure in images [36, 37, 38, 39, 40], as well as for reinforcement learning [41, 42, 43, 44]. In
contrast, we use programs to classify predicted trajectories.

The most closely related work in this direction is on synthesizing functional programs with neural
components operating over lists [45, 8], including work on synthesizing web scraping programs that
use neural components to handle word meaning [46]. Our work includes key constructs tailored
to our domain that are not included in their languages. Most importantly, we include a sequencing
operator; in their functional language, such an operator would need to be represented as a nested
series of if-then-else operators. In addition, their language does not support predicates that match
variable-length inputs; while such a predicate could be added to their language, none of their operators
(e.g., map and fold) are designed to compose such predicates (e.g., sequencing). While we include
iteration, this operator can be captured using fold.

Quantitative synthesis. There has been recent work on program synthesis with quantitative
properties—e.g., on synthesis for producing optimized code [47, 48, 49], for approximate comput-

25

ing [50, 51], for probabilistic programming [52], and for embedded control [53]. These approaches
largely focus on search-based synthesis, either using constraint optimization [50], continuous opti-
mization [53], enumerative search [51, 48], or stochastic search [47, 52, 49]. We leverage these ideas
in the context of our application domain.

Programming by example. There has been a great deal of recent interest in programming by
example—for instance, to synthesize string processing programs [54, 55], list processing pro-
grams [56, 57, 58], functional programs [59, 60], table transformations [61, 62], and SQL queries [63].
A key challenge in our setting is the need to search over real-valued parameters.

Quantitative semantics. There has been work on quantitative regular expressions (QREs). In
general, QREs cannot be efficiently evaluated due to their nondeterminism; our language is restricted
to ensure efficient computation. More broadly, there has been work on quantitative semantics for
temporal logic for robust constraint satisfaction [64, 65, 66], and to guide reinforcement learning [67].
Similarly, there has been work using the Viterbi semiring to obtain quantitative semantics for Datalog
programs [68], which they use in conjunction with gradient descent to learn the rules of the Datalog
program. In contrast, we use our quantitative semantics to efficiently compute cutoffs at which we
can prune the parameter search space; in particular, we prove that these semantics compute this cutoff.
Finally, there has been work on using GPUs to evaluate regular expressions [69]; however, they focus
on evaluating traditional regular expressions over strings.

Active learning for program synthesis. There has been recent interest in leveraging active learning
to reduce ambiguity in the context of program synthesis [70], including the use of greedy active
learning strategies similar to ours [24]. Our focus is on the query language and synthesis algorithm,
but show that leveraging existing active learning strategies can reduce ambiguity in our domain.

Machine learning for program synthesis. There has been work on using machine learning to learn
an objective to disambiguate among different programs that satisfy an ambiguous specification [71,
72]; however, the goal is to synthesize a logical program rather than one operating over noisy inputs.
More broadly, there has been work using machine learning to guide synthesis [57, 62, 73, 74, 61, 58],
but again, the goal is to synthesize a logical program.

F Proofs

F.1 Proof of Lemma 1

It suffices to show that if there exists a completion Q̄ of Q such that if JQ̄K = 1, then JQ+K = 1,
and if JQ̄K = 0, then JQ−K = 0. We prove by structural induction on Q. The case Q = ?? follows
since Q+ = 〈true〉∗, so JQ+K(z) = 1, and Q− = 〈false〉, so JQ−K(z) = 0. For the case Q = ϕ??,
recall that JϕθK(z) = 1(ιϕ(z) ≥ θ), and that Q+ = ϕ−∞ and Q− = ϕ∞. Thus, for any θ ∈ R, if
JϕθK(z) = 1, then JQ+K(z) = 1, and if JϕθK(z) = 0, then JQ−K(z) = 0, so the claim follows. The
case ϕ follows since it has no holes, so Q = Q+ = Q− and Q = Q̄ for every completion Q̄ of Q.

Next, consider the case Q = Q0 ; Q1. Note that Q+ = Q+
0 ; Q+

1 , and Q− = Q−0 ; Q−1 . Furthermore,
for any completion Q̄ of Q, we have Q̄ = Q̄0 ; Q̄1, where Q̄0 is a completion of Q0 and Q̄1 is a
completion of Q1. Suppose that JQ̄K(z) = 1. Then, there must exist k ∈ {0, 1, ..., n}, where n = |z|,
such that JQ̄0K(z0:k) = JQ̄1K(zk:n) = 1. By induction, we have JQ+

0 K(z0:k) = JQ+
1 K(zk:n) = 1,

which implies that JQ+K(z) = 1, as claimed. Conversely, suppose that JQ̄K(z) = 0. Then, for
any k ∈ {0, 1, ..., n}, we have either JQ̄0K(z0:k) = 0 or JQ̄1K(zk:n) = 0. By induction, for
any k ∈ {0, 1, ..., n}, we have either JQ−0 K(z0:k) = 0 or JQ−1 K(zk:n) = 0, which implies that
JQ−K(z) = 0, as claimed.

Next, consider the caseQ = Q0∨Q1. Note thatQ+ = Q+
0 ∨Q

+
1 , andQ− = Q−0 ∨Q

−
1 . Furthermore,

for any completion Q̄ of Q, we have Q̄ = Q̄0 ∨ Q̄1, where Q̄0 is a completion of Q0 and Q̄1 is a
completion ofQ1. Suppose that JQ̄K(z) = 1. Then, we must have either JQ̄0K(z) = 1 or JQ̄1K(z) = 1.
By induction, we have either JQ+

0 K(z) = 1 or JQ+
1 K(z) = 1, which implies that JQ+K(z) = 1, as

claimed. Conversely, suppose that JQ̄K(z) = 0. Then, we must have JQ̄0K(z) = JQ̄1K(z) = 0. By
induction, we have JQ−0 K(z) = JQ−1 K(z) = 0, which implies that JQ−K = 0, as claimed. The case
Q = Q0 ∧Q1 follows by an analogous argument, so the lemma statement follows.

26

F.2 Proof of Lemma 2

We prove by structural induction on Q. First, consider the case Q = ϕ??1, where h = ??1 (since we
have assumed that Q only has a single parameter hole). Then, we have

JQθhK(z) = 1(ιϕ(z) ≥ θh) = 1(JQKq(z) ≥ θh),

The case Q = ?? cannot occur since we have assumed that Q has a single parameter hole. For the
case Q = ϕ, we have

JQKq(z) =

{
∞ if JQK(z) = 1

−∞ if JQK(z) = 0,

so for θh ∈ R (i.e., θh 6= ±∞), it follows that JQK(z) = 1(JQKq(z) ≥ θh).

Next, consider the case Q = Q0 ; Q1. Letting n = |z|, by induction, we have

JQK =
∨

k∈{0,1,...,n}

(JQ0K(z0:k) ∧ JQ1K(zk:n))

=
∨

k∈{0,1,...,n}

1(JQ0Kq(z0:k) ≥ θh) ∧ 1(JQ1Kq(zk:n) ≥ θh)

=
∨

k∈{0,1,...,n}

1
(

max{JQ0Kq(z0:k), JQ1Kq(zk:n)} ≥ θh
)

= 1

(
min

k∈{0,1,...,n}
max{JQ0Kq(z0:k), JQ1Kq(zk:n)} ≥ θh

)
= 1(JQKq ≥ θh).

Next, consider the case Q = Q0 ∨Q1. By induction, we have

JQK = JQ0K(z) ∨ JQ1K(z)
= 1(JQ0Kq(z) ≥ θh) ∨ 1(JQ1Kq(z) ≥ θh)

= 1
(

max{JQ0Kq(z), JQ1Kq(z)} ≥ θh
)

= 1(JQKq ≥ θh).

Finally, consider the case Q = Q0 ∧Q1. By induction, we have

JQK = JQ0K(z) ∧ JQ1K(z)
= 1(JQ0Kq(z) ≥ θh) ∧ 1(JQ1Kq(z) ≥ θh)

= 1
(

min{JQ0Kq(z), JQ1Kq(z)} ≥ θh
)

= 1(JQKq ≥ θh).

The claim follows.

F.3 Proof of Lemma 3

We prove by structural induction on Q. The base case Q = ϕ follows by definition. Finally, for the
case Q = Q1 ; Q2, by induction, we have

JQ1 ; Q2KM (z)i,j = max
k∈In

min{JQ1KM (z)i,k, JQ2KM (z)k,j}

= max
k∈{i,i+1,...,j}

min{JQ1Kq(zi:k), JQ2Kq(zk:j)}

= JQ1 ; Q2Kq(zi:j),

where the second line follows since min{JQ1KM (z)i,k, JQ2KM (z)k,j} = −∞ if k < i or k > j (this
fact itself follows by structural induction on Q), which is then ignored by the max over k ∈ In. Next,
for the case Q = Q1 ∨Q2, by induction, we have

JQ1 ∨Q2KM (z)i,j = max{JQ1KM (z)i,j , JQ2KM (z)i,j}
= max{JQ1Kq(zi:j), JQ2Kq(zi:j)}
= JQ1 ∨Q2Kq(zi:j).

27

Finally, for the case Q = Q1 ∧Q2, by induction, we have

JQ1 ∧Q2KM (z)i,j = min{JQ1KM (z)i,j , JQ2KM (z)i,j}
= min{JQ1Kq(zi:j), JQ2Kq(zi:j)}
= JQ1 ∧Q2Kq(zi:j).

The claim follows.

F.4 Proof of Lemma 4

We show the case J·KR; the case J·KC follows by an analogous argument. We prove by structural
induction on Q. First, the cases Q = ϕ?? and Q = ϕ hold by definition.

Next, suppose that Q = Q1 ; Q2, and assume JQKR(z)i,i′ = 1. Then, by definition, we have
JQ1KR(z)i,i′ = 1, so by induction, we have JQ1KM (z)i,j ≥ JQ1KM (z)i′,j for all j ∈ In. Thus, we
have

JQKM (z)i,j = max
k∈In

min{JQ1KMi,k, JQ2KMk,j} ≥ max
k∈In

min{JQ1KMi′,k, JQ2KMk,j} = JQKM (z)i′,j .

Next, suppose that Q = Q1 ∨ Q2, and assume JQKRi,i′(z) = 1. Then, by definition, we have
JQ1KR(z)i,i′ = JQ2KR(z)i,i′ = 1, so by induction, we have JQ1KMi,j ≥ JQ1KM (z)i′,j and
JQ2KM (z)i,j ≥ JQ2KM (z)i′,j for all j ∈ In. Thus, we have

JQ1 ∨Q2KM (z)i,j = max{JQ1KM (z)i,j , JQ2KM (z)i,j}
≥ max{JQ1KM (z)i′,j , JQ2KM (z)i′,j}
= JQ1 ∨Q2KM (z)i′,j .

Finally, suppose that Q = Q1 ∧ Q2, and assume JQKR(z)i,i′ = 1. Then, by definition, we
have JQ1KR(z)i,i′ = JQ2KR(z)i,i′ = 1, so by induction, we have JQ1KMi,j ≥ JQ1KM (z)i′,j and
JQ2KM (z)i,j ≥ JQ2KM (z)i′,j for all j ∈ In. Thus, we have

JQ1 ∧Q2KM (z)i,j = min{JQ1KM (z)i,j , JQ2KM (z)i,j}
≥ min{JQ1KM (z)i′,j , JQ2KM (z)i′,j}
= JQ1 ∧Q2KM (z)i′,j .

The claim follows.

F.5 Proof of Lemma 5

We prove by structural induction on Q. First, the cases Q = ϕ?? and Q = ϕ hold by definition. Next,
suppose that Q = Q1 ; Q2. By induction, for i ∈ I|I| and j ∈ I|K|, we have

JQ1 ; Q2KSI,J(z)i,j = max
k∈I|K|

min{JQ1KSI,K(z)i,k, JQ2KSK,J(z)k,j}

= max
k∈I|K|

min{(JQ1KM (z)I,K)i,k, (JQ2KM (z)K,J)k,j}

= max
k∈K

min{JQ1KM (z)Ii,k, JQ2KM (z)k,Jj}

= max
k∈In

min{JQ1KM (z)Ii,k, JQ2KM (z)k,Jj}

= JQ1 ; Q2KM (z)Ii,Jj ,

where Ii ∈ In is the ith element of the list I and Jj ∈ In is the jth element of J . The key step is the
fourth line. To see this step, note that by maximality of K (and by Lemma 4), for any k′ 6∈ K, there
exists k ∈ K such that JQ1KMi,k ≥ JQ1KMi,k′ and JQ2KMk,j ≥ JQ2KMk′,j , which implies that

min{JQ1KM (z)Ii,k, JQ2KM (z)k,Jj} ≥ min{JQ1KM (z)Ii,k′ , JQ2KM (z)k′,Jj},
which in turn implies the fourth line above. As a consequence, we have

JQ1 ; Q2KSI,J(z) = JQ1 ; Q2KM (z)I,J .

28

Next, suppose that Q = Q1 ∨Q2. By induction, we have

JQ1 ∨Q2KSI,J(z) = max{JQ1KSI,J(z), JQ2KSI,J(z)}
= max{JQ1KM (z)I,J , JQ2KM (z)I,J}
= JQ1 ∨Q2KMI,J .

The case Q = Q1 ∧Q2 follows by an analogous argument, so the claim follows.

29

	Introduction
	Overview
	Evaluation
	Conclusion
	Query Language
	Synthesis Algorithm
	Problem Formulation
	Synthesis Algorithm Overview
	Pruning Partial Queries
	Pruning Parameter Values
	Quantitative Semantics for Pruning Parameter Values
	Matrix Semantics
	Sparse Matrix Semantics
	Theoretical Guarantees

	Implementation
	Object Tracking
	Domain Specific Language
	Synthesis Algorithm

	Evaluation
	Experimental Setup
	Accuracy of Synthesized Queries
	Synthesis Running Time

	Related Work
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5

