Published as a conference paper at ICLR 2018

PARALLELIZING LINEAR RECURRENT NEURAL NETS
OVER SEQUENCE LENGTH

Eric Martin Chris Cundy

eric@ericmart.in Department of Computer Science
University of California, Berkeley
Berkeley, CA 94720, USA*
c.cundy@berkeley.edu

ABSTRACT

Recurrent neural networks (RNNs) are widely used to model sequential data but
their non-linear dependencies between sequence elements prevent parallelizing
training over sequence length. We show the training of RNNs with only linear
sequential dependencies can be parallelized over the sequence length using the
parallel scan algorithm, leading to rapid training on long sequences even with small
minibatch size. We develop a parallel linear recurrence CUDA kernel and show
that it can be applied to immediately speed up training and inference of several state
of the art RNN architectures by up to 9x. We abstract recent work on linear RNN's
into a new framework of linear surrogate RNNs and develop a linear surrogate
model for the long short-term memory unit, the GILR-LSTM, that utilizes parallel
linear recurrence. We extend sequence learning to new extremely long sequence
regimes that were previously out of reach by successfully training a GILR-LSTM
on a synthetic sequence classification task with a one million timestep dependency.

1 INTRODUCTION

Recurrent neural networks (RNNs) are widely used for sequence modelling tasks in domains such
as natural language processing (Sutskever et al., [2014), speech recognition (Amodei et al., 2015,
and reinforcement learning (Hausknecht and Stone} 2015)). Most RNNs, including popular variants
such as long short-term memories (LSTMs), introduced by [Hochreiter and Schmidhuber| (1997),
and gated recurrent units (GRUs), introduced by |Cho et al.| (2014)), contain a non-linear dependency
between sequential inputs. These non-linear dependencies create a very flexible class of models but
limit the feasibility of training RNNs on long sequences as each sequence element must be processed
sequentially. Modelling sequences of thousands to millions of elements is important to domains such
as robotics, remote sensing, control systems, speech recognition, medicine, and finance.

The RNN serial evaluation inefficiency problem is usually mitigated by parallelizing the forward and
backward pass over a minibatch of inputs. Without minibatches, RNN evaluation is a sequence of
matrix-vector multiplications. Minibatches transform RNN computation into a sequence of more
efficient matrix-matrix multiplications, but this speed-up brings several disadvantages. RNN model
size is often limited by GPU memory size, and running a forward and backward pass on a minibatch
requires memory linear in the minibatch size. Grouping data into minibatches increases the latency
of each pass and reduces the rate of optimization steps. Finally, training with larger minibatches
damages generalization ability (Keskar et al.,|2017). Given these effects, it is desirable to obtain
high training throughput with small minibatches. Persistent RNNs (Diamos et al.||2016) use a novel
implementation that can achieve high GPU utilization with very small minibatch sizes when the
recurrent state is larger than 500 elements, but even persistent RNNs become limited by the serial
evaluation inefficiency at smaller hidden sizes.

Numerous prior works have shown strong performance from neural sequential models with only
linear dependence on earlier sequence elements. |Balduzzi and Ghitfary|(2016) investigated RNNs with
only elementwise linear recurrence relations h; = a; © hy—1 + (1 — o) ® x4 and developed linear

*Currently at the Future of Humanity Institute, University of Oxford, Oxford, UK

Published as a conference paper at ICLR 2018

variants of LSTM and GRU that perform similarly to standard non-linear RNNs on text generation
tasks. |[Bradbury et al.|(2017)), Kalchbrenner et al.| (2016)),|Gehring et al.[|(2017), and [van den Oord
et al.| (2016)) have successfully applied networks of convolutions over sequences for tasks such as
machine translation, language modelling, and audio generation. These works have observed up to an
order of magnitude increase in training throughput compared to RNN alternatives. Convolutional
sequence models typically rely on either an attention mechanism or a (possibly linear) recurrent layer
to integrate information at scales larger than the filter width. Introduction of a recurrent layer prevents
full parallelization over the sequence length while attention mechanisms are expensive to apply on
long sequences in online inference use cases.

A linear recurrence is a specific instance of a general form of computation known as a scan. Scans
and reductions are computations involving repeated application of a binary operator ¢ over an array
of data. Computing the sum or maximum of an array is an example of a reduction, while a cumulative
sum is a common example of a scan operation. Throughout this work, the scan of & with initial value
b is defined as

SCAN(@®, [a1,az, ..., a,],b) = [(a1 ® D), (a2 ® a1 D b), ..., (an, B ap—1... B a; D b)].

The reduction of @ over array A and initial value b is denoted REDUCE(®, A, b) and is the final
element of SCAN(@, A, b). Despite their dependent computation graph, algorithms exist to parallelize
scans and reductions when @ is associative (Ladner and Fischer, [1980).

Blelloch| (1990) shows that first order recurrences of the form h; = (A; ® hy—1) @ x; can be
parallelized with the parallel scan algorithm if three conditions are met:

1. @ is associative: (a ®b) Pc=a® (b® c)

2. ® is semiassociative: there exists a binary associative operator ® such thata ® (b ® ¢) =
(a@b)®c

3. ®distributes over &: a @ (b c) = (a®b) @ (a®¢)

Considering the familiar operations in linear algebra, we see that the associative operation of vector
addition (x ®y = = +y), the semiassociative operation of matrix-vector multiplication (A® x = Ax)
and the associative operation of matrix-matrix multiplication (A © B = AB) satisfy Blelloch’s three
conditions, allowing hy = A¢hy—1 + x4 to be evaluated in parallel over time steps ¢ for vectors x4
and square matrices A;.

We investigate this idea further and deliver the following contributions:

e We classify RNNs which satisfy the conditions above, and show that many RNNs used
in practice such as the Quasi-RNNs (QRNNs) introduced by |Bradbury et al.| (2017) are
contained in this class.

e We provide an implementation of the parallel linear recurrence algorithm as a CUDA kernel,
and show that it speeds up training of QRNN and|Lei and Zhang| (2017)’s Simple Recurrent
Unit (SRU) architectures by factors of up to 9x.

e We describe how several recent linear RNNs can be described as linear surrogates for
non-linear architectures. We introduce a linear surrogate for the LSTM and show that we
are able to train it with a speedup of 5-10x compared to the CuDNN LSTM when we use
the parallel linear recurrence algorithm.

2 PARALLEL LINEAR RECURRENCE

As the method is essential to this work, Algorithm 1 presents the parallel linear recurrence algorithm
for the interested reader.

2.1 THEORETICAL PERFORMANCE

The cost of a serial scan over a sequence of length T is Cyean € O((Cg + Cg)T'), compared
to the parallel scan cost Cpeean € O(2(C, + Cg + Cg)(T'/p + 1g p)) on p processors (Blelloch,
1990). If h; is a vector of dimension n then Cy, € O(n3),Cy € O(n?),Cqy € O(n) giving

Published as a conference paper at ICLR 2018

Algorithm 1 Parallel linear recurrence on p processors
1: Lety = [(A1,21), (Ao, z2), ..., (Ap, 27)]
: Let binary operator e act as (A,z) e h = Ah + x
s LetSy=1,8 < Ej,E;+1=S841,F,-1=Tforiin0,p—1

P, = REDUCE(®, Ag,.5,,)

2

3

4:

5: parfori < 0,p — 1 do

6.

8

: end parfor
9:
10: Let z = [(Po, .R())7 (Pl, Rl), ceey (Pp, Rp)}
11: C = SCAN(e, z, ho) > compute C; = P;,C;_1 + R; with C_; = hg
12:

13: parfori < 0,p — 1 do

14: hs,.r; = SCAN(e,ys,.5,, Ci_1)
15: end parfor

16: return h

Cosean € O2(n® +n2 +n)(T/p+1gp)) and Cssean € O((n? +n)T). The O(n?) cost of the matrix
multiplication in the parallel algorithm can counter-act any parallel speedups for sufficiently large
hidden states and lead to a slower algorithm overall.

To avoid this problem, we will only consider diagonal matrices A;, in which case both matrix-matrix
and matrix-vector multiplication have cost proportional to 7 and Cpeean € O(6n(T'/p +1gp)) and
Cssean € O(2nT). This gives a parallel speedup factor of pT'/3(T + lgp). Assuming p < T, then
Cpscan < Csean When p > 3.

As we are only considering diagonal matrices, we write the linear recurrence as hy = A¢ © hy—1 + x4
where © indicates elementwise multiplication.

Limiting A; to be diagonal may seem like a severe constraint but there are several reasons to do
so beyond the favorable parallelization performance. Relatively few neural network models use
separate recurrent matrices for each sequence element and using these separate matrices would
require potentially prohibitive n2T memory. Applying the same matrix A to each sequence element
is also unappealing considering that a matrix multiplication can be thought of as a rotation and a
scaling. The same rotation at every element seems unlikely to be useful, and the scaling is exactly
what’s captured in diagonal vectors \;. Recurrent coefficient vectors A\; provide enough flexibility to
implement schemes such as exponential moving averages or a gating mechanism.

2.2 BACKPROPAGATION

oL
Vi L = ey
Ohyyq oL
L = L a1
Vi = Tgp, OVl 5
oL
=\ L+ —
t+1 © vht+1 + aht
oh
V/\t[, = ® me =hi—1 0 V}“L
O
Ve, L=V, L
oh
VhoL = — OVnL=A OV L
Ohg

The backpropagation equations center around a linear recurrence over g—,i in the reverse order of
the original sequence. This allows for parallelizing both the forwards and backwards pass of a linear

RNN over the sequence length.

Published as a conference paper at ICLR 2018

2.3 IMPLEMENTATION

GPUs commonly used for deep learning in 2017 consist of between 640 and 3200 parallel processors
known as warps. Each warp operates on 32 single precision floating point numbers in parallel.

This work implemented parallel linear recurrence as a CUDA kernel with bindings into the TensorFlow
(Abadi et al., 2016) framework. Each warp acts as a processor, which means the algorithmic p is up
to 3200 and the theoretical parallelization speedup factor is up to several hundred. The 32 lanes of
each warp work on different elements of the recurrence vector in parallel. These implementation
details mean that peak performance is only obtained on sequences of at least several thousand steps
on at least a 32 element vector.

The parallel linear recurrence CUDA kernel and TensorFlow bindings are available at https:
//github.com/eamartin/parallelizing_linear_rnns|.

3 MODELS

Parallel linear recurrence can be used to construct a wide variety of differentiable modules that can
be evaluated in parallel. Common applications of linear recurrence include gating schemes and
exponential moving averages. Although linear recurrence values can depend only linearly on previous
elements, the stacking of linear recurrent layers separated by non-linearities allows for a non-linear
dependence on the past. In this sense the non-linear depth of a linear recurrent network is the number
of layers and not the sequence length.

3.1 GATED IMPULSE LINEAR RECURRENT LAYER

A gated impulse linear recurrent (GILR) layer transforms its m dimensional inputs z; into a sequence
of n dimensional hidden states h;:

gt = o(Uzm + by)

it = T(V.I?t + bz)

he =gt ©hi1+ (1 —g¢) Oy
A GILR layer applies the same non-linear transform to each sequence element and then accumulates
the sequence elements with a non-linear gating mechanism. Gate g; uses the sigmoid activation
function to give values in [0,1] for reasonable gating semantics, while impulse ¢; can use any activation

function 7. Stacking GILR layers allows for rich non-linear dependence on previous events while
still taking advantage of fast parallel sequence evaluation.

3.1.1 IMPACT ON EFFECTIVE "BATCH SIZE"

Consider evaluating an RNN with recurrence hy = o(Uh—1 + Vxy + b) from m inputs to n hidden
units on a sequence of length 7" with minibatch size b using a serial evaluation strategy. At each of T’
iterations, the naive approach performs two (b, m) x (m,n) matrix multiplications. Larger matrix
multiplications achieve higher throughput due to less IO overhead, so the better approach computes
Vx, for all ¢ ahead of time in a single (bT', m) x (m, n) matrix multiply. The non-linear recurrence
forces even the better approach to perform 7" potentially small (b, m) X (m,n) matrix multiplications
in serial. This makes serial RNN performance heavily dependent on minibatch size.

Now consider the GILR, noting that it has the same two matrix-vector multiplications per iteration
as the above RNN. The intermediate variables g and i can be evaluated for all ¢ with a single
(bT,m) x (m,n) matrix multiplication each. Given g and 4, h can be computed using a parallel
linear recurrence over 1" vectors each of bn elements. Rather than 7" small operations, the GILR can
be evaluated over all sequence elements with two large matrix multiplications and a parallel linear
recurrence. GILR performance is much less dependent on batch size as the matrix multiplication
kernel sees an "effective batch size" of 1" and T is typically large.

3.2 LINEAR SURROGATE RNNSs

RNN s learn a transition function s; = f(s;—1, 2+) which combines previous state s;_; with input
x; to compute current state s;. Non-linear f prevents application of the parallel linear recurrence

https://github.com/eamartin/parallelizing_linear_rnns
https://github.com/eamartin/parallelizing_linear_rnns

Published as a conference paper at ICLR 2018

algorithm and forces slow serial evaluation. To work around this inefficiency, note that s; serves dual
purposes. In s; = f(s:¢—1,2+), St—1 serves as an input to f summarizing the previous inputs while s;
serves as the output of f to be passed to other layers of the network. We can decouple these uses and
introduce independent variables for each purpose: s; is passed onto other layers of the network and
we introduce the linear surrogate 3; which is passed onto the next state, with s; = f(5;_1, z¢). We
are still able to choose a non-linear f, our only limitation being that §; must be linearly computable.
We refer to this class of model as a linear surrogate RNN (LS-RNN). QRNNSs (Bradbury et al.,[2017)
are LS-RNNs using hy—1 = Wixs_i + ...Wix:_1 and strongly typed RNNs (Balduzzi and Ghifary),
2016) are LS-RNNs with h; = x;_;. Although not a rule, LS-RNNSs can often be parallelized over
sequence length with either convolution or linear recurrence.

Consider an LSTM:

frriv, 00 = 0(Ufiohi—1 4+ Viioti +bfio)
2z =7(Uhi—1 + Voxy + 1)
= fitOc—1+ 1 O 2
ht = O¢ @ Ct
An LSTM has state s; = (hy, ¢;). Since ¢; depends only linearly on ¢;_1, no surrogate is needed for

¢¢. hy has a non-linear dependence on h;_1, so h; needs a linear surrogate. Introducing a GILR layer
as the surrogate, we obtain the GILR-LSTM:

g+ = o(Vyay + by)
Je =7(Vjwe + b;)
he =gt © hy1 + (1—9:) ©Je

fe i, 00 = U(Uf,i,o]jbtfl + Viioxi +bfio)
Zy = T(Uziltfl + V.o +b2)
c=ftOc1+i Oz
hi =0t © ¢

For m inputs and hidden size n, a GILR-LSTM contains 2n(n + m) more parameters than the
equivalently sized LSTM to handle the mapping from z to h. More generally, a LS-RNN contains all
of the same parameters as the underlying RNN as well as some additional parameters to compute the
linear surrogate.

4 EXPERIMENTS

We perform several experiments. First we find that our parallel linear recurrence kernel is able to
achieve up to 40x higher throughput than a serial implementation when applied to long sequences.
Secondly, we confirm that this kernel speedup translates to up to a 9x speedup to LS-RNNs such as
QRNNS.

In order to illustrate that the linearization does not necessarily come at the cost of expressibility, we
show that the GILR-LSTM architecture computed with the parallel linear recurrence algorithm is
able to train significantly faster than an optimized LSTM implementation on a pathological long-term
dependency problem from the original LSTM paper (Hochreiter and Schmidhuber, [1997).

4.1 THROUGHPUT BENCHMARKS
4.1.1 KERNEL PERFORMANCE

We first illustrate the throughput advantage of the parallel scan algorithm for evaluating the linear
recurrence. For a minibatch comprised of b sequences of length 7', we define the number of events
as b7 and the throughput as the number of events processed per second. We implement two CUDA

Published as a conference paper at ICLR 2018

Table 1: Parallel kernel speedup on m features (minibatch size = 1)

Sequence Length m =4 m=32 m =128

16 0.06 0.06 0.05
256 0.22 0.22 0.86
4,096 1.02 2.94 3.36
65,536 38.5 41.8 17.5

Table 2: Parallel kernel speedup for a variety of LS-RNNs, implemented as two stacked RNN
layers with 256 hidden units. We keep the GPU memory usage constant by fixing b1’ = 65, 536 for
minibatch size b and sequence length 7'

Sequence Length SRU QRNN (filter size 2) QRNN (filter size 10) GILR-LSTM

16 0.28 0.38 0.78 0.61
256 0.84 0.86 0.99 0.91
4,096 1.38 1.18 1.05 0.98
65,536 9.21 6.68 2.05 1.41

kernels, one which evaluates the parallel linear recurrence described in algorithm 2] and one which
evaluates the same linear recurrence on GPU in serial over sequence length and in parallel over
features and minibatch. The performance of each kernel depends on two factors: the sequence length
and the product of number of features and minibatch size. The performance measurements for this
experiment are made directly at the kernel level, avoiding any overhead from TensorFlow. We find
that the parallel kernel has a distinct advantage at long sequence lengths with a speedup factor of up
to 40x, as shown in table[I] The parallel kernel does not perform well at short sequence lengths due
to the overhead of multiple passes over data and communication between processors.

4.1.2 ACCELERATING EXISTING RNN ARCHITECTURES

Several recently introduced LS-RNN5s can be accelerated with the parallel linear recurrence algorithm.
We implemented SRUs, QRNNs (with filter width 2 and 10), and GILR-LSTMs that can be computed
with either the standard serial linear recurrence algorithm or parallel linear recurrence. Both methods
compute an identical recurrence, so switching from a serial to parallel implementation does not cause
any numerical changes and takes only a single line of code changes. Notably, both SRUs and QRNNs
claim an order of magnitude speedup compared to CuDNN LSTM when implemented with serial
linear recurrence. Any further speedup from parallel linear recurrence applies on top of the existing
speedup. We timed train throughput (forwards and backwards propagation), but the linear time of
each pass also makes the results applicable to forwards (inference) performance. However, parallel
linear recurrence can only accelerate inference in scenarios where the entire input sequence is known
at the start of the inference phase. We controlled for GPU memory usage within these experiments by
fixing b1 = 65, 536 for minibatch size b and sequence length 7', and chose a popular architecture
consisting of two stacked RNN layers with 256 hidden units and an input size of 4.

Table [2] shows that the throughput advantage from using parallel linear recurrence compared to serial
linear recurrence reaches up to 9x. Simpler architectures (for which the linear recurrence is a higher
proportion of the total computational load) are more affected by the switch to the parallel kernel.
This is particularly clear in the case of the QRNN, where including wider convolutional filters results
in more time spent outside of the linear recurrence and therefore reduces the speedup from linear
recurrence parallelization.

4.2 SYNTHETIC EXPERIMENT

One of the key strengths of the LSTM is that it is capable of dealing with long-term dependencies. In
order to demonstrate that the GILR-LSTM is also able to handle long-term dependencies we tackle a
canonical example of inference over many time steps from [Hochreiter and Schmidhuber (1997). We
show that in fact the GILR-LSTM is able to outperform the CuDNN LSTM and extend to sequence

Published as a conference paper at ICLR 2018

ho Repeated n — 2 .

Y

Y

Out

>
<
| 7|
=
j=]
Y
u‘
us)
)
he)
[¢]
=
3@
D Q
=
|
[}
=
5
L
A\ 4

Figure 1: The structure of the synthetic example and the GILR-LSTM architecture we used to tackle
it. We feed in one-hot unit vectors which are chosen uniformly at random (with replacement). The
class is determined by the very first vector zy, which has a fixed direction. The sign of = determines
the class. In the diagram, each rounded block indicates a cell of the RNN, whilst the square indicates
a linear unit.

Table 3: Performance of the GILR-LSTM compared to the CuDNN LSTM on problem 2b from
Hochreiter and Schmidhuber| (1997).

Sequence Length 1,024 8,192 1,048,576
CuDNN GILR CuDNN GILR CuDNN GILR

Iterations (1000s) 1.0 + 0.4 0.55 +0.04 044 +£005 056+0.16 - 14+3

Wall time (hours) 0.28 +0.08 0.031 +0.002 0.58 +0.06 0.104+0.03 - 9.7+ 1.7

lengths orders of magnitude longer than dealt with previously. The input consists of sequences of
length n where for n > 0 each element is a randomly chosen one-hot vector x in p-dimensional
space. The first vector in each sequence, g, is always either (1,0,...,0) or (—1,0,...,0). The
sequential model must read in an entire sequence and then output the sign of the first sequence
element. This sequence classification problem requires remembering the first element over the
length of the sequence, and early RNNs struggled with this for p as small as a few dozen. In the
original formulation of the problem (dealing in the regime with around one hundred timesteps),
the dimensionality of the input p is set equal to n. Since this would make the size of the input
data grow impractically large as O(n?) for long sequences, we fix p = 128 as we vary n. We
generated sequences for n equal to 1,024, 8,192, and 1,048,576. For each of these we compared a
two layer GILR-LSTM with 512 hidden units to a two layer LSTM with 512 hidden unit per layer
implemented by CuDNN.

We ran all experiments on a NVIDIA K80 GPU, with five runs per configuration allowing us to
find the average and standard deviation of the time and number of iterations to convergence. We
continually generated random sequences to serve as input data. A brief search over learning rate and
batch size was carried out to find the parameters which allow the network to converge most rapidly
for all runs. The criterion for convergence was five consecutive minibatches giving 100% accuracy.
The learning curves in figure [2| give support to this being a reasonable convergence criteria. For the
longest sequence length, we did not observe the CuUDNN LSTM converging, even after several days’
training.

The results as show in table [4.2]illustrate that the GILR-LSTM is able to converge between 6 and 10
times faster than the CuDNN LSTM. This is somewhat surprising given the LSTM was specifically
constructed for problems of this sort, and the CuDNN LSTM implementation is highly optimized (to
the extent that the monolithic interface it exposes is difficult to modify or extend). The GILR-LSTM
is implemented entirely in standard TensorFlow with the exception of using the new linear recurrence
op instead of a TensorFlow symbolic loop. Convergence of the GILR-LSTM models leads to the
conclusion that the non-linearities present in LSTM are not necessary for solving this instance of

'For the longest sequence length, the number of hidden units was decreased to 64 for both architectures so
that the net could fit in memory.

Published as a conference paper at ICLR 2018

Sequence Length: 1,024 Sequence Length: 8,192

GILR-LSTM 1.0 GILR-LSTM
10 CuDNN CuDNN

Accuracy (Moving Average)
Accuracy (Moving Average)
s

0 2 4 6 8 10 12 14 16 0 5 10 15 20 2% 0 3
Wall Time / mins. Wall Time / mins.

Sequence Length: 1,048,576

10 GILR-LSTM
—— CuDNN

Accuracy (Moving Average)

0 500 1000 1500 2000
Wall Time / mins

Figure 2: Learning curves for GILR-LSTM and CuDNN LSTM architectures for various sequence
lengths. Each plot shows the moving mean and standard deviation of classification accuracy over five
training runs, with the exception of a single run for CuDNN LSTM on 1 million sequence length.

the long-term dependency problem. The time to convergence further leads to the conclusion that
inclusion of a non-linearity at every step incurs a significant training time slowdown. Furthermore,
the GILR-LSTM is able to learn to carry dependencies over a one million element sequence. As far
as we know, this one million step sequence experiment is the longest sequential learning problem to
be handled by neural networks to date.

5 CONCLUSION

A significant portion of the success of deep learning can be attributed to access to massive amounts
of computation. Most of this computation is accessed through two highly efficient and parallelizable
building blocks: matrix multiplication and convolution. Recent research has demonstrated that linear
RNNSs can achieve similar prediction accuracy to non-linear RNNs on a wide variety of tasks in a
fraction of the training time. We propose the framework of LS-RNNSs as a way to tame the growing
zoo of sequential neural nets. We identify linear recurrence as another parallelizable building block
for current and future sequential models and we use it to obtain significant speedups on already fast
models. With the power of parallel linear recurrence we are able to solve a sequential dependency
problem multiple orders of magnitude larger than anything done prior. Future applications of parallel
linear recurrence within neural nets could include parallel training of memory augmented models
or providing a new sort of image filter on very high resolution images. We hope that parallel linear
recurrence can be to large scale sequence modelling what fast convolution algorithms are to image
recognition.

ACKNOWLEDGMENTS

We would like to acknowledge Kevin Bowers, Alex Meiburg, JD Co-Reyes, Carson McNeil, Andy
Palan, S6ren Mindermann, and several others for fruitful conversations and guidance.

Published as a conference paper at ICLR 2018

REFERENCES

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski,
A. Coates, G. Diamos, et al. Deep speech 2: End-to-end speech recognition in english and
mandarin. arXiv preprint arXiv:1512.02595, 2015.

D. Balduzzi and M. Ghifary. Strongly-typed recurrent neural networks. In Proceedings of The 33rd
International Conference on Machine Learning, pages 1292-1300, 2016.

G. E. Blelloch. Prefix sums and their applications. 1990.

J. Bradbury, S. Merity, C. Xiong, and R. Socher. Quasi-recurrent neural networks. In International
Conference on Learning Representations (ICLR), 2017.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using rnn encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078, 2014.

G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski, A. Coates, E. Elsen, J. Engel, A. Hannun,
and S. Satheesh. Persistent rnns: Stashing recurrent weights on-chip. In International Conference
on Machine Learning, pages 2024-2033, 2016.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence to sequence
learning. arXiv preprint arXiv:1705.03122,2017.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Aistats, volume 9, pages 249-256, 2010.

M. Hausknecht and P. Stone. Deep recurrent g-learning for partially observable mdps. In 2015 AAAI
Fall Symposium Series, 2015.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780,
1997.

N. Kalchbrenner, L. Espeholt, K. Simonyan, A. v. d. Oord, A. Graves, and K. Kavukcuoglu. Neural
machine translation in linear time. arXiv preprint arXiv:1610.10099, 2016.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training
for deep learning: Generalization gap and sharp minima. 2017.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the ACM (JACM), 27(4):
831-838, 1980.

Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of handwritten digits, 1998.

G. Orchard, A. Jayawant, G. Cohen, and N. Thakor. Converting static image datasets to spiking
neuromorphic datasets using saccades. arXiv preprint arXiv:1507.07629, 2015.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104-3112, 2014.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Se-
nior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. CoRR abs/1609.03499,
2016.

T. Lei, Y. Zhang, Training RNNs as fast as CNNs. arXiv preprint arXiv:1709.02755 , 2017.

Goldberger et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research
Resource for Complex Physiologic Signals. In Circulation 101(23):e215-e220; 2000 (June 13).
PMID: 10851218; doi: 10.1161/01.CIR.101.23.e215

	Introduction
	Parallel linear recurrence
	Theoretical performance
	Backpropagation
	Implementation

	Models
	Gated impulse linear recurrent layer
	Impact on effective "batch size"

	Linear surrogate RNNs

	Experiments
	Throughput benchmarks
	Kernel performance
	Accelerating existing RNN architectures

	Synthetic Experiment

	Conclusion

