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Abstract

Rheumatic heart disease remains a major burden in the developing countries. The
World Heart Federation proposed guidelines for the echocardiographic detection of
the disease, in which the mitral leaflets’ morphology assessment is a key indicator.
The drawback is that these guidelines are dependent on the clinician experience.
To overcome this limitation, we propose an automatic segmentation of the mitral
leaflets using a new method based on convolutional neural network, specifically
the UNet architecture. The results indicate a median DICE coefficient of 0.74 in
PLAX and 0.79 in A4C for the anterior mitral leaflet segmentation, while median
DICE of 0.60 in PLAX and 0.69 A4C are met for the posterior leaflet. A visual
evaluation of this segmentation approach by two cardiologists is in line with the
numerical results. The false detection due to overestimation and artifacts remains
an issue to be addressed in the future.

1 Introduction

1.1 Motivation

Rheumatic heart disease (RHD) is a preventable chronic sequel of acute rheumatic fever (ARF),
an autoimmune response to group A streptococcal infection. Although being almost eradicated in
high-income countries, it remains a major burden in the developing countries, where it causes most
of the cardiovascular mortality and morbidity in the young [1]. RHD can be definite (clinically
diagnosed) or borderline/sub-clinical (detected only by echocardiography). In a recent prevalence
study, the RHD was followed globally over a period of 25-years, [2], and it was estimated that in

∗Faculdade de Ciências, Departamento de Ciências de Computadores, Universidade do Porto
†Unidade de Cardiologia e Medicina Fetal, Real Hospital Português em Pernambuco

1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherlands.
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Figure 1: Brightness mode echocardiography. (a) parasternal long-axis view. (b) apical four-chamber
view.

2015 alone, there were 33.4 million cases of RHD, 10.5 million disability-adjusted life-years related
to RHD and 319400 RHD-related deaths. However, the estimations may fall short due to missing
data in some regions of the globe, misidentification in the causes of death and due to sub-clinical
RHD not being included in the prevalence study. This last aspect should not be disregarded since
screening studies [3] point that for each case of clinical RHD, 3 to 10 cases of sub-clinical disease
exist. It is important to note that even though sub-clinical cases may not develop into definite RHD, it
is at this stage that the treatment is most effective with milder health repercussions.

With the advent of portable echocardiography and the increasing detection rates of sub-clinical
RHD, an evidence-based set of guidelines was defined by the World Heart Federation (WHF) for the
echocardiographic assessment of RHD [4]. RHD mostly affects heart valves, especially the mitral
valve and, therefore, the WHF echocardiographic criteria are generally based on the morphology
and functionality of this valve. The mitral leaflets’ morphology and mobility is assessed through
brightness mode echocardiography, usually in the parasternal long-axis view (PLAX), and in
some cases using the apical four-chamber view (A4C). These echo views are shown in Fig. 1,
with the anterior mitral valve leaflet depicted as AMVL and the posterior mitral valve leaflet as
PMVL. Morphological assessment is usually done for AMVL instead of PMVL, solely because
higher inter-observer agreement is met [4]. Clinical observation suggests the tip of the leaflet is the
most commonly part to be affected [5]. Echocardiography assessment requires highly experienced
operators, which is a scarce resource in developing countries. The use of image processing tools has
the potential to reduce the operator dependency in screening settings, reduce the subjectivity and, in
this way, improve the diagnosis.

1.2 State of the art

Ultrasound images are affected by several acquisition artifacts such as attenuation, speckle, shadows
and signal dropout. Apart from that, the quality of the acquisition is strongly dependent on the human
operator and the machine settings. The intensity and texture differences between structures and the
contrast between structures and blood pool are low. These conditions raise several problems for
classic image processing methods [6]. In [7], the authors proposed a combination of active contours
and optical flow for the AMVL segmentation. The algorithm is semi-automatic and fails when the
leaflet’s displacement between frames is large and irregular. Another semi-automatic approach for
the AMVL segmentation was proposed in [8]. Two connected active contours identify the cardiac
muscle and the leaflet. The manual initialization and the parameters selection highly affect the
method’s performance. In [9], the authors propose a semi-automatic segmentation strategy, with a
single point input from the user. The input point defines a set of scanning lines for a virtual motion-
mode (M-mode) reconstruction. The posterior aorta wall’s motion pattern is obtained by applying
open-ended active contours to the virtual M-mode, using prior knowledge to establish constraints.
The pattern provides a seed for each frame to segment the AMVL with localizing region-based
active contours. Although it delivers the middle part of the leaflet, it sometimes fails to segment its
tip, which is the most relevant part of the structure diagnosis-wise. An approach based on outlier
detection in low-rank matrix was proposed in [10]. The authors aim to overcome the shortfalls of the
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previous methods, with a fully automatic unsupervised method. However, this solution still requires
an extensive parameter fine-tuning and cropping of the images around the region of interest. Also,
the method does not discriminate between AMVL and PMVL. In [11] the authors claim to prevent
tracking drifts caused by motion ambiguities by constraining the outlier pursuit, and refining the
segmentation with region-scalable active contours. Significant parameter fine-tuning remains as a
drawback.

Most of the literature approaches are highly sensitive to initialization, image quality and acquisition
parameters. None of them segments both leaflets consistently. The complexity of the problem calls
for supervised learning methods such as Convolutional Neural Networks (CNN ). CNNs have
become the state of the art solution for image recognition problems, even outperforming human
operators in some tasks. This approach will shift the burden of manual input from the final user
to the training phase, and also will not rely on hand-crafted image features, making segmentation
a fully automatic and robust process. To our knowledge there are no works in the literature on
semantic segmentation of the mitral leaflets using CNNs. In [12], a partial segmentation of the
mitral leaflets was needed to segment the left ventricle. The authors propose a network for patches’
classification and then a second network for segmentation of the ventricle. However, they were not
able to detect the contours of fast moving structures such as the mitral leaflets. The amount of data,
and the respective manual annotations required for training a CNN is a major point to take into
account. The UNet architecture, proposed in [13], claims to produce accurate results, with a small
number of observations. This trait of the UNet makes it an interesting contender for application in
the present work, since the available dataset is also limited. The architecture allows for a multi-scale
representation, with coarser information being collected in the bottom layers and finer information
at the top ones. The architecture is composed by two paths: one of contraction, with convolutional
layers and another of expansion with deconvolution layers. The paths are connected by skip layers
before each max-pooling operation. This ensures that both local and global information is captured.

2 Proposed Work

In this work the UNet will be used for the mitral leaflets’ segmentation in the A4C and PLAX views.
Each view produces distinct representations of the heart structures, thus, the model’s development
will be adapted for each one separately.

2.1 The UNet model

The most favourable aspects of the UNet architecture are that it does not require a large training set,
and that only the image is needed as input. The least favourable trait of the UNet is transversal to all
CNN architectures: the parameterization of the network requires a training phase. Depending on the
complexity of the network, the training phase may require high computational power and time.

2.1.1 Model implementation

The UNet architecture was recursively implemented in TensorFlow’s [14] front-end TFlearn [15]
(Python), allowing expansion of the depth D of the architecture (number of steps on the paths). In
Fig. 2, the implemented UNet architecture is shown.

Taking into account the specificity of the problem, some simplifications and changes were made to
the UNet model proposed in [13].

The first architectural change is the use of zero padding in the convolutions instead of the valid values.
The authors of [13] proposed the use of the valid values with a mirror padding pre-processing, so
the final outputs have the same spatial dimensions as the original input image. They argue that this
accelerates the training, however this was not observed during preliminary tests and therefore, it was
decided to use zero padding in all convolutions.

The second change is the use of batch normalization layers before the concatenation steps. This
adds a regularization effect by ensuring that the concatenated feature maps have the same order of
magnitude.

Since the present work is focused on the evaluation of the potential of DNN architectures in
segmenting the mitral leaflets’, no extensive studies were made for the hyper-parameter optimization.
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Figure 2: Proposed UNet model, adapted from [13]. Normalizing layers were added before every
max− pool operation; same padding in all Conv layers, instead of valid. Nx stands for the number
of filters, D for depth and S for the spatial size of the feature map.

Most of the parameters were empirically chosen and maintained unchanged throughout the training
stages: the learning rate was set to 0.001, the optimization algorithm was the Adam, a batch size of
4 was set, as loss function the mean square difference was selected, and as activation function the
Sigmoid was used with threshold of 0.5.

The samples were randomly shuffled and divided into a training and validation set (75% for training
and 25% for validation). Due to memory management and taking into account the down-sampling
process, samples’ dimensions were set to a 416 pixel height and 512 pixel width.

To achieve more accurate results, the architecture’s depth D and the number of incoming neurons N0

were subject to a greed search optimization. Preliminary tests have shown that lower depths result in
less accurate results.

3 Materials and Methods

The datasets used for this work contain videos from different patients, as described in Table 1.

Table 1: Distribution of the datasets for Training and Validation, Test and Application phases.
Echo view Train and Validation Test Application

PLAX 21 videos (2163 frames) 6 videos (520 frames) 23 videos
A4C 22 videos (2400 frames) 6 videos (526 frames) 23 videos

At the application phase, the tested UNet models were applied to the dataset for clinical assessment.
Two cardiologists were asked to evaluate the segmentation quality based on 6 parameters for the
two views: overall detection of the each leaflet’ tip pixels, overall estimate of each leaflet’ thickness,
amount of false positives and repeatability of the segmentation quality along the video. Each case
was graded with scores of 0, 1 and 2 (0 connotes failure and 2 success).

The echocardiography sequences were acquired during the Heart Caravan of 2016, a health care
provision initiative which took place in the State of Paraíba, Brazil. All images were acquired using a
Vivid I, by GE and/or a CX-50, by Philips and from children with ages between 4 and 16 years old.
The sets used for training, validation and test were manually annotated in each frame as depicted in
Fig. 3.These annotations of the mitral leaflets (AMVL and PMVL) were made by an experienced
user and validated by two pediatric cardiologists.

For the models’ performance assessment during parameterization, the dice similarity coefficient
(DICE) was used. This metric measures the similarity between the model’s prediction and the
manual annotation. For the evaluation of the UNet’s segmentation results, the DICE, precision
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Figure 3: Manual annotations of the AMVL, PMVL and CT. (a) parasternal long-axis view. (b) apical
four-chamber view.

and recall were used. For the assessment of inter-rater agreement on the evaluation of the results
in clinical context, the Bennett’s Sscore [16] was applied. The Sscore estimates the agreement
assuming that the likelihood of random agreement (both rater agree, when both select a category
randomly) is solely dependent on the number of categories. For q categories, r raters and n rated
items, the Sscore is defined as:

Sscore =
po − pc
1− pc

, with : (1)

pc =
1

q2

∑
k,l

wkl, po =
1

n

n∑
i=1

q∑
k=1

rik(r
∗
ik − 1)

ri(ri − 1)
, r∗ik

q∑
l=1

wklril (2)

where, ril and rik are the number of raters assigning item i to category l or k, respectively. Since in
our case the categorization is a grading process, ordinal weighting was applied, thus when the two
raters agree total credit is given (wkl = 1), when raters disagree by choosing immediate neighbor
categories partial credit is given (wkl = 0.33), and when raters disagree by choosing non-neighbor
categories no credit is given (wkl = 0).

The UNet models were trained in a Desktop PC with Intel Core i7 Processor (3.40 GHz), 16 GB
RAM, and NVIDIA GeForce GTX 970 GPU with 4 GB RAM.

4 Results and Discussion

In this section we elaborate on the results gathered in this work, and on their evaluation. The following
subsection covers the results of the D and N0 parameters grid search, the results on the test dataset
and the results of the clinical evaluation of the proposed method.

4.1 Parameterization

The parameterization of the architecture’s depth D and number of incoming neurons N0 was made
for each echo view by evaluating the DICE in the validation stage. The training stages were all
stopped at 30 epochs and the model with higher DICE in validation was saved. The highest result
was always found before the 30th epoch. Depths higher than 5 resulted in GPU memory overflow
and, because of that, only depths of 4 and 5 were tested. The number of incoming neurons N0 was
studied in the range from 4 to 32 with base 2 steps.

4.1.1 Parasternal long-axis

The results obtained in the validation stage are summarized in Table 2.

The highest DICE was obtained for D = 5 and N0 = 8. Even though the model lies in the border
of D, further exploration was not made due to GPU overflow for depths higher than 5.
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Table 2: Mean DICE Coefficient results in the validation set. In bold is the highest DICE.

D
N0 4 8 16

4 <0.710 0.762 0.770
5 <0.710 0.791 0.786

4.1.2 Apical four-chamber

The results obtained in the validation stage are summarized in Table 3.

Table 3: Mean DICE Coefficient results in the validation set. In bold is the highest DICE.

D
N0 4 8 16 32

4 <0.710 0.757 0.757 0.760
5 <0.710 0.756 0.762 0.771

Concerning N0, contrary to what happened with the PLAX view, it was verified the results improved
with higher values. Thus, the search was expanded. It was not possible to test N0 = 64 due to
hardware resource exhaustion. The model with highest DICE has D = 5 and N0 = 32.

4.2 Results on test dataset

In this section the UNet segmentation quality is evaluated in the test set. From the 526 A4C frames,
3 were excluded due to motion artifacts or probe mispositioning, which impeded the user from
annotating the structures. The same happened with 12 of the 520 PLAX frames.

In Fig. 4 the evaluation metrics’ distributions are shown. An immediate assertion to be made is that
the results are better in the AMVL than in the PMVL segmentation, in both views. This is in line
with what happens with human observers, who have higher inter-observer agreement for the AMVL.
Concerning the AMVL segmentation, the DICE values are above 0.5 in PLAX and above 0.6 in
A4C, with a median of 0.742 in PLAX and 0.795 in A4C. High recall values (0.903 median in
PLAX and 0.927 in A4C) indicate that most of the leaflets’ pixels were correctly detected as such,
so false rejection is not a significant issue. On the other hand, precision presents lower scores (0.688
in PLAX and 0.710 in A4C), which might indicate that some false detection is happening. Post
processing techniques may have a positive effect removing false positives. In what concerns PMVL
segmentation, the same trends obtained in the AMVL are observed, yet the metrics present wider
distributions. This denotes for higher variability in the results, with more false rejection and false
detection. In PLAX , median values are DICE of 0.600, recall of 0.787 and precision of 0.512.
In A4C, median values are DICE of 0.690, recall of 0.817 and precision of 0.615. Examples of
the obtained segmentation results are shown in Fig. 5. The best (a, d) and worst (b, e) results are
displayed for PLAX and A4C. This selection takes into account the average DICE of the two classes
(AMVL and PMVL). The best average result for PLAX is 0.848 and the worst is 0.354. The best
average result for A4C is 0.869 and the worst is 0.260. Two examples of false detection errors are also
shown: (c) demonstrates overestimation of the structures’ borders and (f) demonstrates the presence
of false positives due to reflection artifacts on the US response. In some cases, overestimation may not
be a significant error, since some limits of the leaflets (AMVL - posterior wall of the Aorta boundary
and PMVL - left atrium wall boundary) are almost arbitrarily chosen when manually annotating.
These frames present high recall values, while precision is low.

4.3 Results on application dataset

The clinical evaluation results of the application dataset are summarized in Table 4.

The confusion matrices in Table 4 show that both raters assigned score 2 more often than 1, and 1
more often than 0. The pooled Sscore is 0.781, which means a substantial agreement between raters,
which reinforces the assigned scores. From all the evaluated parameters, the amount of false positives
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Figure 4: Boxplot of the evaluation metrics (DICE, recall and precision) obtained from the test images
using the UNet method. The × are the outliers. (a) AMVL segmentation in A4C view. (b) PMVL
segmentation in A4C view. (c) AMVL segmentation in PLAX view. (d) PMVL segmentation in
PLAX view.

Table 4: Results of the clinical evaluation of the segmentations’ quality by two raters (R1 and R2).
P1: AMVL tip detection; P2: AMVL thickness; P3: PMVL tip detection; P4: PMVL thickness; P5:
amount of false positives; P6: repeatability along the video. S2, S1 and S0 stands for the grading
scores.

P1 P2 P3 P4 P5 P6

R1
R2

S2 S1 S0 S2 S1 S0 S2 S1 S0 S2 S1 S0 S2 S1 S0 S2 S1 S0

S2
S1
S0

20 1 0
1 1 0
0 0 0

19 3 0
0 0 1
0 0 0

21 0 0
0 1 1
0 0 0

19 1 0
1 1 1
0 0 0

6 3 1
4 7 0
0 1 1

18 2 0
2 0 0
0 0 1

IR Agreement 0.888 0.776 0.944 0.832 0.469 0.776

(P5) is the one with lower scores assigned, which is in line with the numerical results that were
discussed in the previous section. While most of the parameters met substantial or almost perfect
inter-rater agreement, the amount of false positives only met moderate agreement.

5 Conclusion

A new method based on the UNet architecture was proposed for the segmentation of the mitral valve
leaflets. The architecture was parameterized and trained for each one of the target echocardiographic
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(a) (b) (c)

(d) (e) (f)

Figure 5: Example of segmentation results. White contours correspond to manual annotations and
red-green to AMVL and PMVL automatic segmentations respectively. 1st row: best (a) and worst (b)
results for PLAX view; (c) is an example of error by overestimation. 2nd row: best (d) and worst (e)
results for A4C view; (f) is an example of false detection.

views, resulting in two models. Results show that both models perform in a similar way, with slight
superior performance in the A4C model. Moreover, they indicate a median DICE coefficient of 0.74
in PLAX and 0.79 in A4C for the anterior mitral leaflet segmentation, while median DICE of 0.60
in PLAX and 0.69 A4C are met for the posterior leaflet. By analyzing the recall and precision
scores it is possible to understand that the most significant source of error is the false detection.
Visual inspection of the results allows to identify two kinds of false detection: overestimation of the
structures’ borders and false structures detection caused by imaging artifacts. Future developments
should include application of post-processing techniques, which may have a significant impact on the
false positives elimination.

The clinical evaluation of the segmentation results is in agreement with the quantitative results. The
parameter with the lowest scores is the amount of false positives, although the agreement is only
moderate enforcing the challenge of this task.

In the future, further model optimization should be tested, as well as include data augmentation to
simulate different acquisition settings. The database should also be expanded with representative
examples. The clinical evaluation of the results should be continued with more cases to assess real
world applicability of the proposed method.
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