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ABSTRACT

We propose a simple, tractable lower bound on the mutual information contained
in the joint generative density of any latent variable generative model: the GILBO
(Generative Information Lower BOund). It offers a data independent measure of
the complexity of the learned latent variable description, giving the log of the ef-
fective description length. It is well-defined for both VAEs and GANs. We compute
the GILBO for 800 GANs and VAEs trained on MNIST and discuss the results.

1 INTRODUCTION

GANs (Goodfellow et al., 2014) and VAEs (Kingma & Welling, 2014) are the most popular latent
variable generative models, because of their relative ease of training and high expressivity. However
quantitative comparisons across different algorithms and architectures remains a challenge. VAEs
are generally measured using the ELBO, which measures their fit to data. Many metrics have been
proposed for GANs, including the INCEPTION score (Gao et al., 2017), the FID score (Heusel et al.,
2017), independent Wasserstein critics (Danihelka et al., 2017), birthday paradox testing (Arora &
Zhang, 2017), and others.

Instead of focusing on metrics tied to the data distribution, we believe a useful additional indepen-
dent metric worth consideration is the complexity of the trained generative model. Such a metric
would help answer questions related to overfitting and memorization, and may also correlate well
with sample quality. To work with both GANs and VAEs our metric should not require a tractable
joint density p(x, z). To address these desiderata, we propose the GILBO.

2 GILBO: GENERATIVE INFORMATION LOWER BOUND

A symmetric, non-negative, reparameterization independent measure of the information shared be-
tween two random variables is given by the mutual information:

I(X;Z) =

∫
dx dz p(x, z) log

p(x, z)

p(x)p(z)
=

∫
dz p(z)

∫
dx p(x|z) log p(x|z)

p(x)
≥ 0. (1)

I(X;Z) measures how much information (in nats) is learned about one variable given the other. As
such it is a measure of the complexity of the generative model. It can be interpreted (when converted
to bits) as the reduction in the number of yes-no questions needed to guess X if you observe Z, or
vice-versa. It gives the log of the effective description length of the generative model. This is
roughly the log of the number of distinct samples (Tishby & Zaslavsky, 2015). I(X;Z) is well-
defined even for continuous distributions. This contrasts with the continuous entropy H(X) of the
marginal distribution, which is not reparameterization independent (Marsh, 2013). It is intractable
due to the presence of p(x), but we can define a tractable variational lower bound (Agakov, 2006):

GILBO ≡
∫

dz p(z)

∫
dx p(x|z) log e(z|x)

p(z)
= Ep(x,z)

[
log

e(z|x)
p(z)

]
≤ I(X;Z) (2)

We call this bound the GILBO for Generative Information Lower BOund. It requires learning a
tractable variational approximation to the intractable posterior p(z|x) = p(x, z)/p(z), termed e(z|x)
since it acts as an encoder mapping from data to a prediction of its associated latent variables.1

∗Authors contributed equally.
1Note that a new e(z|x) is trained for both GANs and VAEs. VAEs do not use their own e(z|x).
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The encoder e(z|x) performs a regression for the inverse of the GAN or VAE generative model, ap-
proximating the latents that gave rise to an observed sample. This encoder should be a tractable
distribution, and must respect the domain of the latent variables, but does not need to be reparam-
eterizable, as no sampling from e(z|x) is needed during training. We suggest the use of (−1, 1)
remapped Beta distributions in the case of uniform latents, and Gaussians in the case of Gaussian
latents. Optimizing the GILBO for the parameters of the encoder gives a lower bound on the true
generative mutual information in the GAN or VAE.

The GILBO contrasts with the representational mutual information of VAEs defined by the data and
encoder, which motivates VAE objectives (Alemi et al., 2017). For VAEs, both lower and upper
variational bounds can be defined on the representational joint distribution (p(x)e(z|x)). These
have demonstrated their utility for cross-model comparisons. However, they require a tractable
posterior, preventing their use with most GANs. The GILBO finally provides a theoretically-justified
and dataset-independent metric that allows direct comparison of VAEs and GANs.

The GILBO is entirely independent of the true data, being purely a function of the generative joint
distribution. This makes it distinct from other proposed metrics like estimated marginal log likeli-
hoods (often reported for VAEs and very expensive to estimate for GANs), an independent Wasser-
stein critic (Danihelka et al., 2017), or the common INCEPTION (Gao et al., 2017) and FID (Heusel
et al., 2017) scores which attempt to measure how well the generated samples match the observed
true data samples. Being independent of data the GILBO does not directly measure sample quality,
but in practice it correlates well.

Even though the GILBO doesn’t directly reference the dataset, the dataset provides useful signposts.
First is at logC, the number of distinguishable classes in the data. If the GILBO is lower than that,
the model has almost certainly failed to learn a reasonable model of the data. Another is at logN .
A GILBO near this value may indicate that the model has largely memorized the training set, or that
the model’s capacity happens to be constrained near the size of the training set. At the other end is
the entropy of the data itself (H(X)) taken either from a rough estimate, or from the best achieved
data log likelihood of any known generative model on the data. Any reasonable generative model
should have a GILBO no higher than this value.

Unlike other metrics, GILBO does not monotonically map to quality. Both extremes indicate failures.
A vanishing GILBO denotes a generative model with vanishing complexity, either due to indepen-
dence of the latents and samples, or a collapse to a small number of possible outputs. A diverging
GILBO suggests oversensitivity to the latent variables.

3 EXPERIMENTS

We computed the GILBO for each of the 700 GANs and 100 VAEs tested in Lucic et al. (2017) on the
MNIST dataset in their wide range hyperparameter search. This allows us to compare FID scores and
GILBO scores for a large set of different GAN objectives on the same architecture. For our encoder
network, we duplicated the discriminator, but adjusted the final output to be a linear layer predicting
the 64× 2 = 128 parameters defining a (−1, 1) remapped Beta distribution (or Gaussian in the case
of the VAE) over the latent space. We used a Beta since all of the GANs were trained with a (−1, 1)
64-dimensional uniform distribution. The parameters of the encoder were optimized for up to 500k
steps with ADAM (Kingma & Ba, 2015) using a scheduled multiplicative learning rate decay. We
used the same batch size (64) as in the original training. Training time for estimating GILBO is
comparable to doing FID evaluations (a few minutes).

In Figure 1 we show the distributions of FID and GILBO scores for all 800 models as well as their
scatterplot. We can immediately see that each of the GAN objectives collapse to GILBO ∼ 0 for
some hyparameter settings, but none of the VAEs do. In Figure 2 we show generated samples from
all of the models, split into relevant regions. A GILBO near zero signals a failure of the model to
make any use of its latent space (Figure 2a). The best performing models by FID all sit at a GILBO
∼ 11 nats. An MNIST model that simply memorized the training set and partitioned the latent space
into 50,000 unique outputs would have a GILBO of log 50,000 = 10.8 nats, so the cluster around
11 nats is suspicious. Among a large set of hyperparameters and across 7 different GAN objectives,
we notice a conspicuous increase in FID score as GILBO moves away from ∼ 11 nats to either side.
This demonstrates a failure of existing GANs to achieve a meaningful range of complexities while
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(a) FID (b) GILBO (c) GILBO vs FID

Figure 1: (a) is a recreation of Figure 5 (left) from Lucic et al. (2017) showing the distribution of
FID scores for each model. Points are jittered to give a sense of density. (b) Shows the distribution
of GILBO scores. (c) Shows FID vs GILBO .

(a) GILBO ≤ logC (b) logC < GILBO ≤ logN

(c) logN < GILBO ≤ 2 logN (d) 2 logN < GILBO ≤ 80.2(∼ H(X))

(e) 80.2(∼ H(X)) < GILBO (f) Legend

Figure 2: Samples from all models sorted by GILBO in raster order and broken up into representative
ranges. The background colors correspond to the model family (Figure 2f). Note that all of the VAE
samples are in (d), indicating that the VAEs achieved a non-trivial amount of complexity. Also note
that most of the GANs in (d) have poor sample quality, further underscoring the apparent difficulty
GANs have maintaining high visual quality without indications of training set memorization.

maintaining visual quality. Most striking is the distinct separation in GILBOs between GANs and
VAEs. Clearly GANs learn less complex joint densities than a vanilla VAE.

4 CONCLUSION

We believe using GILBO for further comparisons across architectures, datasets, and GAN and VAE
variants will illuminate the strengths and weaknesses of each. We think that GILBO should be re-
ported when evaluating any latent variable model.
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