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ABSTRACT

Program translation is an important tool to migrate legacy code in one language
into an ecosystem built in a different language. In this work, we are the first
to consider employing deep neural networks toward tackling this problem. We
observe that program translation is a modular procedure, in which a sub-tree of
the source tree is translated into the corresponding target sub-tree at each step.
To capture this intuition, we design a tree-to-tree neural network as an encoder-
decoder architecture to translate a source tree into a target one. Meanwhile, we
develop an attention mechanism for the tree-to-tree model, so that when the de-
coder expands one non-terminal in the target tree, the attention mechanism lo-
cates the corresponding sub-tree in the source tree to guide the expansion of the
decoder. We evaluate the program translation capability of our tree-to-tree model
against several state-of-the-art approaches. Compared against other neural transla-
tion models, we observe that our approach is consistently better than the baselines
with a margin of up to 15 points. Further, our approach can improve the previous
state-of-the-art program translation approaches by a margin of 20 points on the
translation of real-world projects.

1 INTRODUCTION

Programs are the main tool for building computer applications, the IT industry, and the digital world.
Various programming languages have been invented to facilitate programmers to develop programs
for different applications. At the same time, the variety of different programming languages also
introduces a burden when programmers want to combine programs written in different languages
together. Therefore, there is a tremendous need to enable program translation between different
programming languages.

Nowadays, to translate programs between different programming languages, typically programmers
would manually investigate the correspondence between the grammars of the two languages, then
develop a rule-based translator. However, this process can be inefficient and error-prone. In this
work, we make the first attempt to examine whether we can leverage deep neural networks to build
a program translator automatically.

Intuitively, the program translation problem in its format is similar to a natural language transla-
tion problem. Some previous work propose to adapt phrase-based statistical machine translation
approaches (SMT) for code migration (Nguyen et al., 2013; Karaivanov et al., 2014; Nguyen et al.,
2015). Recently, neural network approaches, such as sequence-to-sequence-based models (Bah-
danau et al., 2015; Cho et al., 2015; Eriguchi et al., 2016; He et al., 2016; Vaswani et al., 2017), have
achieved the state-of-the-art performance on machine translation. In this work, we study neural
machine translation methods to handle the program translation problem. However, a big challenge
making a sequence-to-sequence-based model ineffective is that, unlike natural languages, program-
ming languages have rigorous grammars and are not tolerant to typos and grammatical mistakes. It
has been demonstrated that it is very hard for an RNN-based sequence generator to generate syntac-
tically correct programs when the lengths grow large (Karpathy et al., 2015).

In this work, we observe that the main issue of an RNN that makes it hard to produce syntactically
correct programs is that it entangles two sub-tasks together: (1) learning the grammar; and (2)
aligning the sequence with the grammar. When these two tasks can be handled separately, the
performance can typically boost. For example, Dong & Lapata (2016) employs a tree-based decoder
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to separate the two tasks. In particular, the decoder in (Dong & Lapata, 2016) leverages the tree
structural information to (1) generate the nodes at the same depth of the parse tree using an LSTM
decoder; and (2) expand a non-terminal and generate its children in the parse tree. Such an approach
has been demonstrated to achieve the state-of-the-art results on several semantic parsing tasks.

Inspired by this observation, we hypothesize that the structural information in both input and output
parse trees can be leveraged to enable such a separation. Inspired by this intuition, we propose
tree-to-tree neural networks to combine both a tree encoder and a tree decoder. In particular, we
observe that in the program translation problem, both input and output programs have their parse
trees. In addition, a cross-language compiler typically follows a modular procedure to translate the
individual sub-components in the source tree into their corresponding target ones, and then compose
them to form the final target tree. Therefore, we design the workflow of a tree-to-tree neural network
to align with this procedure: when the decoder expands a non-terminal, it locates the corresponding
sub-tree in the source tree using an attention mechanism, and uses the information of the sub-tree
to guide the non-terminal expansion. In particular, a tree encoder is helpful in this scenario, since it
can aggregate all information of a sub-tree to the embedding of its root, so that the embedding can
be used to guide the non-terminal expansion of the target tree.

We follow the above intuition to design the tree-to-tree translation model. Existing works (Socher
et al., 2011b; Kusner et al., 2017) have proposed tree-based autoencoder architectures. However, in
these models, the decoder can only access to a single hidden vector representing the source tree, thus
they are not performant in the translation task. In contrast, we employ an attention mechanism for
the decoder to access the source tree, so that our approach can significantly improve the translation
performance (i.e., from 0% to > 90%). To the best of our knowledge, this is the first tree-to-tree
neural network architecture proposed for translation tasks in the literature.

To test our hypothesis, we develop two novel program translation tasks, and employ a Java to C#
benchmark used by existing program translation works (Nguyen et al., 2015; 2013). First, we com-
pare our approach against several neural network approaches on our proposed two tasks. Experimen-
tal results demonstrate that our tree-to-tree model outperforms other state-of-the-art neural networks
on the program translation tasks, and yields a margin of up to 5% on the token accuracy and up
to 15% on the program accuracy. Further, we compare our approach with previous program trans-
lation approaches on the Java to C# benchmark, and the results show that our tree-to-tree model
outperforms previous state-of-the-art by a large margin of 20% on program accuracy. These results
demonstrate that our tree-to-tree model is promising toward tackling the program translation prob-
lem. Meanwhile, we believe that our proposed tree-to-tree neural network could also be adapted to
other tree-to-tree tasks, and we consider it as future work.

2 PROGRAM TRANSLATION PROBLEM

In this work, we consider the problem of translating a program in one language into another. One
approach is to model the problem as a machine translation problem between two languages, and
thus numerous neural machine translation approaches can be applied.

For the program translation problem, however, a unique property is that each input program unam-
biguously corresponds to a unique parse tree. Thus, rather than modeling the input program as a
sequence of tokens, we can consider the problem as translating a source tree into a target tree. Note
that most modern programming languages are accompanied with a well-developed parser, so we can
assume that the parse trees of both the source and the target programs can be easily obtained.

The main challenge of the problem in our consideration is that the cross-compiler for translating
programs from one language into another typically does not exist. Therefore, even if we assume the
existence of parsers for both the source and the target languages, the translation problem itself is still
non-trivial. We formally define the problem as follows.

Definition 1 (Program translation). Given two programming languages Ls and Lt, each being a set
of instances (pk, Tk), where pk is a program, and Tk is its corresponding parse tree. We assume that
there exists a translation oracle π, which maps instances in Ls to instances in Lt. Given a dataset of
instance pairs (is, it) such that is ∈ Ls, it ∈ Lt and π(is) = it, our problem is to learn a function
F that maps each is ∈ Ls into it = π(is).
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CoffeeScript Program: x=1 if y==0 JavaScript Program: if (y === 0) {  x = 1; }
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Figure 1: Translating a CoffeeScript program into JavaScript. The sub-component in the Coffee-
Script program and its corresponding translation in JavaScript are highlighted.

Note that this problem definition does not restrict on whether F knows only the program pk or only
the parse tree Tk. Thus it can leverage both information to finish the translation task. Also, in the
target language, since a program and its parse tree uniquely matches each other, F only needs to
predict one of them to be correct.

In this definition, Ls and Lt are the source and target languages respectively, and we use the oracle
π to model the goal of the translation. Notice that different tasks can be modeled with different
choices of π. For example, besides program translation between two languages, we can also model
the compiler optimization by setting Ls = Lt and choosing π that maps an un-optimized program
into an optimized one.

In this work, we focus on the problem setting that we have a set of paired source and target pro-
grams to learn the translator. Note that all existing program translation works (Karaivanov et al.,
2014; Nguyen et al., 2015; 2013) also study the problem under such an assumption. When such
an alignment is lacking, the program translation problem is more challenging. Several techniques
for NMT have been proposed to handle this issue, such as dual learning (He et al., 2016), which
have the potential to be extended for the program translation task. We leave these more challenging
problem setups as future work.

3 TREE-TO-TREE NEURAL NETWORK

In this section, we present our design of the tree-to-tree neural network. We first motivate the design,
and then present the details.

3.1 PROGRAM TRANSLATION AS A TREE-TO-TREE TRANSLATION PROBLEM

Figure 1 presents an example of translation from CoffeeScript to JavaScript. We observe several
interesting properties of the program translation problem. First, the translation can be modular.
The figure highlights a sub-component in the source tree corresponding to x=1 and its translation
in the target tree corresponding to x=1;. This correspondence is independent of other parts of
the program. Consider when the program grows longer and this statement may repetitively occur
multiple times, it may be hard for a sequence-to-sequence model to capture the correspondence
based on only token sequences without structural information.

Second, such a correspondence makes it a natural solution to locate the referenced sub-tree in the
source tree when expanding a non-terminal in the target tree into a sub-tree. Inspired by this intu-
ition, we design the tree-to-tree neural network with attention, so that when decoding a non-terminal
into a (sub-)tree, the model can employ an attention mechanism to locate the referenced source
sub-tree. The soft-attention mechanism makes the model differentiable, so that it can be trained
end-to-end.
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Figure 2: Tree-to-tree workflow: The arrows indicate the computation flow of the encoder-decoder
architecture. Blue solid arrows indicate the flow from/to the left child, while orange dashed arrows
are for the right child. The black dotted arrow from the source tree root to the target tree root
indicates that the LSTM state is copied. The green box denotes the expanding node, and the grey
one denotes the node to be expanded in a queue. The sub-tree of the source tree corresponding to
the expanding node is highlighted in yellow. The right corner lists the formulas to predict the token
for the expanding node.

Third, although the corresponding sub-trees are analogues to each other, they differ in two as-
pects. On the one hand, the non-terminal nodes are different. For example, the non-terminal
IdentifierLiteral in CoffeeScript is called Identifier in JavaScript. Some non-
terminals, such as Value, may not even have a correspondence. On the other hand, the topology
structures of the corresponding sub-trees can be different. For example, the Assign node in the
source tree has two children, while its correspondence in the target tree has three: an additional = is
inserted in the middle. These differences can pose a challenge to build a program translation model.

3.2 TREE-TO-TREE NEURAL NETWORK

A tree-to-tree neural network follows an encoder-decoder framework to encode the source tree into
an embedding, and decode the embedding into the target tree. To capture the intuition of the modular
translation process, the decoder employs an (soft) attention mechanism to locate the corresponding
source sub-tree when expanding the non-terminal. We illustrate the workflow of a tree-to-tree model
in Figure 2. In the following, we present each component of the model.

Converting a tree into a binary one. Note that the input and output trees may contain multiple
branches. Although we can design tree-encoders and tree-decoders to handle trees with arbitrary
number of branches, we observe that encoder and decoder for binary trees can be more effective.
Thus, the first step is to convert both the source tree and the target tree into a binary tree. To this
end, we employ the Left-Child Right-Sibling representation for this conversion.

Binary tree encoder. The encoder employs a Tree-LSTM (Tai et al. (2015)) to compute embed-
dings for both the entire tree and each sub-tree. In particular, consider a nodeN that is attached with
a token ts in its one-hot encoding representation, and it has two children NL and NR, which are its
left child and right child respectively. The encoder recursively computes the embedding for N from
the bottom up.

Assume that the left child and the right child maintain the LSTM state (hL, cL) and (hR, cR) re-
spectively. Then the LSTM state (h, c) of N is computed as

(h, c) = LSTM(([hL;hR], [cL; cR]), x) (1)

where [a; b] indicates the concatenation of two vectors a and b. Note that a node may lack one or
both of its children. In this case, the encoder sets the LSTM state of the missing child to be zero.
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Binary tree decoder. The decoder generates the target tree starting from a single root node. The
decoder first copies the LSTM state (h, c) of the root of the source tree, and attaches it to the
root node of the target tree. Then the decoder maintains a queue of all nodes to be expanded, and
recursively expands each of them. In each iteration, the decoder pops one node from the queue, and
expands it. In the following, we call the node being expanded the expanding node.

First, the decoder will predict the token of expanding node. To this end, the decoder computes the
embedding et of the expanding node N , and then feeds it into a softmax regression network for
prediction:

tt = argmax softmax(Wet) (2)
Here, W is a trainable matrix of size Vt × d, where Vt is the vocabulary size of the outputs and d is
the embedding dimension. Note that et is computed using the attention mechanism, which we will
explain later.

Each token tt is a non-terminal, a terminal, or a special 〈EOS〉 token. If tt = 〈EOS〉, then the
decoder finishes expanding this node. Otherwise, the decoder generates one new node as the left
child and another new node as the right child of the expanding one. Assume that (h′, c′), (h′′, c′′)
are the LSTM states of its left child and right child respectively, then they are computed as:

(h′, c′) = LSTML((h, c), Btt) (3)

(h′′, c′′) = LSTMR((h, c), Btt) (4)
Here,B is a trainable word embedding matrix of size d×Vt. Note that the generation of the left child
and right child use two different sets of parameters for LSTML and LSTMR respectively. These new
children are pushed into the queue of all nodes to be expanded.

The target tree generation process terminates when the queue is empty.

Attention mechanism to locate the source sub-tree. Now we consider how to compute et. One
straightforward approach is to compute et as h, which is the hidden state attached to the expanding
node. However, in doing so, the embedding will soon forget the information about the source tree
when generating deep nodes in the target tree, and thus the model yields a very poor performance.

To make better use of the information of the source tree, our tree-to-tree model employs an attention
mechanism to locate the source sub-tree corresponding to the sub-tree rooted at the expanding node.
Specifically, we compute the following probability:

P (Ns is the source sub-tree corresponding to Nt|Nt)

where Nt is the expanding node. We denote this probability as P (Ns|Nt), and we compute it as

P (Ns|Nt) ∝ exp(hTs W0ht) (5)
where W0 is a trainable matrix of size d × d. To leverage the information from the source tree, the
decoder can sample a source node Ns following P (Ns|Nt) or simply predict the most-likely source
node Ns = argmaxNs

P (Ns|Nt), and then get its hidden hs as es. This embedding can then be
combined with h, the hidden state of the expanding node, to compute et as follows:

et = tanh(W1[h; es]) (6)
where W1 is a trainable matrix of size d× 2d, and [h; es] denotes the concatenation of h and es.

However, this approach suffers a big issue that the entire network is no longer end-to-end differ-
entiable unless explicit supervision is given to train P (Ns|Nt). Unfortunately, this supervision is
unavailable. We may rely on reinforcement learning algorithms to mitigate this issue, but doing so
is expensive and may not be effective.

We solve this problem by changing the above hard-attention scheme to a soft-attention mechanism.
Note that in Equation (6), we only need a continuous embedding vector es rather than the discrete
choice of Ns. Therefore, we can approximate es as the expectation of the hidden state value across
all Ns conditioning on Nt. In fact, we have

es = E[hNs
|Nt] =

∑
Ns

hNs
· P (Ns|Nt) (7)

Note that this final formula (7) coincides with the standard attention formalism. Combining all
equations from (1) to (7), the entire tree-to-tree neural network is fully differentiable and can be
trained end-to-end.
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Source program Target program
for i=1; i<10; i+1 do letrec f i =

if x>1 then if i<10 then
y=1 let = if x>1 then

else let y=1 in ()
y=2 else let y=2 in ()

endfor in f i+1
else ()

in f 1

Figure 3: An example of the translation for the synthetic task.

Parent attention feeding. In the above approach, the attention vectors et are computed indepen-
dently to each other, since once et is used for predicting the token tt, et is no longer used for further
predictions. However, intuitively, the attention decisions for the prediction of each node should be
related to each other. For example, for a non-terminal node Nt in the target tree, suppose that it
is related to Ns in the source tree, then it is very likely that the attention weights of its children
should focus on the descendants of Ns. Therefore, when predicting the attention vector of a node,
the model should leverage the attention information of its parent as well.

Following this intuition, we propose a parent attention feeding mechanism, so that the attention vec-
tor of the expanding node is taken into account when predicting the attention vectors of its children.
Formally, besides the embedding of the token tt, we modify the inputs to LSTML and LSTMR of
the decoder in Equations (3) and (4) as below:

(h′, c′) = LSTML((h, c), [Btt; et]) (8)

(h′′, c′′) = LSTMR((h, c), [Btt; et]) (9)

Notice that these formulas in their formats coincide with the input-feeding method for sequential
neural networks (Luong et al., 2015), but their meanings are different. For sequential models, the
input attention vector belongs to the previous token, while here it belongs to the parent node.

4 EVALUATION

In this section, we evaluate our tree-to-tree neural network with several baseline approaches on the
program translation task. To do so, we first describe three benchmark datasets in Section 4.1 for eval-
uating different aspects. Then we evaluate our tree-to-tree model with several baseline approaches,
including the state-of-the-art neural network approaches and program translation approaches. In
the following, we start with presenting the details of the benchmark datasets and models, and then
present the results.

4.1 DATASETS

To evaluate different approaches for the program translation problem, we employ three tasks: (1)
a synthetic translation task from an imperative language to a functional language; (2) translation
between CoffeeScript and JavaScript, which are both full-fledged languages; and (3) translation of
real-world projects from Java to C#, which has been used as a benchmark in the literature.

For the synthetic task, we design an imperative source language and a functional target language.
Such a design makes the source and target languages use different programming paradigms, so that
the translation can be challenging. Figure 3 illustrates an example of the translation, which demon-
strates that a for-loop is translated into a recursive function. We manually implement a translator,
which is used to acquire the ground truth. The formal grammars of the two languages and the
implementation of the translator can be found in Appendix D.1 and Appendix E respectively .

For the CoffeeScript-JavaScript task, the programming paradigms of the two languages are identical.
CoffeeScript employs a Python-style succinct syntax, while JavaScript employs a C-style verbose
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Project # of matched methods
Lucene (luc) 5,516

POI (poi) 3,153
Itext (ite) 3,079
JGit (jgi) 2,780
JTS (jts) 2,003

Antlr (ant) 465
Total 16,996

Table 1: Statistics of the Java to C# dataset.

syntax. To control the program lengths of the training and test data, we develop a pCFG-based
program generator and a subset of the core CoffeeScript grammar. We also limit the set of variables
and literals to restrict the vocabulary size. We rely on the CoffeeScript compiler to generate the
corresponding ground truth JavaScript programs. The grammar used to generate the programs in our
experiments can be found in Appendix D.2 . In doing so, we can get a set of CoffeeScript-JavaScript
pairs, and thus we can build a CoffeeScript-to-JavaScript dataset, and a JavaScript-to-CoffeeScript
dataset by exchanging the source and the target.

For both of the above tasks, we randomly generate 100,000 pairs of source and target programs for
training, 10,000 pairs as the development set, and 10,000 pairs for testing. More statistics of the
above datasets can be found in Appendix B .

To build the Java to C# dataset, we employ the same approach as in (Nguyen et al., 2015) to crawl
several open-source projects, which have both a Java and a C# implementation. Same as in (Nguyen
et al., 2015), we pair the methods in Java and C# based on their file names and method names.
The statistics of the dataset is summarized in Table 1. Due to the change of the versions of these
projects, the concrete dataset in our evaluation may differ from (Nguyen et al., 2015). We apply
ten-fold validation for matched method pairs in each project, as in (Nguyen et al., 2015).

4.2 METRICS

In our evaluation, we measure the following two metrics:

• Token accuracy. Given a set of source programs, we run the evaluated model to translate
them into target programs, and calculate the percentage of the tokens that can match the
ground truth.

• Program accuracy. Given a set of source programs, we run the evaluated model to trans-
late them into target programs, and calculate the percentage of the predicted programs that
can entirely match the ground truth.

Note that the program accuracy is an underestimation of the true accuracy based on semantic equiv-
alence, and this metric has been used in (Nguyen et al., 2015). This metric is more meaningful
than other previously proposed metrics, such as syntax-correctness and dependency-graph-accuracy,
which are not directly comparable to semantic equivalence. In addition, token accuracy can provide
more insight into the performance of different models.

4.3 MODEL DETAILS

We evaluate our tree-to-tree model against a sequence-to-sequence model (Bahdanau et al., 2015;
Vinyals et al., 2015), a sequence-to-tree model (Dong & Lapata, 2016), and a tree-to-sequence
model (Eriguchi et al., 2016). Note that for a sequence-to-sequence model, there can be four variants
to handle different input-output formats. For example, given a program, we can simply tokenize it
into a sequence of tokens. We call this format as raw program, denoted as P. We can also use the
parser to parse the program into a parse tree, and then serialize the parse tree as a sequence of tokens.
Our serialization of a tree follows its depth-first traversal order, which is the same as (Vinyals et al.,
2015). We call this format as parse tree, denoted as T. For both input and output formats, we can
choose either P or T. Similarly, for a sequence-to-tree model, we have two variants based on its input
format being either P or T, and for a tree-to-sequence model, we have two variants based on its output
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Tree2tree Seq2seq Seq2tree Tree2seq

T→T T→T T→T P→P P→T T→P T→T P→T T→T T→P T→T(-PF) (-Attn)
Token accuracy

SYN-S 99.99% 99.95% 55.60% 99.75% 99.59% 99.90% 99.73% 99.70% 99.51% 99.88% 99.82%
SYN-L 99.60% 96.68% 34.48% 68.31% 45.28% 67.37% 35.01% 96.95% 97.41% 97.08% 95.88%

Program accuracy
SYN-S 99.76% 98.61% 0% 97.92% 97.35% 98.38% 98.18% 96.14% 98.01% 98.51% 98.36%
SYN-L 97.50% 57.42% 0% 12.19% 0% 9.19% 0% 67.34% 68.11% 91.35% 87.84%

Table 2: Token accuracy and program accuracy of different approaches for the synthetic task.

Tree2tree Seq2seq Seq2tree Tree2seq

T→T T→T T→T P→P P→T T→P T→T P→T T→T T→P T→T(-PF) (-Attn)
CoffeeScript to JavaScript translation

CJ-AS 99.57% 98.80% 0.09% 90.51% 79.82% 92.73% 89.13% 86.52% 88.50% 96.96% 92.18%
CJ-BS 99.75% 99.67% 0% 97.44% 16.26% 98.05% 93.89% 91.97% 88.22% 96.83% 78.77%
CJ-AL 97.15% 71.52% 0% 21.04% 0% 0% 0% 80.82% 78.60% 82.55% 46.94%
CJ-BL 95.60% 78.61% 0% 19.26% 9.98% 25.35% 42.08% 76.12% 76.21% 83.61% 26.83%

JavaScript to CoffeeScript translation
JC-AS 87.75% 85.11% 0.09% 83.07% 86.13% 73.88% 86.31% 86.86% 86.99% 71.61% 86.53%
JC-BS 86.37% 80.35% 0% 80.49% 85.94% 69.77% 85.28% 85.06% 84.25% 66.82% 85.31%
JC-AL 78.59% 54.93% 0% 77.10% 77.30% 65.52% 75.70% 77.11% 77.59% 60.75% 75.75%
JC-BL 75.62% 44.40% 0% 73.14% 73.96% 61.92% 74.51% 74.34% 71.56% 57.09% 73.86%

Table 3: Program accuracy of different approaches for translation between CoffeeScript and
JavaScript. The token accuracy can be found in Appendix C .

format being either P or T. Note that the sequence-to-tree model generates a tree as output, and thus
requires its output format to be T (unserialized). For the same reason, the tree-to-sequence model
requires its input format to be T (unserialized), and our tree-to-tree only has one form. Therefore,
we have 9 different models in our evaluation.

The hyper-parameters used in different models can be found in Appendix A . The baseline models
have employed their own input-feeding or parent-feeding method that is analogous to our parent
attention feeding mechanism.

4.4 RESULTS ON THE SYNTHETIC TASK

We create two datasets for the synthetic task: one with average length 20 (SYN-S) and the other
with average length 50 (SYN-L). Here, the length of a program indicates the number of tokens in the
source program.

The results are presented in Table 2. We can observe that our tree2tree model outperforms all
baseline models on both datasets and with both metrics. Especially, on the dataset with longer
programs, the program accuracy significantly outperforms all seq2seq models by a large margin,
i.e., > 85%. Its margin over a seq2tree model can also reach around 30 points. These results
demonstrate that tree2tree model is more capable of learning the program translation relationship.

Notice that increasing the length of the programs indeed makes the problem harder: the program
accuracy drops for all models. However, we observe that the decrease of our tree2tree model on the
program accuracy is only around 2 points, which is much smaller than the decrease of other models.
This shows that the tree2tree model is significantly better than other baselines at handling longer
inputs.

In addition, we perform ablation study to compare the full tree2tree model with (1) tree2tree without
parent attention feeding (T→T (-PF)) and (2) tree2tree without attention (T→T (-Attn)). We observe
that the full tree2tree model significantly outperforms the other alternatives. In particular, on SYN-
L, the full tree2tree’s program accuracy is 40 points higher than the tree2tree model without parent
attention feeding.

More importantly, we observe that the program accuracy of tree2tree model without the attention
mechanism is always 0%. Note that such a model is similar to a tree-to-tree autoencoder architecture.
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Tree2tree J2C# 1pSMT mppSMT
Reported in (Nguyen et al., 2015)

Lucene 72.8% 21.5% 21.6% 40.0%
POI 72.2% 18.9% 34.6% 48.2%
Itext 67.5% 25.1% 24.4% 40.6%
JGit 68.7% 10.7% 23.0% 48.5%
JTS 68.2% 11.7% 18.5% 26.3%

Antlr 31.9% (58.3%) 10.0% 11.5% 49.1%

Table 4: Program accuracy on the Java to C# translation. In the parentheses, we put the program
accuracy that can be achieved by increasing the training set.

This result shows that our novel architecture can significantly outperform previous tree-to-tree-like
architectures on the program translation task.

4.5 RESULTS ON THE COFFEESCRIPT-JAVASCRIPT TASK

We now move on to the CoffeeScript-JavaScript task. We create several datasets named as XY-ZW:
X and Y (C or J) indicate the source and target language respectively; Z (A or B) indicates the
vocabulary; and W (S or L) indicates the program length. In particular, vocabulary A uses only
{x,y} as variable names and {0,1} as literals; vocabulary B uses all alphabetical characters as
variable names, and all single digits as literals. S indicates that the CoffeeScript programs contain
10 tokens on average; and L for 20.

The program accuracy results are presented in Table 3, and the token accuracy results can be found
in Appendix A . Most of the observations from our synthetic task remain: our tree2tree model
outperforms all baseline models; all models perform worse on longer inputs; both the attention and
the parent attention feeding mechanisms boost the performance of our tree2tree model significantly.

In addition, we observe that for the translation from JavaScript to CoffeeScript, the improvements
of the tree2tree model over the baselines are much smaller than for CoffeeScript to JavaScript trans-
lation. We attribute this to the fact that the target programs are much shorter. For example, for a
CoffeeScript program with 20 tokens, its corresponding JavaScript program may contain more than
300 tokens. Thus, the model needs to predict much less tokens for a CoffeeScript program than a
JavaScript program, so that even seq2seq models can achieve a reasonably good accuracy. However,
still, we can observe that our tree2tree model outperforms all baselines.

4.6 RESULTS ON REAL-WORLD PROJECTS

We now compare our approach with three state-of-the-art program translation approaches, i.e.,
J2C# (jav), 1pSMT (Nguyen et al., 2013), and mppSMT (Nguyen et al., 2015), on the real-world
benchmark from Java to C#. Here, J2C# is a rule-based system, 1pSMT directly applies the phrase-
based SMT on sequential programs, and mppSMT is a multi-phase phrase-based SMT approach that
leverages both the raw programs and their parse trees. Our approach handles the out-of-vocabulary
problem by canonicalizing all variable names, literals and string constants. For example, the first
variable in a program (and its subsequent references) is renamed as v1, the second as v2, etc. In
this way, the dataset contains only a small set of variable names.

The results are summarized in Table 4. For previous approaches, we report the results from (Nguyen
et al., 2015). We can observe that our tree2tree approach can significantly outperform the previous
state-of-the-art on all projects except Antlr. The improvements range from 20.2% to 41.9%.

On Antlr, the tree2tree model performs worse. We attribute this to the fact that Antlr contains too
few data samples for training. We test our hypothesis by constructing another training and validation
set from all other 5 projects, and test the model on the entire Antlr. We observe that the model can
achieve a test accuracy of 58.3%, which is 9 points higher than the state-of-the-art. Therefore, we
conclude that our approach can significantly outperform previous program translation approaches
when there are sufficient training data.
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5 RELATED WORK

Statistical approaches for program translation. Some recent work have applied statistical ma-
chine translation techniques to program translation (Allamanis et al., 2017; Karaivanov et al., 2014;
Nguyen et al., 2015; 2013; 2016). For example, several works propose to adapt phrase-based statis-
tical machine translation models and leverage grammatical structures of programming languages for
code migration (Karaivanov et al., 2014; Nguyen et al., 2015; 2013). Nguyen et al. (2016) proposes
to use Word2Vec representation for APIs in libraries used in different programming languages, then
learns a transformation matrix for API mapping. On the contrary, our work is the first to employ
deep learning techniques for program translation.

Neural networks with tree structures. In recent years, various neural networks with tree struc-
tures have been proposed to employ the structured information of the data (Dong & Lapata, 2016;
Rabinovich et al., 2017; Parisotto et al., 2017; Yin & Neubig, 2017; Alvarez-Melis & Jaakkola,
2017; Tai et al., 2015; Zhu et al., 2015; Socher et al., 2011a; Eriguchi et al., 2016; Zhang et al.,
2016; Socher et al., 2011b; Kusner et al., 2017). In these work, different tree-structured encoders
are proposed for embedding the input data, and different tree-structured decoders are proposed for
predicting the output trees. In particular, in (Socher et al., 2011b; Kusner et al., 2017), they propose
tree-structured autoencoders to learn vector representations of trees, and show better performance
on tree reconstruction and other tasks such as sentiment analysis. In this work, we are the first to
design the tree-to-tree neural network for translation tasks.

Neural networks for parsing. Other work study using neural networks to generate parse trees
from input-output examples (Dong & Lapata, 2016; Vinyals et al., 2015; Aharoni & Goldberg, 2017;
Rabinovich et al., 2017; Yin & Neubig, 2017; Alvarez-Melis & Jaakkola, 2017; Dyer et al., 2016;
Chen et al., 2018; 2016). Dong & Lapata (2016) proposes a seq2tree model that allows the decoder
RNN to generate the output tree recursively in a top-down fashion. This approach achieves the state-
of-the-art results on several semantic parsing tasks. Some other work incorporate the knowledge of
the grammar into the architecture design (Yin & Neubig, 2017; Rabinovich et al., 2017) to achieve
better performance on specific tasks. However, these approaches are hard to generalize to other tasks.
Again, none of them is designed for program translation or proposes a tree-to-tree architecture.

Neural networks for code generation. A recent line of research study using neural networks for
code generation (Balog et al., 2017; Devlin et al., 2017; Parisotto et al., 2017; Ling et al., 2016;
Rabinovich et al., 2017; Yin & Neubig, 2017). In (Ling et al., 2016; Rabinovich et al., 2017; Yin &
Neubig, 2017), they study generating code in a DSL from inputs in natural language or in another
DSL. However, their designs require additional manual efforts to adapt to new DSLs in considera-
tion. In our work, we consider the tree-to-tree model as a generic approach that can be applied to
any grammar.

6 CONCLUSION AND FUTURE WORK

In this work, we are the first to consider neural network approaches for the program translation
problem, and are the first to propose a tree-to-tree neural network that combines both a tree-RNN
encoder and a tree-RNN decoder for translation tasks. Extensive evaluation demonstrates that our
tree-to-tree neural network outperforms several state-of-the-art models, including neural networks
for machine translation and statistical machine translation-based program translation approaches.
This renders our tree-to-tree model as a promising tool toward tackling the program translation
problem. In addition, we believe that our proposed tree-to-tree neural network has potential to
generalize to other tree-to-tree tasks, and we consider it as future work.

At the same time, we observe many challenges on program translation that existing techniques are
not capable of handling. For example, the models are hard to generalize to programs longer than
the training ones; it is unclear how to handle an infinite vocabulary set that may be employed in
real-world applications; further, the training requires a dataset of aligned input-output pairs, which
may be lacking in practice. We consider all these problems as important future work in the research
agenda toward solving the program translation problem.
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Seq2seq Seq2tree Tree2seq Tree2tree
Batch size 100 20 100 100
Number of RNN layers 3 1 1 1
Encoder RNN cell LSTM LSTM Tree LSTM Tree LSTM
Decoder RNN cell LSTM
Initial learning rate 0.005

Learning rate decay schedule Decay the learning rate by a factor of 0.8× when the
validation loss does not decrease for 500 mini-batches

Hidden state size 256
Embedding size 256
Dropout rate 0.5
Gradient clip threshold 5.0
Weights initialization Uniformly random from [-0.1, 0.1]

Table 5: Hyper-parameters chosen for each neural network model.

CJ-(A/B)S CJ-(A/B)L SYN-S SYN-L
Average input length (P) 10 20 20 50
Minimal output length (P) 23 33 22 46
Maximal output length (P) 151 311 44 96
Average output length (P) 44 69 30 71
Minimal input length (T) 34 69 40 100
Maximal input length (T) 61 111 56 134
Average input length (T) 48 85 49 111
Minimal output length (T) 38 73 41 90
Maximal output length (T) 251 531 82 177
Average output length (T) 71 129 55 133

Table 6: Statistics of the datasets used for the synthetic task and the CoffeeScript-JavaScript task.

A HYPER-PARAMETERS OF NEURAL NETWORK MODELS

We present the hyper-parameters of different neural networks in Table 5. These hyper-parameters
are chosen to achieve the best validation accuracy through a grid search.

B MORE STATISTICS OF OUR PROPOSED DATASETS

We present more detailed statistics of the datasets for the synthetic task and the CoffeeScript-
JavaScript task in Table 6.

C MORE RESULTS ON COFFEESCRIPT-JAVASCRIPT TASK

Table 7 shows the token accuracy of different approaches for the translation between CoffeeScript
and JavaScript.

D GRAMMARS FOR GENERATING THE PROGRAMS IN THE EVALUATION

D.1 GRAMMARS FOR THE SYNTHETIC TASK

The grammar specifications of the source language (FOR language) and the target language
(LAMBDA language) used in the synthetic task are provided in Figure 4 and Figure 5 respectively.
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Tree2tree Seq2seq Seq2tree Tree2seq

T→T T→T T→T P→P P→T T→P T→T P→T T→T T→P T→T(-PF) (-Attn)
CoffeeScript to JavaScript translation

CJ-AS 99.97% 99.97% 56.21% 93.51% 92.30% 95.46% 95.05% 93.29% 95.94% 98.96% 98.09%
CJ-BS 99.98% 99.98% 47.54% 99.08% 87.51% 99.11% 96.14% 98.31% 98.09% 99.27% 98.10%
CJ-AL 99.37% 98.16% 32.99% 85.84% 25.65% 19.13% 36.18% 95.64% 94.74% 94.18% 84.71%
CJ-BL 99.36% 99.27% 31.80% 80.22% 63.49% 87.27% 79.85% 94.09% 94.64% 93.85% 78.07%

JavaScript to CoffeeScript translation
JC-AS 99.14% 98.81% 65.42% 88.44% 96.27% 88.46% 98.34% 98.20% 99.06% 86.93% 98.36%
JC-BS 98.84% 98.18% 55.22% 86.85% 97.92% 85.98% 98.09% 96.93% 98.84% 84.81% 97.94%
JC-AL 96.95% 92.65% 42.23% 88.09% 95.94% 87.19% 95.04% 93.51% 96.59% 84.57% 94.63%
JC-BL 96.48% 92.49% 39.89% 87.31% 94.12% 85.70% 96.24% 94.79% 96.33% 83.03% 94.68%

Table 7: Token accuracy of different approaches for translation between CoffeeScript and JavaScript.

<Expr> ::= <Var>
| <Const>
| <Expr> + <Var>
| <Expr> + <Const>
| <Expr> − <Var>
| <Expr> − <Const>

<Cmp> ::= <Expr> == <Expr>
| <Expr> > <Expr>
| <Expr> < <Expr>

<Assign> ::= <Var> = <Expr>

<If> ::= if <Cmp> then <statement>
else <statement> endif

<For> ::= for <Var> = <Expr> ;
<Cmp> ; <Expr> do
<Statement> endfor

<Single> ::= <Assign> | <If> | <For>

<Seq> ::= <Single> ; <Single>
| <Seq> ; <Single>

<Statement> ::= <Seq> | <Single>

Figure 4: Grammar for the source language FOR in the synthetic task.

D.2 GRAMMAR FOR THE COFFEESCRIPT-JAVASCRIPT TASK

The grammar used to generate the CoffeeScript-JavaScript dataset, which is a subset of the core
CoffeeScript grammar, is provided in Figure 6.

E PYTHON IMPLEMENTATION OF THE TRANSLATOR FOR THE SYNTHETIC
TASK

The python source code to implement the translator from a FOR program to a LAMBDA program
in the synthetic task is provided in Figure 7.
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<Unit> ::= ()

<Expr> ::= <Var>
| <Expr> + <Var>
| <Expr> − <Var>

<Cmp> ::= <Expr> == <Expr>
| <Expr> > <Expr>
| <Expr> < <Expr>

<Term> ::= <LetTerm> | <Expr>
| <Unit> | <IfTerm>

<LetTerm> ::= let <Var> = <Term> in <Term>
| letrec <Var> <Var> = <Term>

in <Term>

<IfTerm> ::= if <Cmp> then <Term>
else <Term>

Figure 5: Grammar for the target language LAMBDA in the synthetic task.

<Expr> ::= <Var>
| <Const>
| <Expr> + <Var>
| <Expr> + <Const>
| <Expr> * <Var>
| <Expr> * <Const>
| <Expr> == <Var>
| <Expr> == <Const>

<Simple> ::= <Var> = <Expr>
| <Expr>

<IfShort> ::= <Simple> if <Expr>
| <IfShort> if <Expr>

<WhileShort> ::= <Simple> while <Expr>
| <WhileShort> while <Expr>

<ShortStatement> ::= <Simple> | <IfShort> | <WhileShort>
<Statement> ::= <ShortStatement>

| if <Expr> <br> <indent+> <Block> <indent->
| while <Expr> <br> <indent+> <Block> <indent->
| if <Expr> <br> <indent+> <Block> <indent-> <br>

else <br> <indent+> <Block> <indent->
| if <Expr> then <ShortStatement> else <ShortStatement>

<Block> ::= <Statement>
| <Block> <br> <Statement>

Figure 6: A subset of the CoffeeScript grammar used to generate the CoffeeScript-JavaScript dataset.
Here, <br> denotes the newline character.
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1 d e f t r a n s l a t e f r o m f o r ( s e l f , a s t ) :
2 i f t y p e ( a s t ) == t y p e ( [ ] ) :
3 i f a s t [ 0 ] == ’<SEQ>’ :
4 t 1 = s e l f . t r a n s l a t e f r o m f o r ( a s t [ 1 ] )
5 t 2 = s e l f . t r a n s l a t e f r o m f o r ( a s t [ 2 ] )
6 i f t 1 [ 0 ] == ’<LET>’ and t 1 [−1] == ’<UNIT>’ :
7 t 1 [−1] = t 2
8 r e t u r n t 1
9 e l s e :

10 r e t u r n [ ’<LET>’ , ’ b l a n k ’ , t1 , t 2 ]
11 e l i f a s t [ 0 ] == ’<IF>’ :
12 cmp = a s t [ 1 ]
13 t 1 = s e l f . t r a n s l a t e f r o m f o r ( a s t [ 2 ] )
14 t 2 = s e l f . t r a n s l a t e f r o m f o r ( a s t [ 3 ] )
15 r e t u r n [ ’<IF>’ , cmp , t1 , t 2 ]
16 e l i f a s t [ 0 ] == ’<FOR>’ :
17 v a r = s e l f . t r a n s l a t e f r o m f o r ( a s t [ 1 ] )
18 i n i t = s e l f . t r a n s l a t e f r o m f o r ( a s t [ 2 ] )
19 cmp = s e l f . t r a n s l a t e f r o m f o r ( a s t [ 3 ] )
20 i n c = s e l f . t r a n s l a t e f r o m f o r ( a s t [ 4 ] )
21 body = s e l f . t r a n s l a t e f r o m f o r ( a s t [ 5 ] )
22 t b = [ ’<LET>’ , ’ b l a n k ’ , body , [ ’<APP>’ , ’ f unc ’ , i n c ] ]
23 f u n c b o d y = [ ’<IF>’ , cmp , tb , ’<UNIT>’ ]
24 t r a n s l a t e = [ ’<LETREC>’ , ’ f unc ’ , var , func body , [ ’<APP>’ , ’

f unc ’ , i n c ] ]
25 r e t u r n t r a n s l a t e
26 e l i f a s t [ 0 ] == ’<ASSIGN>’ :
27 r e t u r n [ ’<LET>’ , a s t [ 1 ] , a s t [ 2 ] , ’<UNIT>’ ]
28 e l i f a s t [ 0 ] == ’<Expr>’ :
29 r e t u r n a s t
30 e l i f a s t [ 0 ] == ’<Op+> ’ :
31 r e t u r n a s t
32 e l i f a s t [ 0 ] == ’<Op−>’ :
33 r e t u r n a s t
34 e l i f a s t [ 0 ] == ’<CMP>’ :
35 r e t u r n a s t
36 e l s e :
37 r e t u r n a s t

Figure 7: The Python code to translate a FOR program into a LAMBDA program.

16


	Introduction
	Program translation problem
	Tree-to-tree Neural Network
	Program translation as a tree-to-tree translation problem
	Tree-to-tree Neural Network

	Evaluation
	Datasets
	Metrics
	Model details
	Results on the synthetic task
	Results on the CoffeeScript-JavaScript task
	Results on real-world projects

	Related work
	Conclusion and future work
	Hyper-parameters of neural network models
	More statistics of our proposed datasets
	More results on CoffeeScript-JavaScript task
	Grammars for generating the programs in the evaluation
	Grammars for the synthetic task
	Grammar for the CoffeeScript-JavaScript task

	Python implementation of the translator for the synthetic task

